17
DOI: 10.4018/IJDCF.2019010101 International Journal of Digital Crime and Forensics Volume 11 • Issue 1 • January-March 2019 1 General Construction for Extended Visual Cryptography Scheme Using QR Codes Yuqiao Cheng, Science and Technology on Information Assurance Laboratory, Beijing, China Zhengxin Fu, Zhengzhou Information Science and Technology Institute, Zhengzhou, China Bin Yu, Zhengzhou Information Science and Technology Institute, Zhengzhou, China Gang Shen, Zhengzhou Information Science and Technology Institute, Zhengzhou, China ABSTRACT Thisarticledescribeshowavisualcryptographyscheme,withoneprominentfeature—decrypting simply, has attracted much research attention since it was first proposed. However, meaningless sharesremainacontinuingchallengeinthedevelopmentofVCS.Inthisarticle,anextendedvisual cryptographyscheme(EVCS)basedonXORoperationisproposed,inwhichQRcodesareutilized asthecoverimagesofshares.Bydesignation,allthesharesgeneratedintheschemecanbedecoded bystandardQRcodereaderswithspecificmeaning.Inaddition,toachievehighsharingefficiency, amethodofsimultaneouslysharingasecretQRcodeamongmultiplesubsetsispresented.Also, sufficientandnecessaryconditionsofthemethodareanalyzedwithanintegerprogrammingmodel, providingageneralconstructionapproachforEVCSunderarbitraryaccessstructures. KEywoRDS Error Correction Capacity, Extended Visual Cryptography Scheme (EVCS), General Access Structure, Multiple Subset Sharing (MSS), QR Codes 1. INTRoDUCTIoN Asanimportantbranchofsecretsharing,theconceptofvisualcryptographyscheme(VCS)wasfirst proposedbyNaorandShamir(1995).Accordingtotheoriginaldefinitionofa(k,n)-VCS,asecret imageisdistributedinto nshares.Nosecretinformationwillberevealedwithpossessionoffewer than kshares.Butwhen kormoresharesaresuperimposed,thesecretcanbeeasilydecryptedby humanvision.Inthepastfewdecades,VCSdevelopedrapidlyandhasmadegreatprogressinmany aspects(Liu&Yan,2014).Aschemeforgeneralaccessstructureswasgiventherewith(Ateniese, Blundo,Santis,&Stinson,1996),gettingridofthresholdconstraintsonthequalifiedsubsets.Optimal pixelexpansion(Shyu&Chen,2015)andcontrast(Lin,Chen,&Lin,2010)wereexploredlater. Tofurtherimprovetheperformanceofrecovery,XORoperationwasintroducedintothestudyof VCS(Shen,Liu,Fu,&Yu,2017;Yang&Wang,2014;Wu&Sun,2014).Forthesakeofflexible sharingstrategies,effortshavebeenmadeformultiplesecrets(Jia,Wang,Nie,&Zhang,2016),cheat Thisarticle,originallypublishedunderIGIGlobal’scopyrightonJanuary1,2019willproceedwithpublicationasanOpenAccessarticle startingonFebruary2,2021inthegoldOpenAccessjournal,InternationalJournalofDigitalCrimeandForensics(convertedtogoldOpen AccessJanuary1,2021),andwillbedistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/ licenses/by/4.0/)whichpermitsunrestricteduse,distribution,andproductioninanymedium,providedtheauthoroftheoriginalworkand originalpublicationsourceareproperlycredited.

General Construction for Extended Visual Cryptography

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: General Construction for Extended Visual Cryptography

DOI: 10.4018/IJDCF.2019010101

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

Copyright©2019,IGIGlobal.CopyingordistributinginprintorelectronicformswithoutwrittenpermissionofIGIGlobalisprohibited.

1

General Construction for Extended Visual Cryptography Scheme Using QR CodesYuqiao Cheng, Science and Technology on Information Assurance Laboratory, Beijing, China

Zhengxin Fu, Zhengzhou Information Science and Technology Institute, Zhengzhou, China

Bin Yu, Zhengzhou Information Science and Technology Institute, Zhengzhou, China

Gang Shen, Zhengzhou Information Science and Technology Institute, Zhengzhou, China

ABSTRACT

Thisarticledescribeshowavisualcryptographyscheme,withoneprominentfeature—decryptingsimply, has attractedmuch research attention since itwas first proposed.However,meaninglesssharesremainacontinuingchallengeinthedevelopmentofVCS.Inthisarticle,anextendedvisualcryptographyscheme(EVCS)basedonXORoperationisproposed,inwhichQRcodesareutilizedasthecoverimagesofshares.Bydesignation,allthesharesgeneratedintheschemecanbedecodedbystandardQRcodereaderswithspecificmeaning.Inaddition,toachievehighsharingefficiency,amethodofsimultaneouslysharingasecretQRcodeamongmultiplesubsetsispresented.Also,sufficientandnecessaryconditionsofthemethodareanalyzedwithanintegerprogrammingmodel,providingageneralconstructionapproachforEVCSunderarbitraryaccessstructures.

KEywoRDSError Correction Capacity, Extended Visual Cryptography Scheme (EVCS), General Access Structure, Multiple Subset Sharing (MSS), QR Codes

1. INTRoDUCTIoN

Asanimportantbranchofsecretsharing,theconceptofvisualcryptographyscheme(VCS)wasfirstproposedbyNaorandShamir(1995).Accordingtotheoriginaldefinitionofa(k,n)-VCS,asecretimageisdistributedintonshares.Nosecretinformationwillberevealedwithpossessionoffewerthankshares.Butwhenkormoresharesaresuperimposed,thesecretcanbeeasilydecryptedbyhumanvision.Inthepastfewdecades,VCSdevelopedrapidlyandhasmadegreatprogressinmanyaspects(Liu&Yan,2014).Aschemeforgeneralaccessstructureswasgiventherewith(Ateniese,Blundo,Santis,&Stinson,1996),gettingridofthresholdconstraintsonthequalifiedsubsets.Optimalpixelexpansion(Shyu&Chen,2015)andcontrast(Lin,Chen,&Lin,2010)wereexploredlater.Tofurtherimprovetheperformanceofrecovery,XORoperationwasintroducedintothestudyofVCS(Shen,Liu,Fu,&Yu,2017;Yang&Wang,2014;Wu&Sun,2014).Forthesakeofflexiblesharingstrategies,effortshavebeenmadeformultiplesecrets(Jia,Wang,Nie,&Zhang,2016),cheat

Thisarticle,originallypublishedunderIGIGlobal’scopyrightonJanuary1,2019willproceedwithpublicationasanOpenAccessarticlestartingonFebruary2,2021inthegoldOpenAccessjournal,InternationalJournalofDigitalCrimeandForensics(convertedtogoldOpenAccessJanuary1,2021),andwillbedistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/

licenses/by/4.0/)whichpermitsunrestricteduse,distribution,andproductioninanymedium,providedtheauthoroftheoriginalworkandoriginalpublicationsourceareproperlycredited.

