32
Gene Therapy for Primary Immune Deficiencies Donald B. Kohn, M.D. University of California, Los Angeles (UCLA) Depts. of Microbiology, Immunology & Molecular Genetics and Pediatrics, Division of Hematology/Oncology Human Gene and Cell Therapy Program Broad Stem Cell Research Center Jonsson Comprehensive Cancer Center The Wooden Centeer

Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Gene Therapy for Primary Immune Deficiencies

Donald B. Kohn, M.D.

University of California, Los Angeles (UCLA) Depts. of Microbiology, Immunology & Molecular Genetics and Pediatrics,

Division of Hematology/Oncology Human Gene and Cell Therapy Program

Broad Stem Cell Research Center

Jonsson Comprehensive Cancer Center

The Wooden Centeer

Page 2: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Hypothesis: Gene therapy using autologous HSC that are corrected with the normal gene will have beneficial effects on blood cell production or function, without the immunologic complications of allogeneic HSCT. --------------------------------------------------------------------

May also use same techniques to genetically engineer HSC to produce blood cells with: a) resistance to HIV infection (shRNA, CCR5 k/o)

b) specific anti-cancer reactivity (TCR, CAR)

c) reduced suppression by chemotherapy (MGMT, DHFR)

Page 3: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Collect Bone Marrow, PBSC or UCB

Autologous Transplantation

Add or Correct Gene

Formulate/Certify Stem Cells for Intravenous

Infusion

Enrich Stem Cells (CD34-select)

Culture with Hematopoietic Growth Factors

Condition Bone Marrow with

Chemotherapy

Gene Therapy = Autologous Transplant

Page 4: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Normal gene

Gene Therapy Using Hematopoietic Stem Cells

CD34+ -The 1%

Add it

Fix it

Page 5: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID) Genetic deficiency of ADA enzyme activity is the underlying cause of 10-15% of human SCID.

In the absence of ADA, lymphocytes accumulate high levels of adenosine and deoxyadenosine metabolites (esp. dATP) which are toxic, leading to pan-lymphopenia (T-/B-/NK-)

Frequency of ADA-SCID is ~1.7-2.5/million births or approx. 7-10/yr in US + Canada.

Treatments options include allogeneic HSCT (MSD, MUD, haplo), PEG-ADA enzyme replacement therapy (ERT) or autologous transplant of gene-corrected HSC (gene therapy).

Page 6: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

MND-ADA γRV and EFS-ADA LV

EFS-ADA LV from 293T transient (VSV-G). Hu EF1α gene short (EFS) promoter drives

codon-optimized hADA cDNA with WPRE, SIN LTR Titer 3-5 x10^9 TU/ml (TFF concentrated).

MND-ADA γRV from PG13 clone (GALV). MPSV γRV LTR drives hADA cDNA. Titer 3-5 x10^6 TU/ml (unprocessed).

MND MND hADA cDNA

AAAAA

Co-op hADA cDNA

AAAAA

EFS W

PRE

Thrasher/Gaspar-UCL

Page 7: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Patient’s Bone Marrow HSC

Donor or Auto/Gtx HSC

None Full Myeloablation

Reduced Intensity

Conditioning

Donor Chimerism

Outcome after HSCT with Full, Partial or No Myeloablative Conditioning

Minimal Full Mixed

Marrow

Page 8: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Clinical Trial Experimental Time-Line

Consent Screen

Admit

Immune Reconstitution

0 -1 -2 Day: -3 -4

BM Harvest (PICC)

Busulfan (pK) Transplant D/C

ERT γRV Transduction

MND-ADA γRV Trial

Page 9: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Clinical Trial Experimental Time-Line

Consent Screen

Admit

BM Harvest (PICC)

Busulfan (pK)

Immune Reconstitution

D/C ERT

0 -1 -2 Day: +30 -3 -4

BM Harvest (PICC)

Busulfan (pK) Transplant D/C

ERT γRV Transduction

LV Transduction

MND-ADA γRV Trial

EFS-ADA LV Trial

Page 10: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,
Page 11: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Comparison of Grafts Between MND-ADA γRV and EFS-ADA LV

p=n.s. p=n.s. p=0.01

p=n.s. p=<0.0001 p=<0.0001

Page 12: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

MND-ADA γRV EFS-ADA LV

EFS-ADA

Comparison of Deoxyadenosine Nucleotides (dAXP) in RBC After Gene Therapy and ERT Withdrawal

