36
1 NORIT XIGA TM Dead-end Ultrafiltration in water treatment

General Presentation Uf

Embed Size (px)

Citation preview

Page 1: General Presentation   Uf

1

NORIT XIGATM

Dead-end Ultrafiltrationin water treatment

Page 2: General Presentation   Uf

2

1. Introduction2. Norit XIGA™ dead-end Ultrafiltration3. UF Process Modes4. Main UF parameters5. Large scale water treatment: examples6. Summary

ContentsContents

Page 3: General Presentation   Uf

3

1. Introduction1. Introduction

Gradual decrease of global water sources Boost in the development new technology Water from non-conventional sources:

– WWTP effluent– Sea water

Application of membrane technology:– reverse osmosis (1960’s)– micro-, ultra- and nanofiltration (1980/90’s)

Page 4: General Presentation   Uf

4

1. Introduction1. Introduction

MicroFiltration10 um – 100 nm

UltraFiltration100 - 10 nm

NanoFiltration10 - 1 nm

ReverseOsmosis< 1 nm

colloids virusescolourhardness pesticides saltswater

giardacryptobacteria

colour hardnesspesticidessaltswater

colloidsviruses

saltswater

colourhardnesspesticides salts

water

Page 5: General Presentation   Uf

5

Dead-end filtration:advantages:

– simple process set-up– low energy consumption– low investment

disadvantages:– laminar flow– discontinuous concentrate discharge– risk of pore and membrane channel plugging– sensitivity to changes in the feed properties

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

feed water

permeate

cake

Page 6: General Presentation   Uf

6

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Cross-flow Filtration:advantages:

– turbulent flow– continuous concentrate discharge– control of cake-layer build-up

disadvantages:– more complex process layout– high(er) energy consumption– high(er) investment cost

feed water

permeate

cake

Page 7: General Presentation   Uf

7

>Log 4 removal of viruses

Complete removal of suspended solids

Removal of micro-organisms:>Log 6 removal of bacteria

Partial removal dissolved matter (TOC, COD, BOD)through binding to suspended matter

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Cryptosporidium(2-3 µm)

Main skills UF:

Page 8: General Presentation   Uf

8

8 inch X-FlowUF membrane

module (40 m2)

0.8 mm fibrespore size 20-25 nm

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Bypass tubes

Page 9: General Presentation   Uf

9

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Membrane housing

Feed

Permeate

Membrane Module

Feed

Permeate

Bypass tubes

Page 10: General Presentation   Uf

10

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltration

Module 1 Module 2Inter-connector

Bypass tubes

Page 11: General Presentation   Uf

11

2. Norit XIGA™ dead-end 2. Norit XIGA™ dead-end UltrafiltrationUltrafiltrationMain skills Norit XIGA™-concept:

Dead-end low energy consumption, simple design Horizontal small footprint, easy module handling 8 inch world standard for RO Bypass tubes improved fouling distribution between modules, reduced fouling tendency Fully automated In-situ cleaning of membranes operation

Page 12: General Presentation   Uf

12

Filtration3. UF process modes3. UF process modes

Page 13: General Presentation   Uf

13

Filtration: inside outsidemembran

e

feed

permeate

3. UF process modes3. UF process modes

Page 14: General Presentation   Uf

14

Cake build-up

Pore blocking

BackWash

3. UF process modes3. UF process modes

Page 15: General Presentation   Uf

15

Backwash: outside inside

concentrate

backwash

membrane

3. UF process modes3. UF process modes

Page 16: General Presentation   Uf

16

Backwash3. UF process modes3. UF process modes

Page 17: General Presentation   Uf

17

Adsorption

Chemically Enhanced Backwash

3. UF process modes3. UF process modes

Page 18: General Presentation   Uf

18

Chemically Enhanced Backwash

3. UF process modes3. UF process modes

Page 19: General Presentation   Uf

19

-250

-200

-150

-100

-50

0

50

100

time

flux

Filtration Filtration Filtration Filtration

BW BW CEB

3. UF process modes3. UF process modes

Page 20: General Presentation   Uf

20

Single stage UF

100% 80-95%

5-20%

Feed

Concentrate

Permeate

Typical: Recovery 80-95%

3. UF process modes3. UF process modes

Page 21: General Presentation   Uf

21

Dual stage UF

100%Feed

1° Conc.1° Permeate95-99,5%

2° Conc.0,5 - 5%

UF1

UF2

2° Permeate

Typical: Recovery 95–99,5%

3. UF process modes3. UF process modes

Page 22: General Presentation   Uf

22

Flux: Yield per square meter membrane surface Ltr/m2.h or lmh

4. UF main parameters4. UF main parameters

TMP: Trans Membrane PressurePfeed – Pperm (bar)