Page 2: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

2

prevention(Chen,Tsai,&Horng,2013),regionorfullyincrementing(Hu,Shen,Fu,Yu,&Wang,2016;Chen,2017)andprogressiveschemes(Hou&Quan,2012).

All studiesmentionedabovecontributea lot to thepracticalapplicationsofVCS.Theonlydownsideisthatthesharesintheseschemesaremeaninglessandeasilyarousesuspicionof somepotential attackerswhendistributedviaapublic channel.Therefore, theextendedVCS(EVCS)seemsmoreattractivebecauseitgeneratesmeaningfulsharesinsteadofrandomimages(Naor&Shamir,1995).Byaddingsomeextracolumnsintothebasismatrices,Wangetal.(Wang,Yi,&Li,2009)designeda(k,n)-EVCSwithpoorcontrastofshares.Toimprovevisualperformance,aschemewasproposedonthebasisofhalftoneimagetechnology(Kang,Arce,&Lee,2011).Andotherstudieshavealsobeenattemptedwithbetterresults(Liu&Wu,2011;Yang,Sun,&Cai,2016;Yan,Wang,Niu,&Yang,2015;Ou,Sun,&Wu,2015).Nevertheless,thecamouflageeffectofsharesintheseschemeswasstillunsatisfactorysincethereweremanynoisypointsvisible.Later,secrethidingtechniqueswereutilizedtogeneratemeaningful shares (Yan,Wang,El-Latif,&Niu,2015;Amiri&Moghaddam,2016;Yuan,2014),butwithlargecomputationalload.

QuickResponse(QR)codeisatwo-dimensionalcodedevelopedbytheJapaneseDensoWaveCompany,andnowhasbeenadoptedasauniversalspecificationperformedbyISO(2006).Withthepopularizationofintelligentterminals,QRcodeshavebeenwidelyusedinfieldssuchasinformationstorage,mobilepaymentandelectronictickets.ForagivenQRcode,wecanhardlyacquireitsmessagebyhumanvisionsincethedarkandlightmodulesarerandomlydistributed.ThismeaninglessappearanceissimilartotheimagecharacteristicofVCSshares.Assuch,QRcodecanbeagoodchoiceforthemaskofVCSshare.Therefore,investigationsoftheVCSandQRcodescombinationshaveattractedconsiderableattention.Atfirst,QRcodeswereembeddedassomepartsofsharestoauthenticateaVCS(Wang,Liu,&Yan,2014).Thismethodsoughtthebest embedding regionof agiven share, thus reducing the influenceof secret revealing.Later,acontinuous-toneVCS(Yang,Liao,Wu,&Yamaguchi,2016)wasdevelopedwherethecolorofasecretmodulewasdeterminedbythegraynessofblackdots.Subsequently,aclassofEVCSsbasedonQRcodeswasproposed.Inviewofmachinerecognitioncharacteristic,anEVCSwaspresentedfortwo-levelinformationstoragebyLiuetal.(Liu,Fu,&Wang,2016).Inthisscheme,aproperscanningdistanceandanglearestrictlyrequiredtodecodingtheshares,whichsignificantlyincreasestheinconvenienceofpracticalapplications.ByexploitingerrorcorrectionmechanismofQRcodes,a(n,n)sharingmethodwasdesigned(Chow,Susilo,Yang,Phillips,Pranata,&Barmawi,2016),andthen,a(k,n)schemeunderthetheoryofrandomgridswerefurtherimplemented(Wan,Lu,Yan,Wang,&Chang,2017).Sometimes,thesecretimagemaybeaQRcode,andthenWanetal.’sschemebecomesinvalidbecausetheerrorscontainedintherecoveredsecretarebeyonderrorcorrectioncapability.OnesolutiontothisproblemisthatrepeatedlyperformingChowetal.’smethodoneachminimalqualifiedsubset.Then,alargenumberofsharinginstancesarerequired.

Inthispaper,anovelEVCSispresentedcombiningwithQRcodes.First,toreducethenumberofsharinginstances,weintroduceanideaofMSSandprovideitssufficientandnecessaryconditionswithanintegerprogrammingmodel.Andbasedonthismodel,wedividetheinitialaccessstructureintoseveralcollections,eachofwhichcanachieveaMSSinstance.Further,detailedsharingalgorithmofMSSispresented.Experimentalresultsandcomparisonsshowthevalidityandadvantagesoftheproposedscheme.

Theremainderofthispaperisorganizedasfollows.Section2introducessomepreliminariesconcerningourstudy.TheproposedschemeisdescribedinSection3whilesomeconditionsaretheoreticallyprovedinSection4.ExperimentsandanalysisarepresentedinSection5toillustratethefeasibilityofthisworkandhowitimprovesonpreviouswork.

Page 3: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

3

2. PRELIMINARIES

Inthissection,wewillgivesomebasicdefinitionsconcerningtheVCSandtheQRcode.First,thedenotationofsymbolsinourpaperisgiveninTable1.

2.1. EVCSExtendedXOR-basedVCS(EXVCS)isa typeofEVCS,inwhichtherecoveryprocessisbasedonXORoperation.BecauseXORoperationcanreverse1to0,recoveredcontrastissignificantlyimprovedinEXVCS,especiallyin(n,n)-EXVCSthesecretiscompletelyreconstructed.