ERT Withdrawal MND-ADA

p=<0.0001

Page 13: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

p=n.s. p=n.s.

p=<0.0001 p=<0.0001

Page 14: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

** p=<0.0001 * p=<0.05

* *

*

** **

Page 15: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

MND-ADA γRV EFS-ADA LV

*

** **

* p=<0.05 * *

* p=<0.05

*

* p=<0.05 ** p=<0.0001

*

** * p=<0.05

** p=<0.0001

Lymphocyte Recovery After Gene Therapy

** ** ** ** ** ** * * p=<0.01 * * p=<0.01

Page 16: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Application to FDA for Orphan Drug Designation

Submitted: 072414 Date Designated: 102114

Page 17: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

EFS-ADA Phase II/III Clinical Trial(s) Based on guidance from FDA and EMA, a Phase II/III clinical trial is being planned to be done at UCL/UK and UCLA/US. Major end-point will be survival compared to historical controls with unrelated or haploidentical allogeneic HSCT Will use BM for smaller or G-CSF mPBSC for older. EFS-ADA LV transduced CD34+ final cell product will be cryopreserved and fully characterized prior to transplant. Busulfan dose will be split into two, to allow subject-specific adjustments based on first dose pK to reach target net AUC = 4,900 uM*min = 20 ug/L*hr.

Page 18: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

eligibility criteria met

autologous BM harvest Infuse

XSCID Gene Transfer Schema Self-inactivating gammaretroviral vector

CD34+ selection

SCF IL3 TPO Flt3L

3 rounds of transduction in retronectin coated bags

d-4 d-2 d-1 d0

24h 24h 6h

U5 U5 Ψ

R R Q Δ

SD PRE* EFS IL2RG

No gag, pol or env residues

Δ

NO CONDITIONING

Page 19: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Immune Reconstitution and Gene Marking after Gene Therapy

Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407-1417

NEJM 371:1407-17, 2014 N Engl J Med 371(15):1407-1417, 2014

Presenter
Presentation Notes
Figure 1 Immune Reconstitution and Gene Marking after Gene Therapy. Panels A, B, and C show changes over time in the numbers of CD3+, CD4+, and CD8+ lymphocytes, respectively. Panel D shows CD3+ cell counts at the indicated times after gene therapy, compared between the 20 patients enrolled in previous trials using the MFG-γc vector (open blue circles) and the 8 patients enrolled in the current trials using self-inactivating γ-retrovirus (SIN-γc) (solid black circles) (P=0.28). Patient 3 was excluded because of high-level maternal engraftment. Panel E shows changes over time in naive CD4+CD45RA+ lymphocyte numbers. Panel F shows T-cell receptor diversity in T cells of 7 patients after gene therapy. The length of complementarity-determining region 3 (CDR3) in each indicated T-cell receptor beta chain variable (TCRBV) gene family was measured after amplification with family-specific primers. The horizontal axis represents CDR3 length, and the vertical axis represents the frequency of sequences with a given CDR3 length; a Gaussian distribution of CDR3 lengths is indicative of normal diversity. Panel G shows that vector copy number (VCN) in peripheral-blood CD3+ lymphocytes was detectable in 7 patients and was sustained over time. Panel H shows T-cell proliferation in response to phytohemagglutinin (PHA), measured 6 months after gene therapy and at the last follow-up. Panels I and J show increases in CD3−CD56+ (natural killer) lymphocyte numbers in patients with CD34+ cells infused with a VCN of at least 0.7 copies per cell (Panel I) but not in those infused with a VCN of less than 0.7 copies per cell (Panel J).
Page 20: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Immune Reconstitution and Gene Marking after Gene Therapy

Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407-1417

NEJM 371:1407-17, 2014 N Engl J Med 371(15):1407-1417, 2014

Immune Reconstitution and Gene Marking after Gene Therapy

Presenter
Presentation Notes
Figure 1 Immune Reconstitution and Gene Marking after Gene Therapy. Panels A, B, and C show changes over time in the numbers of CD3+, CD4+, and CD8+ lymphocytes, respectively. Panel D shows CD3+ cell counts at the indicated times after gene therapy, compared between the 20 patients enrolled in previous trials using the MFG-γc vector (open blue circles) and the 8 patients enrolled in the current trials using self-inactivating γ-retrovirus (SIN-γc) (solid black circles) (P=0.28). Patient 3 was excluded because of high-level maternal engraftment. Panel E shows changes over time in naive CD4+CD45RA+ lymphocyte numbers. Panel F shows T-cell receptor diversity in T cells of 7 patients after gene therapy. The length of complementarity-determining region 3 (CDR3) in each indicated T-cell receptor beta chain variable (TCRBV) gene family was measured after amplification with family-specific primers. The horizontal axis represents CDR3 length, and the vertical axis represents the frequency of sequences with a given CDR3 length; a Gaussian distribution of CDR3 lengths is indicative of normal diversity. Panel G shows that vector copy number (VCN) in peripheral-blood CD3+ lymphocytes was detectable in 7 patients and was sustained over time. Panel H shows T-cell proliferation in response to phytohemagglutinin (PHA), measured 6 months after gene therapy and at the last follow-up. Panels I and J show increases in CD3−CD56+ (natural killer) lymphocyte numbers in patients with CD34+ cells infused with a VCN of at least 0.7 copies per cell (Panel I) but not in those infused with a VCN of less than 0.7 copies per cell (Panel J).
Page 21: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Average Vector Copies/Cell (VCN) by qPCR

Page 22: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

XSCID 3

Thrasher - UCL/GOSH. London Cavazzana - Hopital Necker Enfants Malade, Paris Pai – Boston Children’s Hospital Filipovich - Cincinnati Children’s Hospital Kohn - Mattel Children’s Hospital, UCLA Lentiviral vector (EFS-gammaC) – developed by Genethon, France. David Williams – US IND Sponsor Two arms: a) Good health: busulfan 6 mg/kg (target 30 mg*hr/L) b) Severe infection: no conditioning UO1 To submit - Sept 2015

Page 23: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Mem

Genetic Defects in CGD

gp91phox p22phox CYBB ~65%

(X-linked)

CYBA ~5%

NCF4 2 patients

p40phox

p67phox p47phox

NCF1 ~25%

NCF2 ~5%

Rac2

RAC2 (NCF3) 2 patients

Page 24: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

A PHASE I/II, NON RANDOMIZED, MULTICENTER, OPEN-LABEL STUDY OF G1XCGD (LENTIVIRAL VECTOR TRANSDUCED CD34+ CELLS) IN PATIENTS WITH X-LINKED CHRONIC GRANULOMATOUS DISEASE

IND Sponsor: Primary Institution: Donald B. Kohn, M.D. Mattel Children’s Hospital, UCLA University of California, Los Angeles (UCLA) Site PI: Donald B. Kohn, M.D Collaborating Institutions: Children’s Hospital Boston National Institute of Allergy and Infectious Disease Site PI: David A. Williams, MD Site PI: Elizabeth Kang, MD Collaborating Investigators Vector Production / Scientific Coord. Caroline Kuo - UCLA GENETHON – EVRY - FRANCE Ami Shah - UCLA Anne Galy, PhD Harry Malech - NIAID, NIH Suk See DeRavin - NIAID, NIH Cell Processing Facilities Peter Newburger - U Mass, Worcester UCLA HGMP Laboratories Thomas Coates - Children’s Los Angeles Dana Farber Cancer Institute Cell Manipulation Core Joseph Church - Children’s Los Angeles NIH Dept. of Transfusion Medicine

NIH RAC OBA # 1304-1223 UCLA IRB # 13-001875; CHB IRB # P00012407; NIH IRB # 2014-564 FDA IND # 16141 (approved 10/11/15); NCT02234934 Funding - pending

Page 25: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Clinical Trial Organization Chart

NIAID FDA, IRB,

DSMB, IBC

UCLA (PI DBK)

BCH DA Williams

NIH E Kang

DFCI PI J. Ritz

U Mass PN

CHLA TC, JC

U Penn Rick

Bushman Clinical Sites

Consultants Contract sites

Genethon

UCLA AJ Shah

Page 26: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Diagnosis and Inclusion Criteria

-N=10. Male X-CGD patients >23 months of age.

