25
MATHEMATICS OF COMPUTATION VOLUME 44, NUMBER 169 JANUARY 1985, PAGES 177-190 Gaussian Quadrature Involving Einstein and Fermi Functions With an Application to Summation of Series* By Walter Gautschi and Gradimir V. Milovanovic Abstract. Polynomials trk() = trk(; d\), k = 0,1,2,..., are constructed which are orthogo- nal with respect to the weight distributions d\(t) = (t/(e' - l))r dt and d\(t) = (I/O' + V)Ydt, r = 1,2, on (0, oo). Moment-related methods being inadequate, a discre- tized Stieltjes procedure is used to generate the coefficients ak, ßk in the recursion formula "¡t+i(0 = (' - «*K(0 - /V*-i(0. * - 0,1,2,..., ir0(f) = 1, «■_!(<) - 0. The discretiza- tion is effected by the Gauss-Laguerre and a composite Fejér quadrature rule, respectively. Numerical values of ak, ßk, as well as associated error constants, are provided for 0 < k ^ 39. These allow the construction of Gaussian quadrature formulae, including error terms, with up to 40 points. Examples of n-point formulae, n = 5(5)40, are provided in the supplements section at the end of this issue. Such quadrature formulae may prove useful in solid state physics calculations and can also be applied to sum slowly convergent series. 1. Introduction. We are interested in Gaussian quadrature on [0, oo] relative to the weight functions er(t) = (t/(e' - l))r and <pr(f) = (l/(e' + l))r. These functions arise, for example, in solid state physics and are referred to, when r = 1, as Einstein and Fermi functions, respectively. Integrals with respect to the measure dX(t) = er(t) dt, r = 1 and 2, are widely used in phonon statistics and lattice specific heats [7, §10], [1, §2.4], and occur also in the study of radiative recombination processes [9, §9.2]. Specifically, the average energy of a quantum harmonic oscillator of frequency « at temperature T (representing thermal vibrations of crystal lattice atoms) is given by h<¿ (1.1) u = exp(hu/kT) - 1 ' where h = h/2m (h is the Planck constant) and k is the Boltzmann constant. Therefore, U = kTex(hu/kT), where ex is Einstein's function. Letting g(u) denote the phonon density of states function, and integrating (1.1) over the entire frequency range, the total energy of thermal vibration of the crystal lattice becomes ReceivedApril 11, 1983; revisedNovember14, 1983and April 3, 1984. 1980Mathematics Subject Classification. Primary33A65, 65D32;Secondary 65A05, 65B10. * The work of the first author was sponsored in part by the National Science Foundation under grant MCS-7927158A1. ©1985 American Mathematical Society 0025-5718/85 $1.00 + $.25 per page 177

Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

  • Upload
    lyhanh

  • View
    223

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

MATHEMATICS OF COMPUTATIONVOLUME 44, NUMBER 169JANUARY 1985, PAGES 177-190

Gaussian Quadrature Involving Einstein and Fermi

Functions With an Application to

Summation of Series*

By Walter Gautschi and Gradimir V. Milovanovic

Abstract. Polynomials trk() = trk(; d\), k = 0,1,2,..., are constructed which are orthogo-

nal with respect to the weight distributions d\(t) = (t/(e' - l))r dt and d\(t) =

(I/O' + V)Y dt, r = 1,2, on (0, oo). Moment-related methods being inadequate, a discre-

tized Stieltjes procedure is used to generate the coefficients ak, ßk in the recursion formula

"¡t+i(0 = (' - «*K(0 - /V*-i(0. * - 0,1,2,..., ir0(f) = 1, «■_!(<) - 0. The discretiza-tion is effected by the Gauss-Laguerre and a composite Fejér quadrature rule, respectively.

Numerical values of ak, ßk, as well as associated error constants, are provided for 0 < k ^ 39.

These allow the construction of Gaussian quadrature formulae, including error terms, with up

to 40 points. Examples of n-point formulae, n = 5(5)40, are provided in the supplements

section at the end of this issue. Such quadrature formulae may prove useful in solid state

physics calculations and can also be applied to sum slowly convergent series.

1. Introduction. We are interested in Gaussian quadrature on [0, oo] relative to the

weight functions er(t) = (t/(e' - l))r and <pr(f) = (l/(e' + l))r. These functions

arise, for example, in solid state physics and are referred to, when r = 1, as Einstein

and Fermi functions, respectively. Integrals with respect to the measure dX(t) =

er(t) dt, r = 1 and 2, are widely used in phonon statistics and lattice specific heats

[7, §10], [1, §2.4], and occur also in the study of radiative recombination processes [9,

§9.2]. Specifically, the average energy of a quantum harmonic oscillator of frequency

« at temperature T (representing thermal vibrations of crystal lattice atoms) is given

by

— h<¿(1.1) u =

exp(hu/kT) - 1 '

where h = h/2m (h is the Planck constant) and k is the Boltzmann constant.

Therefore, U = kTex(hu/kT), where ex is Einstein's function. Letting g(u) denote

the phonon density of states function, and integrating (1.1) over the entire frequency

range, the total energy of thermal vibration of the crystal lattice becomes

Received April 11, 1983; revised November 14, 1983 and April 3, 1984.

1980 Mathematics Subject Classification. Primary 33A65, 65D32; Secondary 65A05, 65B10.* The work of the first author was sponsored in part by the National Science Foundation under grant

MCS-7927158A1.

©1985 American Mathematical Society

0025-5718/85 $1.00 + $.25 per page

177

Page 2: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

178 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

Furthermore, differentiating U with respect to temperature T, yields the crystal

lattice heat capacity at constant volume,

■ - —= f (hu/kT)2

0 (exp(r2w//cr) - 1);kg(o>) exp(hu/kT) du,

that is,

(1.3) C =k2T /■<»/•CO

/ e2(t)f(t) dt where f(t) = e'g((kT/h)t).

Similarly, integrals of the type /0°° q>x(t)f(t) dt (in fact, more generally

/o° <Pi(* ~ to)f(t) dt, for some parameter t0) are encountered in the dynamics of

electrons in metals, where they express the specific heat of the electron gas [8, §9.17].

For an application to heavy doped semiconductors, see also [10].

It will be shown in Section 4 that integration with respect to dX(t) = ex(t) dt and

dX(t) = <px(t) dt is also useful in summing slowly convergent series whose general

term is expressible in terms of a Laplace transform or its derivative.

Gaussian quadrature relative to the weight functions er and <pr will be particularly

attractive in the case r = 1, since both weight functions then have poles with

nonzero residues, the former at 2mri, n = ±1, ±2,..., the latter at (2n + l)wi,

n = 0, +1, ±2,_Classical integration, even based on Gauss-Laguerre quadrature,

will often be too slow, but will be used to generate the desired quadrature rules, at

least in the case of the weight function er; see (2.3) below.