Definition 1 [3].SupposeallparticipantsconstituteasetP={1,2, ,n}.LetΓQ,ΓF⊆2PandΓQ∩ΓF=∅.MembersofΓQandΓFaredefinedasqualifiedsubsetsandforbiddensubsets,respectively.Thepair(ΓQ,ΓF)iscalledanaccessstructure.IfΓQismonotoneincreasingwhileΓFismonotonedecreasing,andΓQ∪ΓF=2P,then(ΓQ,ΓF)issaidtobestrong.Moreover,definethebasisΓ0={Q∈ΓQ|Q′∉ΓQifQ′⊂Q}.AllofthemembersinΓ0areminimalqualifiedsubsets.

Definition 2.LetΓ=(ΓQ,ΓF)beanaccessstructureonPanditsbasisΓ0={Q1,Q2, ,Qt}.AnEXVCSbasedonQRcodesisconstitutedunderΓifthreeconditionsaresatisfied.(1) EachsharecanbedecodedbyastandardQRcodereaderanditsmessageismeaningful.(2) AnyforbiddensubsetQf={i1,i2, ,if}∈ΓFisinaccessibletothesecretinformation.(3) ForanyqualifiedsubsetQq∈ΓQ,∃Q’⊆QqandQ’∈Γ0,thesecretcanbereconstructedby

XOR-ingthesharesofQ’.

2.2. QR CodeQRcodesconveyinformationbasedonthearrangementofdarkandlightmodules.Thereare40versionswithdifferentdatacapacities.Version1iscomposedof21×21modules.Eachsubsequentversionincreasesbyfouradditionalmodulesperside,uptoversion40,whichiscomposedof177×177modules.

Table 1. Denotation of symbols

Symbol Denotation

c thenumberofallcodewordsinablock

b thenumberofdatacodewordsinablock

r thenumberoferrorsallowableinablock

S thesecretQRcode

Tj theshareofthej-thparticipant

Cj thecoverQRcodeofTj

Qi thei-thminimalqualifiedsubset

R[Qi] theresultofT1⊕T2⊕⊕TmifQi={1,2, ,m}

D[Qi] theresultofR[Qi]⊕S

Tj(u,v) moduleofTjattheu-throwandv-thcolumn

Q1ΔQ2 thesymmetricdifferenceofQ1andQ2

Page 4: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

4

Figure1isthestructureofversion7.Asshown,aQRcodeincludestwoparts:functionpatternsandencodingregion.Theformerarespecificstructuresdesignedforgeometriccorrectionandeffectivedecoding,andthelattercontainsseveralQRblocksandsomeauxiliaryformatorversioninformation,suchaserrorcorrectionlevels,maskpatterns,andsymbolversions.Theformatinformationisabinarysequencewithfivedatabitsandtenerrorcorrectionbits.

Anothersignificant featureofaQRcode iserrorcorrection,whichallowsQRcodereaderstocorrectlydecodedata, even ifpartsof the symbolaredirtyordamaged.Thereare fourerrorcorrectionlevelstoprovidedifferentcapabilities(L:7%,M:15%,Q:25%,andH:30%).Ahigherlevelcorrespondstoalargerdatapayload.Table2liststhecharacteristicofversion4∼7.

3. THE PRoPoSED SCHEME

Thissectionproposesaschemewithmeaningfulsharesforgeneralaccessstructures.Bytakingfulladvantageof theerrorcorrectioncapacitiesofQRcodes, lessstoragespaceofshares isrequiredintheproposedscheme.AsshowninFigure2,thewholesharingprocessincludestwoparts:collectiondivisionandMSS,withtheirdetailedalgorithmsillustratedinSection2.1and2.2,respectively.

3.1. Collection DivisionBythe(n,n)sharingmethod(Chow,Susilo,Yang,Phillips,Pranata,&Barmawi,2016),foranyΓ0={Q1,Q2, ,Qh},theEXVCSunderΓ0isconstructedasfollows.

InFigure3,aparticipantneedstsharesifitbelongstotsubsetsofΓ0,whichwouldcostmuchspacetostoresharesastgrows.Toimprovesharingefficiency,weattempttodealwithmultiplesubsetsbyonlyone(n,n)-MSSinstance.

Differentfrompreviouswork,theproposedmethodillustratedinFigure4performsonlyoneMSSinstanceasn=|Q1∪Q2∪∪Qh|.Thenaparticipantneedsonlyoneshareevenifitiscontainedinmorethanonesubsets.However,therearesomeconstraintstotheexistenceofsuchaninstance.Initially,weletTj=Cj(j=1,2, ,n).ToobtainthesecretmessageofS,differencesbetweenR[Qi](i=1,2, ,h)andSshouldbewithintheerrorcorrectioncapacityofS.Therefore,somecodewordsofTj(j=1,2, ,n)needmodifyingtoadjustthevalueofR[Qi].WetakeeachQRcodeblockastheresearchobjectforsubsequentanalysis.LetXbeathree-dimensionalmatrixwiththesizeofh×(n+1)×c.Amathematicalmodelissetuptodeterminewhethera(n,n)-MSSinstanceofQ1,Q2, ,Qhcanbesatisfied.

Figure 1. The symbol structure of version 7

Page 5: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

5

Table 2. Error correction characteristics of several versions

Version Error correction level Number of blocks (c, b, r)

4

L 1 (100,80,10)

M 2 (50,32,9)

Q 2 (50,24,13)

H 4 (25,9,8)

5

L 1 (134,108,13)

M 2 (67,43,12)

Q2 (33,15,9)

2 (34,16,9)

H2 (33,11,11)

2 (34,12,11)

6

L 2 (86,68,9)

M 4 (43,27,8)

Q 4 (43,19,12)

H 4 (43,15,14)

7

L 2 (98,78,10)

M 4 (49,31,9)

Q2 (32,14,9)

4 (33,15,9)

H4 (39,13,13)

1 (40,14,13)

Figure 2. The sharing process of the proposed scheme

Page 6: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

6

X i h k c

X r j n

X

ijkj

n

ijkk

c

i

h

i n kk

��

��

� � � � �

� � �

1

1

11

1

1 1 1

1

( , )

( )

( )

��� � � �

� � � � � �� � � �

1

1

0 1 1

0 1 1 1

c

ijk i

ijk

r i h

X i h j Q k cX i h j

( )

( , , )

{ , }( , �� � � �

�����

����� n k c1 1, )

(1)

Chooseanyt(2≤t≤h)subsetsfromQ1,Q2, ,QhandassumetheyareQp1,Qp2

, ,Qpt.

