42

General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Embed Size (px)

Citation preview

Page 1: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical
Page 2: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers

Introduction22

• GoalGoal

To understand and identify the physical mechanisms governing the optical instabilities

• MethodologyMethodology

Physical models with adequate level of description

Electromagnetic problem

Semiconductor response

Page 3: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Motivation33

Evolution of compound-cavity modes

Feedback

Mutual coupling

• Longitudinal Structures

• Vertical Structures

Light polarization

Transverse modes

Free-running

EEL

VCSEL

~1 m

Activelayer

Page 4: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

––

Part I: Compound-cavity edge-emitting semiconductor lasers++

++ Part II: Polarization and transverse mode dynamics in vertical-cavity surface-emitting lasers

Contents

++ Perspectives

Part I: Compound-cavity edge-emitting semiconductor lasers++

Page 5: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

––

Part I: Compound-cavity edge-emitting semiconductor lasers––

++ Part II: Polarization and transverse mode dynamics in vertical-cavity surface-emitting lasers

++ Perspectives

++

++

Semiconductor lasers with optical feedback

Bidirectionally coupled semiconductor lasers

++ Semiconductor lasers with optical feedback

Contents

Page 6: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• Low frequency fluctuationsweak to moderate feedback, and injection current close-to-threshold

Low Frequency Fluctuations

66 Semiconductor lasers with optical feedback

D. Lenstra et al., IEEE J. Quantum Electron. 21, 674 (1985)

C. H. Henry et al., IEEE J. Quantum Electron. 22, 294 (1986)

J. Mørk et al., IEEE J. Quantum Electron. 24, 123 (1986)

J. Sacher et al., Phys. Rev. Lett. 63, 2224 (1989)

T. Sano, Phys. Rev. A 50, 2719 (1994)

M. Giudici et al., Phys. Rev. E 55, 6414 (1997)

T. Heil et al, Phys. Rev. A 58, 2672 (1998)

G. van Tartwijk and G. Agrawal, Prog. Quantum Electron. 22, 43 (1998)

• Power dropouts (slow dynamics)

Tn-1 Tn Tn+1 ···

0 200 400 600 800 1000

100

80

60

40

20

0

Time [ns]

Int

ensi

ty

[arb

. un

its]

T. Heil et al, PRA 58, R2674 (1998)

Page 7: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Distributed Feedback Lasers (DFB)

77 Semiconductor lasers with optical feedback

• Contribution:

Statistical characterization of the time T between consecutive power dropouts

Comparison between experiments and simulations

Experiments

DFB lasers

Strong side-mode suppression

Modeling

Lang-Kobayashi model

Single longitudinal mode approximationT. Heil, et al. Opt. Lett.18, 1275 (1999)

solitaryfeedback

Page 8: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Lang-Kobayashi Model (LK)

88 Semiconductor lasers with optical feedback

Weak feedback conditions

Monochromatic solutions: External-cavity modes G.H.M van Tartwijk et al., IEEE JSTQE 1, 446 (1995)

.||1

)()(

,|)(|)()(

)()()1(2

1)(

2

2

Es

NNgtG

tEtGNe

I

dt

tdN

tEtGidt

tdE

t

e

Extensive numerical simulation of the LK model Long time intervals (~ms) ~ 106 external roundtrips

~ 104 power dropouts

),(0 tEe if

SVA electric field:

Carriers:

Gain: R. Lang and K. Kobayashi, IEEE JQE 16, 347 (1980)

Page 9: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Results: Probability Density Functions

99 Semiconductor lasers with optical feedback

• Transitions among regimes

– Stable operation

– LFFs

– CC

• Control parameter

Injection current I/Ith

Experiment

LK model

I=0.98 Ith

=2.3 ns, R=5.4%, R16

T. Heil, et al. Opt. Lett.18, 1275 (1999)

Page 10: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Results: Probability Density Functions

1010 Semiconductor lasers with optical feedback

Experiment Numerics

I=0.98 Ith

I=1.04 Ith

I=1.08 Ith

=2.3 ns, R=5.4%, R16

• Distribution of power dropouts

– Dead time: refractory time

– One side exponential decay

• Control parameter

Injection current I/Ith

• Transitions among regimes

– Stable operation

– LFFs

– CC

Page 11: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• Transition from Stable LFF regimeT scales with the injection current