The problem, basically, amounts to generating the coefficients ak, ßk in the

recursion formula

«*+i(0 - ('- «*K(0 - rV*-i(')> k = 0,1,2,...,n_x(t) = 0, *0(0 = 1

for the (monic) orthogonal polynomials trk(-) = irk(-; dX), k = 0,1,2,— (/?0 is

arbitrary, but will be defined as ß0 = /0°° dX(t).) Once the first n of these coeffi-

cients, ak, ßk, k = 0,1,... ,n - 1, and ßn, are known, the w-point Gaussian quadra-

ture formula

(1.4)

/•CO

/ f(t)dX(t)= £ V(t„) + *m(/)>•^0 ,1-1

Rjf) = yJ(2m)(r), o<t<^,

including the error constant ym, can easily be obtained for any m with 1 < m < n.

The nodes tm = r¿m), indeed, are the eigenvalues of the (symmetric tridiagonal)

Jacobi matrix

/_.=

Wi«1 {K

0

yPm-l am-\

Page 3: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 179

while the weights X^ = X^"1' are given by X^ = ß0v2x in terms of the first components

v^ of the corresponding normalized eigenvectors; see, e.g., [3, §5.1]. Moreover,

/Vi • • ■ ft,(2m)!

1,2,...,«.

A number of methods are available, and have been analyzed in [4], for computing

the recursion coefficients ak, ßk. They are either based on the moments (or modified

moments) of the weight distribution dX(t), or else use a suitable discretization of the

inner product

/•OO

(u,v)=f u(t)v(t) dX(t), u,vJn

P.

where u, v are polynomials. In the next section we discuss the relative merits of these

methods for constructing the particular orthogonal polynomials at hand.

2. Generation of the Recursion Coefficients. We consider first the weight function

er. The classical approach (for example, the Chebyshev algorithm; see [4, §2.3])

departs from the moments of the weight function, which, in the case at hand, can be

expressed in terms of the Riemann zeta function f(z),

/•OO

M* = / t\(t) dtJo

(2.1) (k + 1)!£(* + 2), r=l,

(* + 2)![?(* + 2)-£(* + 3)], r = 2,Jfc = 0,1,2,.

It is well-known, however, that the moments pk define the recursion coefficients <xk,

ßk and the associated Gaussian quadrature formulae poorly in a numerical sense.

The map Gn from the first 2« moments pk,k = 0,\,2,...,2n - 1, to the weights X'J1'

and nodes T„(n) of the «-point Gaussian formula, in fact becomes progressively more

ill-conditioned as n increases. This is illustrated in Table 2.1, where in the second

and third column the condition number of this map (in the sense of [4, Eq. (3.1 l)f])

is shown as a function of « for r = 1 and r = 2, respectively. (Numbers in

parentheses indicate decimal exponents.)

Table 2.1

The numerical condition of various maps relating to the construction

of orthogonal polynomials irk( ■ ; erdt), r = 1,2.

cond Gn

r= 1

cond Gn

r = 2

cond G„

r= 1

cond Hn

r= 1

cond Hn

r = 2

3

69

12

15

18

1.686(2)

1.288(5)

9.092(7)

6.334(10)4.409(13)

3.076(16)

7.620(1)

7.171(4)

5.820(7)

4.471(10)

3.344(13)

2.465(16)

1.415(1)

2.934(3)

9.795(5)

4.039(8)

1.878(11)

9.441(13)

5

10

15

20

30

40

7.665(0)

2.163(1)

3.299(1)

4.256(1)

6.761(1)

8.531(1)

7.980(0)

2.161(1)

3.356(1)

4.244(1)

6.783(1)

8.556(1)

Page 4: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

180 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

Sometimes the condition can be improved by employing modified moments

vk = j™pk(t)er(t) dt, where {pk} is a system of (monic) polynomials suitably

chosen. If the support interval is infinite, however, as in the case at hand, the

improvement is often not sufficient to make this a viable alternative. The fourth

column of Table 2.1 indeed confirms this. Here, r = 1, and ex(t) ~ te'' as t -» oo, so

that the monic Laguerre polynomials with parameter a — 1,

pk(t) = (-1)**!L£>(/), k- 0,1,2,...,

appear to be the most natural choices for the polynomials pk. The corresponding

modified moments can be shown to be expressible in terms of the (forward)

differences, with unit step, of the Riemann zeta function at z = 2,

/•OO

(2.2) vk= pk(t)ex(t)dt=(k + \)\Akï(z)\^2, k = 0,1,2,....•"o

The map Gn in Table 2.1 is the map from the first 2« normalized modified moments

*k = vk\\oPk\t)ie'tdt]'x/2, k « 0,1,...,2« - 1, to the weights X<;> and nodes t,(b)

of the «-point Gaussian quadrature formula (1.4) (with dX(t) = ex(t) dt). The

entries in the fourth column exhibit the estimate derived in [4, Eq. (3.15)] for the

condition of G„. It can be seen that cond G„, while somewhat smaller than cond Gn,

is still growing unacceptably fast.

The modified Chebyshev algorithm (cf. [4, §2.4]), run in single precision on the

CDC 6500 (machine precision: ca. 15 significant decimal digits), with the modified

moments (2.2) computed in double precision, indeed loses accuracy very much in

accordance with the growth of cond Gn; the number of correct decimal digits

observed in ak, ßk, k = 3(3)18, is 14, 11, 10, 6,2,0, respectively, not a single digit

being correct for k = 18, not even the sign of ßxs.

An additional complication arises in connection with the high-order differences in

(2.2), which are subject to considerable cancellation errors. For k = 40, for example,

one must expect a loss of approx. 12 decimal digits.

In contrast, methods based on discretization appear to be incomparably more

effective, particularly if one uses the natural discretization based on the Gauss-

Laguerre quadrature rule,

" fc-1 \l-e-rt/rj

Here, rk are the zeros of the Laguerre polynomial of degree N, and XLk the associated

Christoffel numbers. The discretized Stieltjes procedure (cf. [4, §2.2]), based on (2.3),

then converges fairly rapidly as N -» oo. For example, to obtain the first 12

recursion coefficients (« = 12) to 12 correct decimals [25 correct decimals] requires

N = 49 [N = 127], when r = 1, and N = 41 [N = 85], when r = 2. The first 40

coefficients (« = 40) can be obtained accurately to 25 decimal digits with N = 281

for r = 1 and N = 201 for r = 2. Also the numerical stability of the procedure,

(2.3)

Page 5: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 181

which is roughly determined (cf. [4, §3.4]) by the condition of the map

Hn: (Xx,...,Xn,Tx,...,Tn) -» (a0,...,an_x,ß0,...,ß„_x),

is rather good. This can be seen from the last two columns of Table 2.1, which

display the condition number of Hn in the sense of [4, Eq. (3.8)f].