LetQa=Qp1∪Qp2

∪∪Qpt−Qp1

ΔQp2ΔΔQpt

,then

X X X t v v v Q k cp v k p v k p v k t at t1 1 2 2 1 2 1� � � � � � � ( , , , , ) (2)

If(1)and(2)haveacommonsolution,Q1,Q2, ,Qhcanconstituteacollection,ofwhichallsubsetscanbesharedbyone(n,n)-MSSinstance.Xijk=1indicatesthatthek-thcodeword(1≤k≤c)ofTjwouldbemodifiedtoletR[Qi]=S.AndXi(n+1)k=1denotesthatthek-thcodewordofR[Qi]isdifferentwiththatofS.Insomecases,morethanonecommonsolutionto(1)and(2)arepossible,sowearesupposedtochooseaproperonefromthem.Generally,asolutionisgoodornotdependsonthedifferencebetweenthenumberoferrorsinTj(j=1,2, ,n)andthatinR[Qi](i=1,2, ,h),namely

Figure 3. The previous method

Figure 4. The proposed method

Page 7: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

7

min ( )X Xijkk

c

i

h

i n kk

c

���

��� ��

���

���11

1

1

(3)

Withabovemodel,basisΓ0ofanyaccessstructurecanbedividedintoanumberofcollectionsΓ1,Γ2, ,Γd.

3.2. MMSInthesharingprocedure,themodulesoffunctionpatternsandversioninformation,aswellastenerrorcorrectionbitsofformatinformation,arefixed.DetailedalgorithmisgiveninAlgorithm1.

Inordertorestorethesecret,wefirstobtainR[Qk](1≤k≤h)byXOR-ingsharesinQk.AndthenwecandeducesecretformatinformationaccordingtotheformatdatabitsofR[Qk].Finally,thesecretmessageisreconstructed.Notethatthefixedmoduleswillnotbehandledwithduringtherecoveryprocess.

4. THEoRETICAL PRooFS

Thevalidityoftheproposedschemeisanalyzedinthissectionfromtwoaspects.Oneprovesthesecuritythatforbiddensubsetsarehardlytoobtainsecretmessages;theotherillustratesthatacommonsolutionto(1)and(2)isthesufficientandnecessaryconditionsofaMSSinstance.

4.1. Security

Theorem 1.Anyindividualsharecannotobtainanyinformationaboutthesecret.Proof: Because QR codes adopt a universal encoding standard, an adversary can easily decode

themessageofashare,furtherinferringtheknowledgeofitscorrespondingcoverQRcode.Accordingtotheproposedscheme,nomorethanrcodewordsaredifferentbetweenashareanditscover.Andthisdifferencemakesnosensebecausetheadversaryknowsnothingaboutothershares.Therefore,reconstructingthesecretwithonlyoneshareisimpossible.

Algorithm 1. Sharing algorithm

Input:ThesetP={1,2, ,n}thatconsistsofallparticipantsfromQ1,Q2, ,Qh;ncoverQRcodesC1,C2, ,Cn;asecretQRcodeS.(EachQRcodehasdblocksandthesymbolsizeisa×a.)Output: nsharesT1,T2, ,Tn.   Algorithm starts.   Step 1:Leti=j=0andTk=Ck(1≤k≤n).GotoStep2.   Step 2:Calculateacommonsolutionto(1)and(2)fortheu-thblock(1≤u≤d)anddenoteitbyXu.Moreover,acommonsolutionXwhereXk(n+1)v=0(1≤k≤h,1≤v≤5)iscalculatedforsharingfiveformatinformationdatabits.GotoStep3.   Step 3:Leti=i+1.Ifi≤a,gotoStep4;else,gotoStep9.   Step 4:Letj=j+1.Ifj≤a,gotoStep5;else,letj=0andgotoStep3.   Step 5:IfS(i,j)isafixedmodule,skipandgotoStep4;elseifS(i,j)isamodulefromdataanderrorcorrectionblock,gotoStep6;else,gotoStep7.Step 6:SupposeS(i,j)isamoduleofthev-thcodewordoftheu-thblock.ForQk(1≤k≤h),findtheq-thelementthat

satisfies Xkqvu =1 .Ifq=n+1,skipandgotoStep4;else,gotoStep8.

   Step 7:SupposeS(i,j)isthev-thbitofformatinformation.ForQk(1≤k≤h),findtheq-thelementthatsatisfiesXkqv=1.GotoStep8.   Step 8:AdjustTq(i,j)toletS(i,j)=R[Qk](i,j),andgotoStep4.Step 9:OutputnsharesT1,T2, ,Tn.   Algorithm ends.

Page 8: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

8

Theorem 2.Noknowledgeofthesecretcanbeobtainedwithsharesofanyforbiddensubset.Proof: In terms of QR code specification, dark and light modules of a QR code are randomly

distributed.Therefore,thepossibilityofeachmodule’scolorisapproximately0.5.For∀Q∈Γ0andQF⊂Q,supposeQ={a1,a2, ,ax,b1,b2, ,by}andQF={b1,b2, ,by}.Then,

T T T S T T Tb b b a a ay x1 2 1 2� � � � � � � � (4)

SinceT T Ta a ax1 2⊕ ⊕ ⊕ arerandom,theinformationaboutSisinaccessible.