Pf PpFeed

Permeate

Typical (filtration): 60 – 130 lmhTypical (backwash): 250 lmh

Typical (filtration): 0,2 – 0,8 barTypical (backwash): 1,0 – 2,0 bar

Page 23: General Presentation   Uf

23

• Pressure Correction Factor = TMP (bar)• Temp. Corr. Factor (to ref. temp, mostly 20°C) =

impact water viscosity & “membrane effect” on TMPat different temperatures)

(Ltr/m2.h.bar). or (lmh/bar).

Permeability: Flux corrected for Pres. & Temp. (also normalised flux)

Example: Temperature impact on permeability:

If T=30°C Perm=152 lmh/bar

If T=20°C Perm=200 lmh/barIf T=5°C Perm=318 lmh/bar

Typical: 150 – 350 lmh/bar

4. UF main parameters4. UF main parameters

Flux = 100 lmhTMP = 0,5 bar

Pf Pp

Page 24: General Presentation   Uf

24

minFiltration time: Duration of 1 filtration period

%Recovery: Average permeate flow Average feed flow

Backwash time: Duration of 1 backwash sec

CEB interval: Period between 2 CEB’s hrs

Typical: 15 – 60 min

Typical: 30-50 sec

Typical: 6 – 48 hrs

Typical: 80 - 95 %

4. UF main parameters4. UF main parameters

Page 25: General Presentation   Uf

25

Permeability decrease through TMP increase

0

50

100

150

200

250

300

350

0 50 100 150 200

Time [minutes]

Perm

eabi

lity

[lmh/

bar]

0

0,5

1

1,5

2

TMP

[bar

]

Permeability TMP

4. UF main parameters4. UF main parameters

Page 26: General Presentation   Uf

26

WWTP

Surface water

Borehole/Spring waterSeawaterWWTP effluent

Potable waterproduction

UF RO

5. Large scale water 5. Large scale water treatmenttreatment

Page 27: General Presentation   Uf

27

Irrigation water

Process water

Potable water

Flux 70 - 100 lmhRecovery 80 - 90%

5a. Surface water5a. Surface water

Page 28: General Presentation   Uf

28

5a. Surface water5a. Surface water

Purit, The NetherlandsProcess Water (120 m3/h)

Klazienaveen, The NetherlandsIrrigation Water (300 m3/h)

Page 29: General Presentation   Uf

29

Potable Water

Flux 100 - 130 lmh Recovery 95 - 99%

5b. Borehole/Spring water5b. Borehole/Spring water

Page 30: General Presentation   Uf

30

PWN Heemskerk, The Netherlands2900 m3/h

PWN Heemskerk, The Netherlandspilotplant 10 m3/h

5b. Potable water5b. Potable water

Keldgate, United Kingdom3700 m3/h

Clay Lane, United Kingdom (6700 m3/h)

Page 31: General Presentation   Uf

31

SWRO pre-treatment for:

Process WaterPotable Water

Flux 80 - 100 lmh Recovery 80 - 90%

5c. Seawater5c. Seawater

Page 32: General Presentation   Uf

32

UAE Potable water 450 m3/h

5c. Seawater5c. Seawater

Page 33: General Presentation   Uf

33

From WWTP effluent to:Irrigation WaterProcess WaterGrey WaterPotable Water (indirect)

Flux 65 - 90 lmhRecovery 75 - 85%

5d. WWTP Effluent5d. WWTP Effluent

Page 34: General Presentation   Uf

34

Windhoek, Namibië Potable water 850 m3/h

Baranco Seco, Canaries Process water 1000 m3/h

5d. WWTP Effluent5d. WWTP Effluent

Page 35: General Presentation   Uf

35

Norit Dead-end XIGATM Ultrafiltration:

Large number of applications

Fully automated operation,easy operation

Compact design with small footprint, easy module loading and replacement

6. Summary6. Summary

Superb filtrate quality; complete removal of SS & micro-organismspartial removal of TOC, COD & BOD

Page 36: General Presentation   Uf

36