Results: Scaling Laws

1111 Semiconductor lasers with optical feedback

• Power dropouts ~ Intermittent process

12 LFFI

I

Normalization LFF onset

Power law

=2.3 ns, R=5.4%, R16

J. Mulet et al., Phys. Rev. E 59, 5400 (1999)T. Heil et al., Opt. Lett. 18, 1275 (1999)

2~T –1.0

Page 12: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

++ Bidirectionally coupled semiconductor lasers

Page 13: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• Natural generalization of the feedback systemPassive mirror Active semiconductor sectionNonlinear feedback effect

Motivation

1313 Bidirectionally coupled semiconductor lasers

–L– l – l l

z

I1

r

0 L+l

I2

E2

r’ rr’E

1

Synchronization of distant oscillators

Modeling: Electromagnetic problemTasks J. Mulet et al., PRA 65, 063815 (2002)

T. Heil et al., PRL 86, 795 (2001)J. Mulet et al., Proc. SPIE 4283, 293 (2001)

Generalize unidirectional or lateral coupling

Page 14: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• Phenomenological model weak coupling, no detuning

Dynamical Properties

1414 Bidirectionally coupled semiconductor lasers

.||1

)()(

,|)(|)()(

)()()1(2

1)(

22,1

2,12,1

22,12,12,1

2,12,1

2,12,12,1

Es

NNgtG

tEtGNe

I

dt

tdN

tEtGidt

tdE

t

e

),(1,2 ci

c tEe

c

• Experiments Twin Fabry-Perot lasers

Mutual injectionwith delay

• Monochromatic solutions compound-cavity modes

Symmetric: In-phase, anti-phase locking

J. Mulet et al., PRA 65, 063815 (2002)A. Hohl et al., PRL 78, 4745 (1997)

Page 15: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Results: Synchronization Scenario

1515 Bidirectionally coupled semiconductor lasers

=0 and Ilong coupling times: c ~ 4 ns

Symmetric conditions

1. Onset of coupling-induced instabilities

Irregular pulsations with small correlation

2. Transition to correlated dynamics

• Twofold threshold behavior upon coupling increases

)( )(

)( )()(

22

21

21

tPtP

ttPtPtS

Normalized cross-correlation1 2

J. Mulet et al., Proc. SPIE 4283, 293 (2001)

Page 16: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• thsol Correlated power dropouts with a time shift

Results: Dynamics in regime 2

1616 Bidirectionally coupled semiconductor lasers

T. Heil et al. PRL 86, 795 (2001)

Experiment Numerics

Inte

nsi

ty

Inte

nsi

ty

400 450 500 550 600 400 450 500 550 600Time / ns Time / ns

LASER 1

LASER 2

c c

• Synchronized subnanosecond pulsations with a time shift thsol

Inte

nsi

ty

Inte

nsi

ty

Time / ns

Experiment Numerics

0 2 4 6 8 10 0 2 4 6 8 10 Time / ns

c

Page 17: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• Isochronal state + small perturbation Achronal state

Results: Achronal Synchronization

1717 Bidirectionally coupled semiconductor lasers

Intensity

• Within phase locking regime although do not occur dynamically

ttct

ttct

Phase

Deterministicsimulation

Page 18: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

1818 Conclusion to Part I

• Power law <T>~(I/ILFF-1)–1 associated with the transition from stable operation to LFFs. Deterministic mechanisms

• Phase-locked compound-cavity modes of two mutually coupled semiconductor lasers

• Twofold threshold behavior: i) coupling-induced instabilities ii) transition to synchronization

• Achronal synchronization persists in symmetrically coupled lasers

• Feedback-induced instabilities appear in singlemode lasers

Page 19: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

––

Part I: Compound-cavity edge-emitting semiconductor lasers

Part II: Polarization and transverse mode dynamics in vertical-cavity surface-emitting lasers

++ Perspectives

++

++

++

Part II: Polarization and transverse mode dynamics in vertical-cavity surface-emitting lasers

Contents

Page 20: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

++

––

Part I: Compound-cavity edge-emitting semiconductor lasers

Part II: Polarization and transverse mode dynamics in vertical-cavity surface-emitting lasers