-Molecular diagnosis confirmed by DNA sequencing and supported by laboratory evidence for absent or reduction > 70% of the biochemical activity of the NAHPD-oxidase.

-At least one prior, ongoing or refractory severe infection and/or inflammatory complications requiring hospitalization despite conventional therapy .

-No HLA-matched donor available after registry search.

-No co-infection with HIV or hepatitis B or hepatitis C virus), CMV, adenovirus, parvovirus B 19 or toxoplasmosis.

-Written informed consent for adult patient or by parent/guardian and where appropriate child’s signed consent/assent.

Page 27: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

A novel chimeric promoter targets transgene expression to myeloid cells and efficiently corrects a murine model of X-CGD G Santilli et al. London, UK; Madrid, Spain; Frankfurt, Germany. Mol Ther 2011

U5 U5

R R Δ SD PRE MSP gp91 SA

Cathepsin G/cfes promoter

104 100 101 102 103

FL1 Log

605

1211

1816

2422

Coun

ts

Normal XCGD XCGD/Chim Pr-gp91

Expression in Human PMNs In Vitro from CD34+ Cells Increased expression

with myeloid maturation in murine X-CGD model.

Page 28: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

M Site-specific Endonuclease Creates DS DNA Break

Homologous Donor with Normal Base-Pair (N)

N

M

N

Genomic Sequence with Base-Pair Mutation (M)

Edited Genome with Normal Base-Pair (N)

Site-Specific Gene Modification

Page 29: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

Conclusions In Phase I/II trials, both γRV and LV were effective and safe to transduce HSC and express ADA. ---100% survival. 0% GVHD. No vector-related AE. ---Fair to good immune reconstitution – 18/19 off ERT x 0.2-6 years. ---Better outcomes in infants than older children.

EFS-ADA LV expresses more ADA/VC than MND-ADA γRV.

Initial immune reconstitution may be more robust with EFS-ADA LV

Autologous HSCT with gene therapy provides a beneficial treatment option.

Page 30: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

The Future of Gene Therapy for PID

Unlike allo HSCT, where one approach treats all SCID (or CGD, etc) genotypes, autologous gene therapy requires a genotype-specific therapeutic Cost/time to develop for increasingly rare subset of disease is a challenge Randomly integrating vectors, constitutively expressing transgene may be problematic, esp, for genes involved in signaling, etc Risks from vectors must outweigh risks from GVHD, immune suppression with allo HSCT

Page 31: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

The Future of Gene Therapy for PID

Site-specific gene correction under development using designer endonucleases to augment homologous recombination. Would lead to physiologic expression of corrected endogenous gene Efficiency currently low, but improving. Apply to less severe but more common disorders, e.g. X-HIM, XLA, as benefit/risk ratio improves.

Page 32: Gene Therapy for Primary Immune Deficiencies · Gene Marking after Gene Therapy . Hacein-Bey-Abina S et al. N Engl J Med 2014;371:1407- 1417 . N Engl J Med 371(15):1407. NEJM 371:1407-1417,

U.C.L.A. Stem Cell Gene Therapy Group Funding: Doris Duke Charitable Foundation R01 FD003005; P01 HL073104; U01 AI100801, NHLBI GTRP; NGVB CIRM DR-06945; TR4-06823

ADA SCID Clinical Trial: Fabio Candotti Ken Cornetta IUVPF Rob Sokolic Lilith Reeves IUVPF Elizabeth Garabedian Bobby Gaspar UCL Linda Muul/Chris Silvin Adrian Thrasher UCL

UCLA BSCRC, JCCC, CDI, Depts. of MIMG and Pediatrics Ami Shah, Satiro De Oliveira, Ted Moore, Gay Crooks

Sally Shupien, Erica Stanley, Dayna Terrazas, Jennifer Chung, Brenda Mueller