One might expect that a discretization analogous to the one in (2.3) works well

also for the weight function <pr. This, however, is not the case, at least not if r = 1.

Convergence turns out to be slow on account of the poles at ± iir, which are twice as

close to the real axis as in the case of ex. For example, to obtain 20 correct decimal

digits (in the case r — 1 and for « = 40), requires N = 361. We used instead a

discretization procedure based on the composite Fejér quadrature rule, decomposing

the interval of integration into four subintervals, [0, oo] = [0,10] U [10,100] U

[100,500] U [500, oo]. Using A* = 201 for r = 1, and N = 281 for r = 2, on each

subinterval, then yields the first « = 40 recursion coefficients accurately to 25

decimal digits. The same procedure (with n = 50 and A* = 251) was also used to

check the computation based on (2.3) for er, r = 1,2. The maximum discrepancy

observed was 1 unit in the 25th digit.

3. Numerical Results. Using the procedures outlined in the last two paragraphs of

Section 2, we obtained the results shown in Tables 1-4 of the Appendix. The

coefficients ft0 = f(2) = ir2/6 in Table 1 and ft0 = 2[f(2) - f(3)] in Table 2 (cf. Eq.

(2.1)), agree to all 25 decimal digits with the values obtained from the 41S-table of

the Riemann zeta function in [6]. Similarly, one checks the values ft0 = In 2 in Table

3 and ft, = In 2 - \ in Table 4. Corresponding «-point Gaussian quadrature for-

mulae, « = 5(5)40, for r = 1 and r = 2, can be found to 25 significant decimal digits

in Tables 5-8 in the supplements section at the end of this issue.

We illustrate these formulae by computing the integrals

/i-/"«-'T7*-ï(2)-l,Jo e — 1

h = jT e'\^h\\dt = 2^2>2) - 2f(3'2)]>

r00 . dtI3= I e'-= 1 -ln2,3 h e'+l

f°° dt 3h= e-> -" 2 = |-21n2,

Jo (e'+l)2 2

where f(z, a) is the generalized zeta function. Table 3.1 shows the «-point approxi-

mations /,(«) to I¡, i = 1,2, together with the relative errors r¡(n), for n = 5(5)25.

Similarly, /,(«) and r,(«), / = 3,4, are shown in Table 3.2. In each entry the first

digit in error is underlined. The error term in (1.4) yields the bounds 7„//,,

/ = 1,2,3,4, for the relative error, which can be computed with the help of Tables

1-4 of the Appendix and the limit values in Tables 3.1, 3.2; they are summarized in

Table 3.3 for « = 5(5)25. The bounds for I2,14 are seen to be considerably sharper

than those for IX,I3.

Page 6: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

182 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

Table 3.1

Gaussian approximations of the integrals Ix and I2 and relative errors.

/,(«) r,(n) I2(n) r2(n)

5 .644742 3.0(-4)

10 .6449340594 l.l(-8)15 .644934066848017 3.2(-13)

20 .64493406684822643131 8.0(-18)

25 .6449340668482264364772 1.8(-22)

.4816385 4.1(-6)

.48164052105737 1.5(-12)

.481640521058075731184 3.3(-19)

.4816405210580757313458776 l.l(-25)

Table 3.2

Gaussian approximations of the integrals I3 and I4 and relative errors.

I3(n) r3(«) 74(«) r4(n)

5 .3068171 l-2(-4)10 .30685281854 2.9(-9)

15 .3068528194400358 6.2(-14)20 .306852819440054690208 1.2(-18)

25 .3068528194400546905827607 2.3(-23)

.113705528 9.7(-7)

.113705638880091 1.5(-13)

.11370563888010938116323 2.0(-20)

.1137056388801093811655358 6.1(-26)

Table 3.3

Relative error bounds for I¡(n),i = 1,2,3,4.

7n/h(") Y„A(«) y„/h(n) y„/h(")5

1015

20

25

4.8(-2)l.l(-4)

1.9(-7)

2.7(-10)3.6(-13)

8.3(-5)3.0(-10)6.7(-16)

1.2(-21)1.8(-27)

1.2(-2)

1.6(-5)2.0(-8)2.3(-ll)2.5(-14)

1.3(-5)1.9(-11)2.3(-17)

2.5(-23)2.7(-29)

4. Summation of Series. As an application of Gaussian integration with weight

functions e, and <px, we consider the summation of series whose general term is

expressible in terms of the derivative of a Laplace transform, or in terms of the

Laplace transform itself. Suppose, for example, that ak = -F'(k), where

(4.1)

Then

that is,

(4.2a)

JfOOe-p'f(t)dt, Re/7>1.

n

00 ™ r°o r™ t

Lak=L te-k'f(t)dt= -^—f(t)dt,:=i k-iJ° J° e'-lk-

ÎF'(k)=rf(t)ex(t)dt., . ■'nfc-1 ■'o

Similarly, for "alternating" series, one obtains

(4.2b) -t(-l)k-1F'(k)=ff(t)t<px(t) dtk = l

Page 7: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 183

and

(4.2c) l(-l)k-1F(k)=rf(t)<px(t)dt.k-i Jo

If the series on the left are slowly convergent and the respective function / on the

right is smooth, then low-order Gaussian quadrature applied to the integrals on the

right provides one (among many other) possible summation procedure. If / exhibits

singularities, then the weight function may have to be modified if the effectiveness of

the procedure is to be preserved (cf. Example 4.4). In the following examples, "(a)",

"(b)", "(c)" refers to a, b, c of Eq. (4.2).

Example 4.1. (a) !**_,(*: + l)"2 = 7r2/6 - 1. Here, -F'(p) = (p + l)-2, and

F(p) = (P + I)-1) the integration constant being zero on account of F(p) -» 0 as

p -» oo. Thus, f(t) = e'1, and the second column of Table 3.1 shows the rapid

convergence of Gaussian quadrature in this case. For example, 15-point quadrature

already yields 12 correct decimal digits. In contrast, 10 000 terms of the series would

give only 3-digit accuracy.

(b) L"_1(-l)*~1(/c + l)"2 = 1 - tt2/12. Applying Gaussian quadrature to the

integral in (4.2b) yields the results shown in Table 4.1. To guarantee, on the basis of

Leibniz' convergence criterion, the same accuracy as the one achieved for n = 15

would require the summation of approximately 690 000 terms.