Perspectives

––

++

++

Polarization resolved intensity noise in VCSELs

Spatiotemporal optical model for VCSELs

++

Polarization resolved intensity noise in VCSELs

++

Contents

Page 21: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

2121 Polarization resolved intensity noise in VCSELs

What does Determine the Light Polarization State?

x y

z

Oxide layer

Active region

Top contact

EyEx

Fundamental mode

Bottom contact

Linear effect

Cavity anisotropies p, a

Preferential directions x (HF), y (LF)

Passive material

Two different contributions

Active material (QWs)

Light – matter

Nonlinear effect

No preferential direction imposed by the geometry

M. San Miguel, In semiconductor quantum optoelectronics, 339 (1999)

Page 22: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

2222 Polarization resolved intensity noise in VCSELs

Spin Dynamics and Light Polarization State

Population inversion per spin channel: N Ne – Nh

e e

j

E–E+

+1/2 –1/2

Jz=+3/2 Jz= –3/2

Ne+

Nh+

Electrons CB

Holes HHB

Ne–

Nh–

Four-level system:magnetic sublevels

Spin-flip reverse

electron’s spin

)(tFN

)(tF

noise

20 ||)( )()(

ENNNNNdt

dNeje

spontaneousrecombination rate injection rate spin-flip rate

M. San Miguel, Q. Feng, J.V. Moloney, PRA 54, 1728 (1995)Spin-Flip ModelSpin-Flip Model

EiENNidt

dEpa )( ]1)[1( 0

stimulated recombination

Page 23: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Nonthermal polarization switching and optical bistability– J. Martín-Regalado et al., APL 70, 3550 (1997) – M. B. Willemsen, et al. PRL 82, 4815 (1999)

Nonlinear anisotropies in the spectra of the polarization components– M.P. van Exter, et al. PRL 80, 4875 (1998)

Anticorrelated polarization fluctuations– E. Goodbar et al., APL 67, 3697 (1995) – C. Degen et al., Electron Lett. 34, 1585 (1998)

VCSELs in magnetic fields (Larmor oscillations)– S. Hallstein et al. PRB 56, R7076 (1997) – A. Gahl et al. IEEE JQE 35, 342 (1999)

2323 Polarization resolved intensity noise in VCSELs

Spin Dynamics and Light Polarization State

)(tFN

)(tF

noise

20 ||)( )()(

ENNNNNdt

dNeje

spontaneousrecombination rate injection rate spin-flip rate

M. San Miguel, Q. Feng, J.V. Moloney, PRA 54, 1728 (1995)Spin-Flip ModelSpin-Flip Model

EiENNidt

dEpa )( ]1)[1( 0

stimulated recombination

Page 24: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

2424 Polarization resolved intensity noise in VCSELs

Anticorrelated Polarization Fluctuations

Effective birefringence

1||2

thspCOs I

I

ROs

ROs

)()(2

)()()()(

BA

BABAAB

SS

SSSC

J. Mulet et al., PRA 64, 023817 (2001)

Spin-flip rate

Birefringence

j

E–E+

=3, p=1 ns–1,s=100 ns–1, I/Ith=1.04

Page 25: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

++ Spatiotemporal optical model for VCSELs

Page 26: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

• Spatiotemporal model Large signal dynamics Mechanisms that affect the selection of

Transverse modes and Polarization modesTransverse modes and Polarization modes

Transverse Effects in VCSELs

2626 Spatiotemporal optical model for VCSELs

• Motivation • Joint interplay of transverse and polarizationtransverse and polarization instabilitiesinstabilities

C. Degen et al. J. Opt. B 2, 517 (2000)T. Ackemann et al, J. Opt. B 2, 406 (2000)H. Li et al., Chaos 4, 1619 (1994)

0º90º

current

• Polarization in the fundamental transverse mode Spin-flip model M. San Miguel et al, PRA 54, 1728 (1995)

Dressed spin-flip model S. Balle et al, Opt. Lett. 24, 1121 (1999)

Page 27: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Spatiotemporal Optical Model