4.2. Sufficient and Necessary Conditions

Theorem 3.Thereisatleastonecommonsolutionto(1)and(2)ifaMSSinstancecanbesatisfied.Proof:Ifamulti-subsetsharinginstancecanbeappliedonQ1,Q2, ,Qh,thereisR[Qi]⊕D[Qi]=

S(1≤i≤h).ConsideringthesharingofQ1andsupposeQ1={j1,j2, ,jm}.InordertosatisfytheresultR[Q1](u,v)⊕D[Q1](u,v)=S(u,v)(1≤u≤a,1≤v≤a),amodulefromT1(u,v),T2(u,v), ,Tm(u,v)shouldbereversedorletD[Q1](u,v)=1.ThisstepisnotrequiredunlessT1(u,v)⊕T2(u,v)⊕⊕Tm(u,v)=S(u,v)underthepossibilityof1/2.Forthek-thcodeword(1≤k≤c),thereis

X

X

jkj

n

1

1

1

1255

256�

� � ���

���the probability of this event is

11

1

1

01

256jk

j

n

� � ���

���

��

the probability of this event is

��

���

(5)

Similarly,theconclusionisappliedtoanalysisofQ2,Q3, ,Qh.Thus,foranysubsetQi(1≤i≤h)andanycodewordk(1≤k≤c),thereis

X

X

ijkj

n

� � ���

���

1

1

1255

256the probability of this event is

iijkj

n

� � ���

���

��

1

1

01

256the probability of this event is

��

���

(6)

Sincetheprobabilityof255/256isfarlargerthan1/256,thuswecanapproximatelyconsider(6)

as Xijkj

n

� �1

1

1 .Moreover,tokeepbothreadabilityofthereconstructedsecretandshares,thereare

X ri n kk

c

( )��� �1

1

and X rijkk

c

i

h

���� �

11.Therefore,(1)canbeinferred.

ConsideringtheintersectionamongQ1,Q2, ,Qt,therelationshipXajk=Xbjk=1maynotalwaysbesatisfiedforanyaandb.Forexample,supposetwosubsetsQp={ja1,ja2, ,jat,jb1,jb2, ,jbx}andQq={ja1,ja2, ,jat,jc1,jc2, ,jcy}.BecauseR[Qp]⊕D[Qp]=R[Qq]⊕D[Qq]=S,thereis

Page 9: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

9

T T T T T T D Q D Qj j j j j j p qb b bx c c cy1 2 1 2� � � � � � � � � [ ] [ ] (7)

Tosatisfy(7),twoapproachesareprovidedinthefollowing.

1. ChangeacodewordfromTjb1,Tjb2

, ,Tjbx ,Tjc1 ,Tjc2, ,Tjcy ;

2. LetD[Qp]=1orD[Qq]=1.

Atthismoment,ifa∈Qp∩Qqandb∈Qp∩Qq,Xajk=Xbjk=1isalmostimpossible.So(2)canbeobtained.

Theorem 4.AMSSinstancecanbeconstructedif(1)and(2)haveacommonsolution.Proof:If(1)and(2)haveacommonsolution,itmeansthereisanXthatsatisfies(1)and(2)atthe

sametime.Apparently,Xensuresthaterrorscontainedintherecoveredsecretandthesharesarebothwithintheirerrorcorrectioncapacities.Supposeanyt(2≤t≤h)subsetsfromQ1,Q2, ,QhareQp1

,Qp2, ,Qpt

,thereis

R Q D Q R Q D Q R Q D Q Sp p p p p pt t[ ] [ ] [ ] [ ] [ ] [ ]

1 1 2 2� � � � � � � (8)

AssumeQb=Qp1ΔQp2

ΔΔQpt={i1,i2, ,ix}.Then(8)canbesimplifiedas

T T T D Q D Q D Q t

T Ti i i p p p

i i

x t1 2 1 2

1 2

0 2 4 6� � � � � � � � �

� �

[ ] [ ] [ ] ( , , , )

�� � � � � � �

���

�� T D Q D Q D Q S ti p p px t[ ] [ ] [ ] ( , , , )

1 21 3 5

(9)

Undertherequirementsgivenby(2),wecanalwaysfindacodewordfromTi1 ,Ti2 , ,Tix ,orletoneofD Qp[ ]

1,D Qp[ ]

2, ,D Qpt

[ ] be1.Then,(9)canbesatisfied.

5. EXPERIMENTS AND ANALySIS

In this section, the feasibilityof theproposed scheme is evaluatedbyexperiments.Suppose theparticipantsetP={1,2, ,9}anditsbasisΓ0={{1,2,3,4},{3,4,5,6},{1,2,7,8},{5,6,8,9}}.The secretmessage is “IJDCF-2017”and the first cover is “20170801|Beijing|123456789”.Messageformatsofothercoversaresimilartothefirstcover,soweomitthedescriptionofthemforbrevity.TheexperimentaldatasetisgiveninTable3.

Table 3. The experimental dataset

Data groups Secret QR code Cover QR code

1 version6-levelH version6-levelH

2 version6-levelM version6-levelH

3 version6-levelL version6-levelH

Page 10: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

10

First,weobtainasolutionto(1)and(2)underdatagroup1.Theresultisgotbytheoptimizer“Lingo11”,asshowninFigure5.

Figure5declaresthatacommonsolutionto(1)and(2)exists,whichindicatesthataMSSinstancecanbeimplementedwiththesolvedX,anditsexperimentalresultisgivenbelow.ThedecodingtoolisthesourcedemoprovidedbyZXing.Net.

InFigure6,(a)and(e)aretheoriginalcoverandsecretQRcodes,respectively.Accordingtotheproposedmethod,(b)isgeneratedfrom(a)bychangingsomecodewordsshownbythewhiteregionsin(c).Moreover,(d)demonstratesthattheshare(b)isreadable.(f)isthereconstructedsecretobtainedbyXOR-ingT1,T2,T3andT4,and(g)representstheerrorscontainedin(f)thatshouldbecorrectedbyitself.Becausethefaultcodewordsin(f)arewithintheerrorcorrectioncapacity,themessageof(f)iscorrectlydecoded.HereweonlyexhibittheresultsofT1andR[Q1]forbrevity,whicharesametothoseofothersharesandreconstructedsecrets,exceptthatthemessagesofcoverQRcodesaredifferent.Moreover,(i)-(l)demonstratethatnosecretinformationcanbeobtainedbyanyforbiddensubsets.