(c) ¿Zf-x(-l)k~l(k + l)"1 = 1 - ln2. The convergence behavior of Gaussian

quadrature applied to the integral in (4.2c) is evident from the second column of

Table 3.2.Table 4.1

Gaussian approximations K(n) of the integral

i"00 \-iK=j e~'t(e' + 1) dt and relative errors.

n K(n) r(n)

5 .177753 L2(-3)

10 .1775329780 6.5(-8)

15 .17753296657625 2.1(-12)

20 .1775329665758867915 5.5(-17)

25 .177532966575886781764027 1.3(-21)

30 .177532966575886781763792 1.4(-25)

Example 4.2. F(p) = p-lcxp(-l/p), -F'(p) = (p - l)p~3 exp(-l/p). The origi-

nal function is here /(f) = J0(2<JJ). This being an entire function, we expect

Gaussian quadrature in (4.2) to converge rapidly. This is confirmed in Table 4.2,

which shows the relative errors for the «-point formula, « = 2(2)12. The exact sums

(to 24 significant digits), as determined by Gaussian quadrature, are, respectively,

OO

£ (k - l)k-3exp(-l/k) = .342918943844609780961838,k = l

oo

£ (-l)k~\k - l)fc-3exp(-lA) = -.0441559381340836052736928,fc-i

00

E (-l)/c_1/i"1exp(-l/A:)= .197107936397950656955672.*: = !

Page 8: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

184 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

The first 10 000 terms of the series yield, respectively, 3,7 and 4 correct decimal

digits. The Bessel function J0 was evaluated by means of the rational approximations

in [5] indexed 5852, 6553 and 6953.

Table 4.2

Relative errors in Gaussian approximation of the integrals

in (4.2, a-c), whereF(p) = p~lexp(-\/p).

_n_(a)_(b)_(c)

2 4.48(-2) 8.95(-l) 1.77(-2)

4 3.80(-6) 2.39(-4) 9.65(-7)

6 3.35(-ll) 3.71(-9) 6.32(-12)

8 7.01(-17) 1.13(-14) 1.05(-17)

10 6.86(-23) 1.08(-20) 1.27(-23)

12 1.93(-23)

Example 4.3. F(p) = (1 + p2y1/2, -F'(p) = p(l + p2)~3/2. Here, f(t) =

J0(t)—again an entire function. Convergence of Gaussian quadrature in (4.2), while

still satisfactory, is not quite as fast as in Example 4.2, presumably since the

argument of JQ is now essentially squared. The relative errors are shown in Table 4.3.

For reference, we list the exact values of the respective sums:

00

£ A:(l + k2)~3/2 = .900524735348125924300853,*=i

£ (-1) k(l + k2) ' = .234771442466894018686113,k = l

oo

£ (-1) (1 + k2)\ ' = .440917473865185397183787.k = l

The first 10 000 terms yield 3,8 and 4 correct decimal digits, respectively.

Table 4.3

Relative errors in Gaussian approximation of the integrals

in (4.2, a-c), where F(p) = (l + p2)~l/2.

_n_(a)_(b)_(c)

5 1.68(-3) 8.15(-3) 1.99(-4)

10 8.03(-7) 4.75(-6) 2.11(-7)

15 4.05(-10) 2.99(-9) 9.01(-12)

20 1.64(-13) 7.61(-13) 2.26(-14)

25 5.79(-17) 5.64(-16) 2.52(-19)

30 2.69(-20) 8.25(-20) 2.33(-21)35 5.11(-24) 8.01(-23) 3.88(-25)

Page 9: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 185

Example 4.4. F(p) = 2p'\p + 1)"1/2, -F'(p) = (3p + 2)p-2(p + l)"3/2. Here

we have an example in which the original function, f(t) = 2 erf \ft, is no longer

smooth, having a square root singularity at t = 0.

Table 4.4

Relative errors in Gaussian approximation of the integrals in (4.2, a-c), where

F(p) = 2p~x(p + 1)~1/2, using weight functions t1/2ex(t) andtl/2<px(t).

n (a)_(b)_(c)

5 2.10(-5) 4.69(-5) 9.20(-6)

10 5.47(-10) 1.54(-9) 1.58(-10)

15 1.24(-14) 3.88(-14) 2.70(-15)

20 2.62(-19) 8.78(-19) 4.61(-20)

25 5.17(-24) 1.85(-23) 4.91(-25)

This severely retards convergence of Gaussian quadrature in (4.2). When « = 40, for

example, the relative errors are still 4.29(-4), 7.19(-6) and 4.80(-4), respectively.

Better results can be obtained by integrating with respect to the measures t1/2ex(t) dt

and ti/2(px(t) dt. The recursion coefficients for the corresponding orthogonal poly-

nomials have been computed by a discretized Stieltjes procedure [4, §2.2] involving

two different discretizations, one on the interval [0,10], where a Gauss-Jacobi

quadrature with parameters a = 0, ft = \ (to account for the r1/2-singularity at

t = 0) was used, and one on the interval [10, oo], where we used Gauss-Laguerre

quadrature as before. With the special Gaussian quadrature rules thus obtained,

convergence of the summation process is very satisfactory; see Table 4.4. The exact

values of the sums are:oo

£ (3A: + 2)k~2(k + l)~3/2 = 2.571949632310480570278028,k = l

oo

£ (-l)*_1(3Jfe + 2)k'2(k + \)'3/2 = 1.485761529223412110869727,/c=l

oo

£ (-1)*"12*-1(A: + 1)"1/2 = 1.039526533711568982971620.

fc-i

The error function was evaluated by a double precison version of the incomplete

gamma function routine in [2], observing that erf ]ft - g*(\, t)\n the notation of [2].

Acknowledgment. The authors are indebted to Professors R. Colella and N. D.

Stqjadinovic for discussions of solid state physics applications and for the references

[1], [7]-[10].

Page 10: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

186 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

Appendix AI: Recursion coefficients ak, ßk and error constants yk for orthogonal

polynomials irk(-\ erdt), r = 1,2.