2727 Spatiotemporal optical model for VCSELs

);( )(

);(2

ˆ);(

trDAAi

trPa

iAiAtrA

sppa

t

L

• Transverse dependence of SVA electric fields

cavity losses QW Material Polarization

linear anisotropies spontaneous emission

2yx iAA

A

J. Mulet and S. Balle. IEEE J. Quantum Electron. 38, 291 (2002)

• Material polarization

);( ,,);( trADDA

AitrP t

Instantaneous frequency

• Passive waveguiding

thermal lensing

Arnn

cnn

cA e

ge

);(22

ˆ2

22

L

diffraction

g

ggtl

rr

rrrrnrn

0

)/(1)(

2

Page 28: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Material Model

2828 Spatiotemporal optical model for VCSELs

Normalized frequency:

Detuning:

/3/1DDu

t S. Balle. Phys. Rev. A 57, 1304 (1998)

J. Mulet and S. Balle. IEEE J. Quantum Electron. 38, 291 (2002)

• Optical susceptibility to circular light

iu

b

iu

DD

iu

DDD 1ln1ln

21ln),,( 0

APAPi

aD

DDBDADrCt

trD jt

**2

2

2

)(2

)();(

D

carrier diffusion stimulated recombination(Spatial Hole Burning)

current profile spin flip for e-spontaneousrecombination

tNND /

• Carrier dynamics (Spin-Flip)

/ , )(exp)( 26crrnC

Page 29: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Results: Transverse Mode Selection at Threshold

2929 Spatiotemporal optical model for VCSELs

• Analytical theory: Stability analysis “off” solution

• Relevant factors when ( I Ith )- Material gain: Detuning- Modal gain : Confinement thermal lensing & current profile- However SHB neglected

J. Mulet and S. Balle. IEEE JQE 38, 291 (2002)

• Structures

Parameters: c=15 m, g=18 m

ntl=5·10–3 ntl=5·10–4

ntl=10–3

ntl=10–2

Page 30: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

3030 Spatiotemporal optical model for VCSELs

Parameters: c=15 m, g=18 m, =0.25

Numerical simulations

LP12

sin - cos

LP10

Results: Transverse Mode Selection at Threshold

Page 31: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Subnanosecond Electrical Excitation

3131 Spatiotemporal optical model for VCSELs

Excitation current pulses Experimental findings

O. Buccafusca, et al., IEEE JQE 35, 608 (1999)

M. Giudici, et al., Opt. Comm. 158, 313 (1998)

O. Buccafusca, et al., APL 68, 590 (1996)

Delayed onset of higher order modes

8290

8288

8286

8284

0 400 800 1200 1600time (ps)

wa

vele

ng

th ()

on

1ns

thb

curr

en

t

on= 1 th 9 th

b= 0.85 th

1s 1nstime

Page 32: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Subnanosecond Electrical Excitation

3232 Spatiotemporal optical model for VCSELs

Evolution of the near fields (Both LP)

Results: Bottom-Emitteron = 4 th

12 12 mm 22 22 mm0º 90º0º 90º

Excitation current pulses Experimental findings

O. Buccafusca, et al., IEEE JQE 35, 608 (1999)

M. Giudici, et al., Opt. Comm. 158, 313 (1998)

O. Buccafusca, et al., APL 68, 590 (1996)

Delayed onset of higher order modes

8290

8288

8286

8284

0 400 800 1200 1600time (ps)

wa

vele

ng

th ()

on

1ns

thb

curr

en

t

on= 1 th 9 th

b= 0.85 th

1s 1nstime

J. Mulet et al., Proc SPIE 4283, 293 (2001)

Page 33: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Turn-on Delay

3333 Spatiotemporal optical model for VCSELs

TTT - Fundamental mode

c=12 m c=22 m

O. Buccafusca et al., IEEE JQE 35, 608 (1999)

400

300

200

100

0

0 2 4 6 8 10Ip/Ith

Tu

rn-o

n d

ela

y (p

s)

c=22 m

J. Mulet et al., Proc. SPIE 4283, 139 (2001)

• Physical mechanisms defining the onset

Spatial hole burning

Blue-shift gain peak (band filling)

Ng

progressive enhance of the gain

of higher-order modes

D

x

y

t

Page 34: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Turn-on Delay versus Thermal Lensing

3434 Spatiotemporal optical model for VCSELs

Single mode operation: i) Moderate thermal lensing ii) Detuning at the blue side of the gain peak

Turn-on delay when thermal lensing (TL)

StrongTL

WeakTL

cm =4th, p=30 ns– 1, a=0.5 ns–1, J=25 ns–1,

Near Fields

ntl=10–2

ntl=5·10–4

Time [ns]

90º

90º

Optical spectra

Page 35: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Carrier-Induced Index of Refraction

3535 Spatiotemporal optical model for VCSELs

Gain-guided VCSELsGain-guided VCSELs passive guiding = thermal lensing

• single mode favored by weak thermal lensing

• passive guiding carrier-induced refractive index

• Dynamical modes spatiotemporal model

Thermal lensingThermal lensing

?