Next(1)and(2)aresolvedwiththedatasetofgroup2,andtheresultisshownbyFigure7(a).Figure7clarifiesthatthemodelofMSSunderΓ0isunsolvable.Therefore,wedivideΓ0into

twocollectionsΓ1andΓ2,eachofwhichcansupportaMSSinstance.HerewesetΓ1={{1,2,3,4},{1,2,7,8}}andΓ2={{3,4,5,6},{5,6,8,9}},andthesolutionofthemodelbuiltonΓ1isdisplayedasFigure8.

Figure9isthesharingresultofdatagroup2.SinceΓ0isdividedintotwocollections,Γ1andΓ2correspondtotworespectiveMSSinstances.Becauseparticipant3belongstobothofthetwocollections,itneedstwoshares,whichisshowninFigure9(b)and(c).However,participant2isonlycontainedbythesubsetsincollectionΓ1,therefore,participant2onlyneedsoneshare,asshowninFigure9(a).Apparently,theMSSmethodisalsousefulinthisexperimentevenifthenumberofsharesisnotreducedforsomeparticipants.

Figure 5. The solution of data group 1

Page 11: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

11

ProvidingthatΓ1={{1,2,3,4},{1,2,7,8}}andΓ2={{3,4,5,6},{5,6,8,9}},thereisnosolutiontodatagroup3.Sowere-divideΓ0intoΓ1={{1,2,3,4}},Γ2={{3,4,5,6}}andΓ3={{1,2,7,8},{5,6,8,9}}.Andatthistimeonlythenumberofsharesforparticipant8decreases.

Toshowtheefficiencyoftheproposedscheme,thedecreaseofsharinginstancesiscalculatedunderseveralspecific(k,n)accessstructures,aslistedinTable4.(AllofthesecretandcoverQRcodesareofversion6andlevel’H’.)PartsofthecollectiondivisionresultaregiveninAppendix.

Figure 6. The MSS result of data group 1. (a) cover QR code C1; (b) share T1; (c) C1 ⊕ T1; (d) decoding of (b); (e) secret QR code S; (f) recovered secret R[Q1]; (g) S ⊕ R[Q1]; (h) decoding of (f); (i) T2 ⊕ T3; (j) T2 ⊕ T3 ⊕ T4; (k) T2 ⊕ T3 ⊕ T4 ⊕ T5; (l) decoding of (i) (or (j),(k))

Figure 7. Solution of data group 2 on Γ0

Page 12: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

12

Figure 8. Solution of data group 2 on Γ1

Figure 9. The sharing result of data group 2. (a) share of participant 2; (b) the first share of participant 3; (c) the second share of participant 3

Table 4. The decreasing number of sharing instances

kn

3 4 5 6 7 8

3 1(1) 4(4) 5(10) 10(20) 12(35) 19(56)

4 — 1(1) 3(5) 8(15) 12(35) 24(70)

5 — — 1(1) 3(6) 7(21) 19(56)

6 — — — 1(1) 3(7) 10(28)

7 — — — — 1(1) 3(8)

8 — — — — — 1(1)

Page 13: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

13

AccordingtoTable4,thenumberofinstancesdecreasesatleast50%inourscheme,exceptfor(3,4)and(n,n)accessstructuressince(1)cannotbesatisfiedinthetwocases.Inaddition,thedifficultyofdecodingsharesinLiuetal.’s(Liu,Fu,&Wang,2016)schemeisillustratedinFigure10.

Liuetal.’sschemeisdesignedonthebasisofmachinerecognitioncharacteristicswhereeachmoduleofitsshareisdistinguishedbytakingeachblockconsistingof2×2sub-modulesasawhole.Inthiscase,ZXing.NetdemocannotcorrectlydecodetheshareasshowninFigure10(b),whichmeansthattheshareisunabletobeusedelectronically.Figure10(c)and(d)aredecodingresultsindifferentscanningdistancebyamobilereader“BarcodeScanner”.Apparently,aproperscanningwayisakeyfactortocorrectlydecodetheshare.Then,decodingisinconvenient.Finally,functionalcomparisonsofthispaperwithotherrelatedworkaregiveninTable5.

AsisexhibitedinTable5,theproposedschemehasamoreflexiblesharingstrategythansomeotherwork(Wang,Yi,&Li,2009;Yang,Sun,&Cai,2016;Yan,Wang,Niu,&Yang,2015;Ou,Sun,&Wu,2015;Yan,Wang,El-Latif,&Niu,2015;Amiri&Moghaddam,2016;Yuan,2014;Liu,Fu,&Wang,2016;Chow,Susilo,Yang,Phillips,Pranata,&Barmawi,2016;Wan,Lu,Yan,Wang,&Chang,2017),becausetheproposedschemeisdesignedforgeneralaccessstructures.Forthesakeofvisualcharacteristic,theQRcodeisanexcellentchoicetocovertheshares.Therefore,thecamouflageeffectishighinthispaperandsomeotherworkrelatedtoQRcodes(Liu,Fu,&Wang,2016;Chow,Susilo,Yang,Phillips,Pranata,&Barmawi,2016;Wan,Lu,Yan,Wang,&Chang,2017)orstenography(Ou,Sun,&Wu,2015;Yan,Wang,El-Latif,&Niu,2015;Amiri&Moghaddam,2016;Yuan,2014).Inaddition,thecomputationalcomplexityofVCSislowerthanthatofotherstudies(Yan,Wang,El-Latif,&Niu,2015;Amiri&Moghaddam,2016).

Figure 10. The decoding results with different scanning ways. (a) share T1; (b) decoding of (a) by computer demo; (c) decoding of (a) by the mobile reader with the scanning distance of 6cm; (d) decoding of (a) by the mobile reader with the scanning distance of 12cm

Page 14: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

14

6. CoNCLUSIoN

ThispaperproposesanovelEVCSthatallsharesaremeaningfulQRcodes.Itreducesthelikelihoodofbeingsuspectedbypotentialattackersifdistributedviapublicchannels.Moreover,theproposedschemecanalsobeusedtoimprovethesecuritywhenQRcodesareappliedinsomesecretapplicationfields.ByfurtherutilizingerrorcorrectioncapacitiesofQRcodes,thispaperpresentsamethodtosharemultiplesubsetssimultaneously,whichreducesthenumberofsharinginstancesonthebasisofpreviouswork.Asaresult,fewersharesofeachparticipantarerequired.However,ourpaperonlyprovidessufficientandnecessaryconditionsforaMSSinstance;findinganoptimaldivisionmethodremainsanopenproblemtobesolved.