Table 1

Recursion coefficients and error constants in the case r = 1

alpha(k) beta(k) gamma(k)

01234567

89

101112131415

161718192021222324252627282930313233343536373839

.461525938802876997452073d+0 0,704191444329339513502262d+0 0.770998656928091792159882d+0 0.806080700729485272611407d+00.828660553952942783922551d+00.184477941123603649109013d+01.385703960780471652429146d+01.586677509199924741103502d+01,787475083747655673320589d+01.988144159703517937644880d+01.188715988022024871783867d+01.389212101665985380091942d+01.589647889789580024594387d+01.790034684747346719114197d+01,990381042491900192595802d+01,190693560926138060674934d+01,390977421289520548874486d+01,591236757022591485989598d+01,7914749115710 57075454825d+01,991694622623751660309063d+01,191898156385961846196465d+01,392087407159060452589958d+01,592263972351102829585861d+01,792429209778631102387506d+01,992584281999713000914784d+01,192730191011571674407895d+01.392867805694775205910431d+01,592997883731142093202883d+01,793121089264575994179349d+01,9932380072490567523374lld+01,193 3 49155194 2 53981710560d+01,393454992848980916810097d+01,593555930237275729008440d+01.793652334368491309339130d+01,993 744 53 487 2 51859393 0477d+01,193832828757930287545616d+01,393917484449982621596683d+01593998745233871150386916d+01

,794076832204093652786452d+01994151946801537136949917d+01

644934066848226436472415d+0 0811783690642112489289654d+00676288706260277787680856d+00156744408657869148844530d+0194 73894 4 50164 51747566531d+01939056708923949547049877d+01131469329707496049141402d+01524456680862040935918879d+01117904800086908599819680d+01911733086545634278259615d+01090588203798980126014925d+02310030623930625789347323d+025494 9700904 517282 0025340d+0 2808984506906222174100004d+02088490790318381268700652d+02388013930944475277549535d+02707552309641486213037546d+02047104551169241967842131d+02406669475630502474295334d+027862460616812148410 53902d+02185833418200242159627432d+02605430762155397308587299d+02045037401085301054018693d+02504652719072102149716323d+02984276165390506043752540d+02483907245234129654656713d+02003545512072496003149494d+02543190561301266397056653d+021028 4202492 78511271 49421d+0 26 8249956 7093196335570932d+0 2282162880274321890289169d+029018316 8204 5221630 5082 58d+02054150571229892590247571d+03120118473085291539833540d+031880868 51 53751 33 52077144d+0 3258055685957963670922452d+03330024957165022879643043d+03403994647285782417304167d+03479964739634320690278091d+03557935218604162422993492d+03

1.6449d+001.4901d+007.0487d-012.7178d-019.4512d-023.0864d-029.6602d-032.9323d-038.6965d-04

5327d-042688d-050611d-057857d-066102d-064482d-072210d-073325d-080503d-094469d-09

6.5894d-101.7681d-10

7287d-ll2609d-ll3531d-128944d-133539d-132163d-14

1.6384d-144.3103d-15

1320d-159682d-167711d-170317d-173049d-183834d-186032d-193747d-204365d-203263d-216410d-21

Page 11: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 187

Table 2

Recursion coefficients and error constants in the case r

alpha (k) beta(k) gamma (k)

0 8.110623843271969462056717d-01 81 2.082489563360933113678297d+00 52 3.180472732492342276049514d+00 13 4.230464687232567728899659d+00 34 5.261814180222519507249016d+00 55 6.283970335641423071715338d+00 86 7.300777826737402137770257d+00 17 8.314124893536196732880721d+00 18 9.325070412859877386826831d+00 19 1.033426456179618464586238d+01 2

10 1.134213320133091970071013d+01 211 1.234896912257135049629721d+01 312 1.335498141987434463665121d+01 413 1.436032407203413184648565d+01 414 1.536511338808887561282313d+01 515 1.636943912406203612259834d+01 616 1.737337182454617157330816d+01 717 1.837696782017803014429121d+01 718 1.938027271912508051564886d+01 819 2.038332390222895035094720d+01 920 2.138615234191184776508271d+01 121 2.238878395166622155008636d+01 122 2.339124060312416766916321d+01 123 2.439354090348347602881194d+01 124 2.539570079737826452062748d+01 125 2.639773403826193082384386d+01 126 2.739965256151148169598840d+01 127 2.840146678261384239170508d+01 128 2.940318583760677307621679d+01 229 3.040481777855517934134407d+01 230 3.140636973368393222174353d+01 231 3.240784803948646086438457d+01 232 3.340925835043190608386017d+01 233 3.441060573062978667260308d+01 234 3.541189473086012145546484d+01 335 3.641312945365461559438722d+01 336 3.741431360856105438919087d+01 337 3.841545055929548135777313d+01 338 3.941654336415387638822144d+01 339 4.041759481079403079082453d+01 3

8 57 54 3 27 37726430214 53540d-01721932339461376964598358d-01759962195010899092957389d+00452384919203117354550957d+00646769389936900623699487d+0 0344355062173523581471496d+00154523064520239591047982d+01524904924910513826966172d+01945541436638288259572407d+01416397877514391584300045d+01937445596792765549373146d+01508661182861105008895423d+01130025409989901518132003d+01801522341847326505433396d+01523138632084691795947509d+01294862990488389566003207d+01116685775941257898687472d+01988598684014213308377918d+01910 594504902261454319077d+01882666 93390 5573379469390d+01090481042149328176517281d+02197702005348084683811837d+02309929145435295611827254d+02427162070855731132915232d+02549400429588849232857666d+02676643903802234140414907d+02

,808892205395246706020251d+02,946145072259288312221530d+02,0884022651194356523440lld+02,235663564851183557323020d+02,387928770188127033667876d+02,545197695753403827498683d+02,707470170360892004885838d+02, 874746035542450893092687d+02,047025144265597523463770d+02,224307359812435482146968d+02406592554795780835373940d+02593880610292548417862187d+02786171415077789828663518d+02983464864945479141401659d+02

8.8575d-012.5341d-013.7166d-024.2771d-034.3128d-043.9986d-053.4973d-062.9303d-072.3754d-081.8758d-091.4500d-101.1012d-ll8.2392d-136.0862d-144.4465d-153.2172d-162.3081d-171.6433d-181.1621d-198.1686d-215.7101d-223.9715d-23

.7497d-24

.8958d-25

.3020d-26

.9102d-28

.0775d-29

.1327d-30

.8022d-31

.8950d-32

.2783d-338.6024d-355.7764d-363.8708d-372.5888d-381.7282d-391.1516d-407.6617d-425.0892d-433.3754d-44

Page 12: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

188 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

Appendix A2: Recursion coefficients ak, ßk and error constants yk for orthogonal

polynomials Trk(-;<prdt),r = 1,2.