Spatiotemporal model

Modal expansion

Page 36: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

n=10–2 Discb= th, on= 4th,=1.0

Spatiotemporal

Modal expansion

Results Intense thermal lensing

3636 Optical modal expansion

Large-signal Current Modulation I

Large-signal modulation

A. Valle et al, JOSAB 12, 1741 (1995)

Secondary Pulsations

hole filling

th

th

curr

en

t

time

turn-off transients

Small devices (6 m single mode)

Good agreement

J. Mulet and S. Balle. PRA 66, 053802 (2002)

Page 37: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

n=3·10–3 Discb= th, on= 4th,=1.0

Spatiotemporal

Modal expansion

Results weak thermal lensing

3737 Optical modal expansion

Large-signal Current Modulation II

Large-signal modulation

A. Valle et al, JOSAB 12, 1741 (1995)

Secondary Pulsations

hole filling

th

th

curr

en

t

time

turn-off transients

Small devices (6 m single mode)

Worse agreement

J. Mulet and S. Balle. PRA 66, 053802 (2002)

Page 38: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

Origin of the discrepancies between the models?

3838 Optical modal expansion

• Optical profiles from the spatiotemporal model during turn-on

(weak TL, n=9·10–4)

intensity

turn-on

• Optical Susceptibility Evolution

Profile shrinkage

Carrier antiguiding (Extra waveguide!)

Spatial hole burning

Initial

Final

J. Mulet and S. Balle. PRA 66, 053802 (2002)

Page 39: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

3939 Conclusions to Part II

• Selection of transverse modes

Close-to-threshold: Onset in a higher-order mode in top-emitters material gain & optical confinement

Large-signal excitation Well defined onset of transverse modes Secondary pulsations

spatial-hole burningcarrier diffusion

band filling

• Relevance of spin determining light polarization

Anticorrelated polarization fluctuations

Selection of polarization modes

• Optical modal expansion

Strong TL: Validity of the modal expansion ntl3·10–3

Weak TL : Distortion of the optical profiles

Spatial redistribution of carrier-induced refractive index

Page 40: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

++ Perspectives

––

Part I: Compound-cavity edge-emitting semiconductor lasers++

++ Part II: Polarization and transverse mode dynamics in vertical-cavity surface-emitting lasers

Contents

++ Perspectives

Page 41: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

4141 Perspectives

• Novel applications of semiconductor lasersNovel applications of semiconductor lasers

Encoded communication systems using chaotic carriers

• Nonlinear Optical Feedback • CSK – On-off Phase Shift Keying C. Mirasso et al, IEEE PTL 14, 456 (2002) – T. Heil et al, IEEE JQE 38, 1162 (2002)

• VCSEL with Saturable Absorber – Vectorial Chaos A. Scirè et al, Opt. Lett. 27, 391 (2002)

• Polarization Encoding• Device designDevice design

Spatiotemporal model for VCSELs

- Range of single mode operation

- Realistic large-signal modulation conditions

• Self-consistent solutions • VCSEL arrays • VCSEL with optical injection / feedback • Mode locking in VCSELs

Extension

Page 42: General contextGeneral context Physics and nonlinear dynamics of semiconductor lasers Introduction 2 2 Goal Goal To understand and identify the physical

++ Acknowledgments

• Technical University of Darmstadt (Germany)

T. Heil and I. Fischer

• Institut Mediterrani d’Estudis Avançats

S. Balle and A. Scirè

• Instituto de Física de Cantabria

A. Valle and L. Pesquera

• Universidad de la República Uruguay

C. Masoller

C. Mirasso and M. San Miguel

• Vrije University of Brussels

J. Danckaert