ACKNowLEDGMENT

Theauthorsthanktheanonymousreviewersfortheirvaluablecomments.Thisworkwassupportedinpartby theNationalNaturalScienceFoundationofChinaunderGrantNo.61602513and theOutstandingYouthFoundationofZhengzhouInformationScienceandTechnologyInstituteunderGrantNo.2016611303.

Table 5. Functional comparisons of this paper with other studies

Paper Access Structure

Camouflage effect

Computational complexity

Wang,Yi,&Li,2009 (k,n) low O(1)

Kang,Arce,&Lee,2011 general low O(1)

Liu&Wu,2011 general low O(1)

Yang,Sun,&Cai,2016 (k,n) low O(1)

Yan,Wang,Niu,&Yang,2015 (k,n) low O(1)

Ou,Sun,&Wu,2015 (n,n) high O(1)

Yan,Wang,El-Latif,&Niu,2015 (k,n) high O(n)

Amiri&Moghaddam,2016 (n,n) high O(n2)

Yuan,2014 (k,n) high O(1)

Liu,Fu,&Wang,2016 (2,n)* high O(1)

Chow,Susilo,Yang,Phillips,Pranata,&Barmawi,2016 (n,n) high O(1)

Wan,Lu,Yan,Wang,&Chang,2017 (k,n) high O(1)

thispaper general high O(1)

Page 15: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

15

REFERENCES

Amiri,T.,&Moghaddam,M.E.(2016).AnewvisualcryptographybasedwatermarkingschemeusingDWTandSIFT formultiple cover images.Multimedia Tools and Applications,75(14), 8527–8543. doi:10.1007/s11042-015-2770-7

Ateniese,G.,Blundo,C.,Santis,A.D.,&Stinson,D.R.(1996).Visualcryptographyforgeneralaccessstructures.Information and Computation,129(2),86–106.doi:10.1006/inco.1996.0076

Chen,Y.C.(2017).Fullyincrementingvisualcryptographyfromasuccinctnon-monotonicstructure.IEEE Transactions on Information Forensics and Security,12(5),1082–1091.doi:10.1109/TIFS.2016.2641378

Chen,Y.C.,Tsai,D.S.,&Horng,G.(2013).Visualsecretsharingwithcheatingpreventionrevisited.Digital Signal Processing,23(5),1496–1504.doi:10.1016/j.dsp.2013.05.014

Chow,Y.W.,Susilo,W.,Yang,G.,Phillips,J.G.,Pranata,I.,&Barmawi,A.M.(2016).ExploitingtheErrorCorrectionMechanisminQRCodesforSecretSharing. InJ.Liu,&RSteinfeld(Eds.),2016 Australasian Conference on Information Security and Privacy, LNCS(Vol.9722,pp.409-425).Berlin,Germany:Springer-Verlag.doi:10.1007/978-3-319-40253-6_25

Hou,Y.C.,&Quan,Z.Y.(2012).Progressivevisualcryptographywithunexpandedshares.IEEE Transactions on Circuits and Systems for Video Technology,21(11),1760–1764.doi:10.1109/TCSVT.2011.2106291

Hu,H.,Shen,G.,Fu,Z.,Yu,B.,&Wang,J.(2016).GeneralconstructionforXOR-basedvisualcryptographyanditsextendedcapability.Multimedia Tools and Applications,75(21).doi:10.1007/s11042-016-3250-4

ISO/IEC.(2015).ISO/IEC18004:2015Information-Automaticidentificationanddatacapturetechniques-QRCodebarcodesymbologyspecification.

Jia,X.,Wang,D.,Nie,D.,&Zhang,C.(2016).Collaborativevisualcryptographicschemes.IEEE Transactions on Circuits and Systems for Video Technology.

Kang,I.,Arce,G.R.,&Lee,H.K.(2011).Colorextendedvisualcryptographyusingerrordiffusion.IEEE Transactions on Image Processing,20(1),132–145.doi:10.1109/TIP.2010.2056376PMID:20615812

Lin,S.J.,Chen,S.K.,&Lin,J.C.(2010).Flipvisualcryptography(FVC)withperfectsecurity,conditionally-optimalcontrast,andnoexpansion.Journal of Visual Communication and Image Representation,21(8),900–916.doi:10.1016/j.jvcir.2010.08.006

Liu,F.,&Wu,C.(2011).Embeddedextendedvisualcryptographyschemes.IEEE Transactions on Information Forensics and Security,6(2),307–322.doi:10.1109/TIFS.2011.2116782

Liu,F.,&Yan,W.Q.(2014).Visual cryptography for image processing and security.SpringerInternationalPublishing.doi:10.1007/978-3-319-09644-5

Liu,Y.,Fu,Z.,&Wang,Y.(2016).Two-levelinformationmanagementschemebasedonvisualcryptographyandQRcode.Jisuanji Yingyong Yanjiu,33(11),3460–3463.

Naor,M.,&Shamir,A.(1995).Visualcryptography.InA.DeSantis(Ed.),LectureNotesinComputerScience:Vol. 950. Advances in Cryptology — EUROCRYPT’94. EUROCRYPT 1994. Berlin Heidelberg, Germany:Springer-Verlag.doi:10.1007/BFb0053419

Ou,D.,Sun,W.,&Wu,X.(2015).Non-expansiblexor-basedvisualcryptographyschemewithmeaningfulshares.Signal Processing,108,604–621.doi:10.1016/j.sigpro.2014.10.011

Shen,G.,Liu,F.,Fu,Z.,&Yu,B.(2017).Perfectcontrastxor-basedvisualcryptographyschemesvialinearalgebra.Designs, Codes and Cryptography,85(1),15–37.doi:10.1007/s10623-016-0285-5

Shyu,S.J.,&Chen,M.C.(2015).Minimizingpixelexpansioninvisualcryptographicschemeforgeneralaccessstructures.IEEE Transactions on Circuits and Systems for Video Technology,25(9),1557–1561.doi:10.1109/TCSVT.2015.2389372

Wan,S.,Lu,Y.,Yan,X.,Wang,Y.,&Chang,C.(2017).Visualsecretsharingschemefor(k,n)thresholdbasedonqrcodewithmultipledecryptions.Journal of Real-Time Image Processing,9,1–16.