Table 3

Recursion coefficients and error constants in the case r = 1

alpha(k) beta(k) gamma(k)

0 1.186569110415625452821723d+0O1 3.096354215396777385868O97d+002 5.072227279535603748526280d+003 7.060122627907580237773362d+004 9.052561940107377063359596d+005 1.104727510638861953173980d+016 1.304331396591818524168138d+017 1.504020434367328423625343d+018 1.703767964046364214939868d+019 1.903557704350381572369641d+01

10 2.103379079950742683676929d+0111 2.303224885358531450836922d+0112 2.5O3O90O1997975271673O524d+0113 2.702970758679743587962983d+0114 2.902864309137106670368192d+0115 3.102768531646223714519018d+0116 3.302681755330956598650822d+0117 3.502602653879355465420772d+0118 3.702530159288482391627409d+0119 3.902463400604857779043088d+0120 4.102401659529770734984583d+0121 4.302344337664627204795512d+012 2 4.502290931954042200448238d+0123 4.702241016007743824559445d+0124 4.902194225707601499580970d+0125 5.102150247984585443741200d+0126 5.302108811972419260339366d+0127 5.502069681965214136421960d+0128 5.702032651759905847302053d+0129 5.901997540072814624028685d+0130 6.101964186797382815216901d+0131 6.301932449926549963911066d+013 2 6.501902203004635984103630d+0133 6.701873333004339765889443d+0134 6.901845738547507308111824d+0135 7.101819328405769019780267d+0136 7.301794020230469238292916d+0137 7.501769739471571379108481d+0138 7.701746418453185730908012d+0139 7.901723995579593585500405d+01

6.931471805599453094172321d-011.193356045789508659178946d+004.191806424549042451590083d+009.215367385434641976544932d+001.623913244828318399783906d+012.526147321685195747738024d+013.628235105123771646231038d+014.930193771925747304811208d+016.432041306075684261406964d+018.133793106899114661883749d+011.003546181232714737844363d+021.213705773374930439179113d+021.443858933064312247341199d+021.694006360695312561343422d+021.964148642010325651995636d+022.254286271736712212879007d+022.564419671643648677565733d+022.894549204416899668238851d+023.24467 5184414076026002832d+023.614797886084236427881509d+024.00491755062552531702251ld+024.415034391301419740031332d+024.845148597725808406593359d+025.295260339347629377708534d+025.765369768308248977038621d+026.255477021802805949656030d+026.765582224045888408376874d+027.295685487919013322017815d+027.845786916360230644686497d+028.415886603543216590530846d+029.005984635883343186160464d+029.616081092900618200644516d+021.024617604796350530317238d+031.089626956893303904655591d+031.156636171872303425240697d+031.225645255578932558332990d+031.296654213455868932332327d+03

1.369663050580626665464266d+031.444671771698882809763324d+031.521680381254001740382063d+03

6.9315d-014.1359d-011.4447d-014.4379d-021.2869d-023.6122d-039.9286d-042.6896d-047.2081d-051.9160d-055.0599d-061.3293d-063.4770d-079.0616d-082.3543d-086.1002d-091.5770d-094.0683d-101.0476d-102.6935d-ll6.9148d-121.7729d-124.5401d-131.1614d-132.9681d-147.5782d-151.9333d-154.9283d-161.2554d-163.1958d-178.1303d-182.0672d-185.2532d-191.3343d-193.3873d-208.5956d-212.1803d-215.5280d-221.4011d-223.5498d-23

Page 13: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

GAUSSIAN QUADRATURE INVOLVING EINSTEIN AND FERMI FUNCTIONS 189

Table 4

Recursion coefficients and error constants in the case r

alpha(k) beta(k) gamma(k)

0 6.695404638538438232387227d-011 1.664686133009829680011075d+002 2.619431841015758476604192d+003 3.593865366974072299756279d+004 4.579560611244422509231409d+005 5.570393244889081013183465d+006 6.563863856463274821282662d+007 7.558890435710582391017287d+008 8.554931506945101735350174d+009 9.551680424073512844025433d+00

10 1.054894749426849736758553d+0111 1.154660774499827949400336d+0112 1.254457487195045007921430d+0113 1.354278703591851122550789d+0114 1.454119858463881673190978d+0115 1.553977497041409480722936d+0116 1.653848949597723105885520d+0117 1.753732115701126023268357d+0118 1.853625316885666471251907d+0119 1.953527193452852551824561d+0120 2.053436630566769258684606d+0121 2.153352704286241009913773d+0122 2.253274641468520667332283d+0123 2.353201789515210436373844d+0124 2.453133593225018788013906d+012 5 2.553069576859866483809419d+0126 2.653009330090433519953643d+0127 2.7 52952496866371491931937d+0128 2.852898766517794626792057d+0129 2.952847866577761073760216d+0130 3.052799556945594577910743d+0131 3.152753625104640930157417d+0132 3.252709882176421757703103d+0133 3.352668159643583823594838d+0134 3.452628306611646621975720d+0135 3.552590187507868194832644d+0136 3.652553680137070829557449d+0137 3.752518674030767687262801d+0138 3.852485069038683713846996d+0139 3.952452774121695980565398d+01

1.931471805599453094172321d-013.705278710851684856806622d-011.154907853652601365365824d+002.416782871937569027723998d+004.178983363598481071166374d+006.442373341823139342338233d+009.205824543736968972236729d+001.246885990410737186232674d+011.623136041040844992228737d+012.049332827585098989839084d+012.525480038308609252223979d+013.051582056896307516793924d+013.627643102788570772578227d+014.253666988039415434188650d+014.929657079160519734344687d+015.655616326612624756002118d+016.431547313435234317081962d+017.257452305464815707363551d+018.133333297094291496385707d+019.059192050950994107419572d+011.003503013155485508754740d+021.106084893360278480033078d+021.21366497O566454120865567d+021.326243357004168602197873d+021.443820153944878713298334d+021.566395453107226933490024d+021.693969337846574069748673d+021.826541884165723339055932d+021.964113161577435259558123d+022.106683233843655691641098d+022.254252159611781753560632d+022.406819992964582304786437d+022.564386783897402174805713d+022.726952578733870106688784d+022.894517420489383379229000d+023.067081349190064005746629d+023.244644402153598017416908d+023.427206614237321739508610d+023.614768018058060537519819d+023.807328644187519319245180d+02

1.9315d-013.5783d-023.4439d-032.7744d-042.0704d-051.4820d-061.0336d-077.0810d-094.7889d-103.2072d-ll2.1315d-121.4079d-139.2524d-156.0549d-163.9482d-172.5666d-181.6640d-191.0764d-206.9479d-224.4767d-232.8797d-241.8497d-251.1865d-267.6022d-284.8653d-293.1106d-301.9869d-311.2681d-328.0864d-345.1529d-353.2813d-362.0882d-371.3281d-388.4422d-405.3635d-413.4059d-422.1617d-431.3715d-448.6975d-465.5135d-47

Page 14: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

190 WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIC

Department of Computer Sciences

Purdue University

West Lafayette, Indiana 47907

Faculty of Electronic Engineering

Department of Mathematics

University of Ni5

18000 NiS, Yugoslavia

1. J. S. Blakemore, Solid State Physics, 2nd ed., Saunders, Philadelphia, Pa., 1974.

2. W. Gautschi, "Algorithm 542—Incomplete gamma functions," ACM Trans. Math. Software, v. 5,

1979, pp. 482-489.

3. W. Gautschi, "A survey of Gauss-Christoffel quadrature formulae," in E. B. Christoffel—The

Influence of his Work in Mathematics and the Physical Sciences (P. L. Butzer and F. Fehér, eds.),

Birkhäuser Verlag, Basel, 1981, pp. 72-147.

4. W. Gautschi, "On generating orthogonal polynomials," SI AM J. Sei. Statist. Comput., v. 3, 1982,

pp. 289-317.5. J. F. Hart et al., Computer Approximations, Wiley, New York-London-Sydney, 1968.

6. A. McLellan IV, "Tables of the Riemann zeta function and related functions," Math. Comp., v.

22,1968, Review 69, pp. 687-688.

7. S. S. Mitra & N. E. Massa, "Lattice vibrations in semiconductors," Chapter 3 in: Band Theory and

Transport Properties (W. Paul, ed.), pp. 81-192. Handbook on Semiconductors (T. S. Moss, ed.), Vol. 1.

North-Holland, Amsterdam, 1982.

8. F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York, 1965.

9. R. A. Smith, Semiconductors, 2nd ed., Cambridge Univ. Press, Cambridge, 1978.

10. R. J. Van Overstraeten, H. J. DeMan & R. P. Mertens, "Transport equations in heavy doped

silicon," IEEE Trans. Electron Dev., v. ED-20, 1973, pp. 290-298.

Page 15: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

mathematics of computationvolume 44, number 169JANUARY 1985, PAGES Sl-Sll

Supplement to

Gaussian Quadrature Involving Einstein

and Fermi Functions with an

Application to Summation of Series

By Walter Gautschi and Gradimir V. Milovanovic

TABLE 5. Nodes and weights for n-point Gaussian quadrature with respect to the

weight function e,(t)=t/(e -1) on (0,»), n=5(S)40.

zero(n) weight(n)

1 3.4795351312035335358889O6d-012 1.789519270251396059078587d+û03 4.317073039784563286568702d+004 8.124316435674601205701546d+005 1.399259503591182245471045d+01

7.413801893864949064648418d-017.112793968534230324727631d-011.810544213015127812690667d-011.113156581019995660932093d-028.849349659575965642269187d-05

zerotn) weight(n)

1 1.712764587800172362970467d-012 8.916728564071628155969295d-013 2.154696241995276926728150d+004 3.940962194432075308546014d+005 6.27305497812020O583717756d+006 9.219833208404748987213936d+007 1.289612902426177067770092d+018 1.749262020229698453921089d+019 2.337506876689075787489480d+01

10 3.148092990870547794581304d+01

4.017581983871970550764847d-016.178151502068598877652466d-014.309238491671243158403736d-011.601831853477 29222338 2136d-013.111600156831707548706688d-023.0O2950279906314058385O99d-031.324400356318608169220646d-042.280734015322767264428365d-061.111475587288852659683946d-086.689509433931585817256954d-12

zerotn) weight(n)

1 1.122689742882840428560134d-012 5.872942570832169304369100d-013 1.427134594172779508922935d+O04 2.616230204390486070960179d+005 4.148505367683641117556727d+006 6.033516951668504802085092d+007 8.294299990936086527007386d+008 1.096384343614386146477958d+019 1.408587628929527609167703d+01

10 1.7719996911567692 33871477d+0111 2.195126297803758949286577d+0112 2.690847821599200481688143d+0113 3.280454835374218314720542d+0114 4.004648974077095940531751d+0115 4.967641464169027902025467d+01

2.717674922677317952221318d-014.852206727225164096245477d-014.581586361360587417881249d-012.806056660239435321238224d-011.135140668971388075471236d-012.998304918534276590192265d-025.098666065215486743990180d-035.482040128082603574763532d-043.618564942449709026477206d-051.398222595231963340037460d-062.936603420052541839075062d-082.982123035751269147999240d-101.203079310277072656860401d-121.324544206896025265830478d-151.546415245123910288693076d-19

SI

©1985 American Mathematical Society

0025-5718/85 $1.00 + $.25 per page

Page 16: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT

TJ TJO COm ^i-t iolO Oí\o Oif ifr-H CN

en p-•<f coen CMif mnT otn 10O r-t10 IDm cmin p»■T 10CO 10fO -HrH inr- enin co

o o oI I I

TJ *D TJin cm 10co o m(N r* rolO io <NO cji CNm en enm en lo

CN CTi -HCM 10 >Hco m o10 Tf iHCTi 10 IDm i0 i0O eo (Nr> p- enco en coCO O 1010 <N rH

donmonntNinp~ cn idif m m

■ CO O h r\i <f i

TJ TJ TJOrtHcm co cnM i0 Ooí O <Tr* en iocm r- tr^ enmMflOniñom i© -hen ^ cnC0 r-i ^rr- <£>mCO cjl COT*n<-i »0 p-10 10 cn^r p* cnen 10 covo en cou3 t

TJ TJif mco rnr> r-0 cof 01

fM CNCN H-h men nT co0» mH CTien *TCO CM01 01CN m0 10en tOV encn m01 p*un iû

TJ TJ r

10 -H Cci r^ <-H 10 cen CN cCO CN lCO CO rO* CM Cco *r cCO r-t Cm in cif en cr- cN cin r- cCN r* cP~ CO r

CN co *in m cr*- en cm r- 'r- ^r cCN 10 i

t in rJ T <H H O CN m

I lTJ TJen onj *T^r mr- enen enin i0m cNCN ^10 och enCN r-t<-H CO

CD CNJ

O Hr- ior- oO mH en

i iTJ TJCN CNm enLO COco enm Hif T01 CM

en cNH Or- •*1 en

io r*r> cm--4 enf*l CM<f enCN mr- m-h enp- mCN 10

f H

TJ TJ TJen <-i cmm --h r*.(N p* enO O 10

if rH Hm en oo^■roenen en enm en r-tm m coCN 10 1co m inen co co(N o oH^OCO m r-tO en mm co coco en oCN rH CO

I I ITí TJ TJCN 00 00m o r~en m o

HO»^ en coi© m coro en p-in CN r^mtjifO r-t 10CO CO 00O 10 1000 tT CNo n CNo en Tm in i0n* <n ncN oo ̂ r10 <* or*- ro mv0 m r*-