Page 16: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

16

Wang,D.,Yi,F.,&Li,X.(2009).Ongeneralconstructionforextendedvisualcryptographyschemes.Pattern Recognition,42(11),3071–3082.doi:10.1016/j.patcog.2009.02.015

Wang,G.,Liu,F.,&Yan,W.Q.(2016).2DBarcodesforvisualcryptography.Multimedia Tools and Applications,75(2),1223–1241.doi:10.1007/s11042-014-2365-8

Wu,X.,&Sun,W. (2014).Extendedcapabilities forxor-basedvisualcryptography. IEEE Transactions on Information Forensics and Security,9(10),1592–1605.doi:10.1109/TIFS.2014.2346014

Yan,X.,Wang,S.,El-Latif,A.A.A.,&Niu,X.(2015).Newapproachesforefficientinformationhiding-basedsecretimagesharingschemes.Signal, Image and Video Processing,9(3),499–510.doi:10.1007/s11760-013-0465-y

Yan,X.,Wang,S.,Niu,X.,&Yang,C.N.(2015).Halftonevisualcryptographywithminimumauxiliaryblackpixelsanduniformimagequality.Digital Signal Processing,38(C),53–65.doi:10.1016/j.dsp.2014.12.002

Yang,C.N.,Liao,J.K.,Wu,F.H.,&Yamaguchi,Y.(2016).Developingvisualcryptographyforauthenticationonsmartphones. In J.Wan, I.Humar,&DZhang (Eds.),2016 International Conference on Industrial IoT Technologies and Applications, LNICSSITE(Vol.173,pp.189-200).BerlinHeidelberg,Germany:Springer-Verlag.doi:10.1007/978-3-319-44350-8_19

Yang,C.N.,Sun,L.Z.,&Cai,S.R.(2016).Extendedcolorvisualcryptographyforblackandwhitesecretimage.Theoretical Computer Science,609(P1),143–161.doi:10.1016/j.tcs.2015.09.016

Yang,C.N.,&Wang,D.S.(2014).Propertyanalysisofxor-basedvisualcryptography.IEEE Transactions on Circuits and Systems for Video Technology,24(2),189–197.doi:10.1109/TCSVT.2013.2276708

Yuan,H.D.(2014).Secretsharingwithmulti-coveradaptivesteganography.Information Sciences,254,197–212.doi:10.1016/j.ins.2013.08.012

Page 17: General Construction for Extended Visual Cryptography

International Journal of Digital Crime and ForensicsVolume 11 • Issue 1 • January-March 2019

17

Yuqiao Cheng received the MS degree in information security at Zhengzhou Information Science and Technology Institute. Her research interests include visual cryptography and information security.

Zhengxin Fu received the PhD degree from Zhengzhou Information Science and Technology Institute in 2014. His research interests include visual cryptography and information security.

Bin Yu is a professor of the Department of Computer Science and Information Engineering at Zhengzhou Information Science and Technology Institute. His research interests include the design and analysis of algorithms, visual secret sharing and network security.

Gang Shen received the PhD degree from Zhengzhou Information Science and Technology Institute in 2017. His research interests include: visual security and cryptography, image security.

APPENDIX

1) Collectionsof(3,5)accessstructure:

Γ1={{1,2,3},{1,4,5}};Γ2={{1,2,4},{2,3,5}};Γ3={{1,2,5},{3,4,5}};Γ4={{1,3,5},{2,3,4}};Γ5={{1,3,4},{2,4,5}}.

2) Collectionsof(4,6)accessstructure:

Γ1={{1,2,3,4},{1,2,3,5}};Γ2={{1,2,3,6},{1,2,4,5}};Γ3={{1,2,4,6},{1,2,5,6}};Γ4={{1,3,4,5},{1,3,4,6}};Γ5={{1,3,5,6},{1,4,5,6}};Γ6={{2,3,4,5},{2,3,4,6}};Γ7={{2,3,5,6},{2,4,5,6}};Γ8={{3,4,5,6}}.

3) Collectionsof(5,7)accessstructure:

Γ1={{1,2,3,4,5},{1,2,3,4,6},{1,2,3,4,7}};Γ2={{1,2,3,5,7},{1,2,3,6,7},{1,2,4,6,7}};Γ3={{1,2,5,6,7},{1,3,4,5,6},{1,3,4,5,7}};Γ4={{1,3,4,6,7},{2,3,4,5,6},{2,3,4,6,7}};Γ5={{1,3,5,6,7},{1,4,5,6,7},{2,3,4,5,6}};Γ6={{2,3,5,6,7},{2,4,5,6,7},{1,2,4,5,6}};Γ7={{3,4,5,6,7},{1,2,4,5,7},{1,2,3,5,6}}.

4) Collectionsof(6,8)accessstructure:

Γ1={{1,2,3,4,5,6},{1,2,3,4,5,7},{1,2,3,4,5,8}};Γ2={{1,2,3,5,6,7},{1,2,3,5,6,8},{1,2,3,4,6,7}};Γ3={{1,2,3,5,7,8},{1,2,3,6,7,8},{1,2,3,4,6,8}};Γ4={{1,2,4,5,6,7},{1,2,4,5,6,8},{2,3,5,6,7,8}};Γ5={{1,2,4,5,7,8},{1,2,4,6,7,8},{1,3,4,6,7,8}};Γ6={{1,2,5,6,7,8},{1,3,4,5,6,7},{1,3,5,6,7,8}};Γ7={{2,3,4,5,6,7},{2,3,4,5,6,8},{1,3,4,5,6,8}};Γ8={{2,3,4,5,7,8},{3,4,5,6,7,8},{1,3,4,5,7,8}};Γ9={{1,2,3,4,7,8},{2,3,4,6,7,8},{2,4,5,6,7,8}};Γ10={{1,4,5,6,7,8}}.