^r en en

CN CNI 1

TJ TJif nO roCN mcN m10 CNen cNm <m <cN r"»m enO O-H CO

m enen om i0if rHen oif *ro rnm i0co -

p~ o f co coCN co co co -cri i i i t

TJ TJ TJ TJ TJen co i~i m men v0 m cN mm co i0 CN r-en ^ i0 co ioo r-* co co cNCN O Oí r-i (Nen m r^ -n ^"O CO CJt m rHO ^ CN r^ ror^- r*- i0 m r-i© cN m n* mrH co ^ CO CNen cN ̂ r- mm r*- en --H roo o r^ r^ (N^f en co r^ r-00 CO CM CN (Nco cN ro o m<h en co co ^"-h co co 10 roco m en co »nr-i O CO CO P-rH co in r*- enen m r^ cN m

iCNencicNMCOrOrHror*! HtvjHHConHniruDinrnHHH^nH

o oi i

TJ TJen rnen enco coi0 mO rH

en en«3 ■*en enr-t r-l

r- ocN mV$ t0

co Hr* enCN enCN O

CN mco mco r-cn ioCN T

co r-en m

h O Oo o oI + +

Tî TJ TJen i0 enm p- mO 10 o(N oo mr- r-i *t

o O oo o o+ + +■O TJ TJ

m r^ co-i en r

en r

OOHHHrlHHHooooooooo+ + +4.J.4.J.J.J.TJ TJ TJ

CO CO i0

m . i eno m encm en cN^ r- r*en i0 cNT CM T^* ̂ " mOlOHro en rnr^ co co<N CO Oo en m^r m n—i <-{ r-m i . en^r i0

co oo men cN o

TJ 00 Tfm en colOO'TP-- t om m enro v0 r^O T Teo en r-y) en coen en en10 o CM00 10 10r^ co rni0 ■£> r-Cn CM rHm m oco ^T 10r-i m INi0 r- coco co men o ro

i en rCM 10 C0en o en*f r~ coen i0 coen r^ i*m m cmm m cmO r- coen i0 mm co i©C0 if ^f^* co m .10 cm co c*r co r- cr-\ r-t r-t l

10 r-t r- (P- r-t co tCN O CO (CM NT CM C

O CM CM CCOI'OI

TJ TJ T)kO co coo o ^rco en encm m o10 CN NT"rH 10 coen ro rno o en10 10 co

TJ TJ 'en r^ tm o 'r-t r- 'ro en (ro o c*ï r-| c

P^ ro ien co tv0 en r

i co r-t m r-~ro cN en <cm en cm «o o o >

» cN en (i m m ti co en 'I O 10 iI 10 CM l) O C0 (

o o o+ + +TJ TJ TJm m cmOO«)CO <D CNen o co[^ P- rHi0 m i©i0 ^r r-o p- r-rH en enin m mo h en

m en cN(N CN rHrH V0 00i0 i0 OCN OOm rH rHen en vocm n r-\O <N 10*f O r-*10 CN rHCO CM 10

CN 00 rHrH m mto m cm10 ^T 00r- r^ i©en io cmen id cmm r^ cm(N m op- m enoo co oCM C0 rHco r- enen ̂ " m<r id <rHlflfP- O OCM 10 O

) O O O■ + + +J TJ TJ TJ) T CN rH- m r-H en

10 rH r-en coen in oTf o i0o p- en10 rco en -h^0 m enen CN cor- co en\û in i0en r C0

C0 F

00 10 CNCD tN rHO CO 10(N in vDm O cmO co r^cm r- r-r-\ (N 10CN r-* 10

m rH r^

r-{ r-t r-i CN

o o o O+ + + +TJ TJ TJ TJCM (N co inCO CD rH CNrH ^ "40 ■X»m en co *jco en ^" oO if CN rHlO^OOco en in inen cN ̂ \o10 CO rH 00o m cN oor-- m ñ* oco o T 10tj- m *r r^-CO O 10 00o en cN en10 10 C0 rHen o if cor^ oo p^ mCO CM CO rHen en co cmoo ̂ r en enen m cm mA1 n n o

mCNl0rHlNCMirini0CO' irHCNCN<Ncnen^,ij,'ïini0i0r-cocn.

jen^ini0r^ajc^oHrsicn^ini0r^cDcno'-icNrnNTini0p--cocnorH-HrHrHrHrHrHrHrHrHCNCMCMCMCMCNCMCNCNCMm

TJ TJm cmin *fr- Ten mr- env0 enCM TO mCO CO

en mCN Trj CM

00 mCO 00

) O oI I■ TJ TJ

en m«T co\£> en

i co in

> m r^1 TT V0j m mj en mi p- eni vo CN- oo coi (^ enj r- *r

o o oi i i

TJ TJ TJ\Û CM C0m C0 CMID >¿J P-O C0 eNtNlûOrn CO iTp- m mi0 m mo t r^cm in mcN *r r-rH r^ r^-co «r mro cm To co coO en o(N r- <no o mco m O

en co com o <-tcm m enr- <n o

-i m vd ro o o cl l l

TJ TJ TJ

CO O Oo o en

oo en rHkd if vDC0 r

m vo coto en m^(Np>cm en mCN rH rH

iD if 00(NCfilDif CN enoo co mo en en

cm m t co r-t r- CN l

10 r

o en tO 10 \010 (NHen r- ifo co coo en o

CO CO P- e

inr-m iûO eom com men idm meo cNr\ t0CN m■X) -H

r- co-h r^-h co—i p-C0 CNr- i£>m enm .-ien coco m

iOcN-fvocncnr-JHHHHHOjrg

I I I I I 1 I I3TJTJTJTJTJTJTJ"linrsicncn m^nr»t en o o en- iû r- »r oo

1 m - I CMCO tn P- rHin *r if if00 if rH CMen cm co o—t cm tn cNco O O rnO if O CNco o en r»-t i0 \0 enT if 10 oCM rH m CMO i0 \o men o m tp- m co enrH -T rH oñ" en p- enO 10 if enen en 00 P-r- i© o o

h m en cm

lO iO enO cm r»P- 10 r-10 L

J enCJl 10 r .

m r* ifrH 10 10r» o t--C0 10 if

i mif r- i0m o ot io op~ o r»

r-t m *? m n t

CM rH O O O

O O O O OI + + +

TJ TJif -tfP- rH

TJ TJ TJCO if OO 10 com m inin h ifP- Cn rHm en ifrn en p*r-t CD ^*

P* P- 0010 P* CNi0 m* mMOOen o ift if rH

m m idco i0 enrH m coCM rH C0

en co en(M CM CMO r- (nrH m 10m en o

p* CMr- mO COCN CN

m oif -HO C0CU rH

C0 CNo enco or* coco enco en10 COO co

T) TJm enm men CN

O r-en p-o enm orn cn10 10co enen i0m enif <fen i010 co10 CO-H enm -

1 CO tco r>C0 CM

o cm en cm~> cm r>> o 10t m r-t

o o o+ + +TJ TJ TJrH if C0o r- p-10 O r-t

o en enO 10 Oen m t

en ^> mCO if orH m (Ncm oo enr-t O ri

m co incm r^ O10 C0 10oo m enen tn hHiflinen r- ioen co r-ñ* en r-tif CM VOO CO 00

o o o o o+ + + + +TJ TJ TJ TJ TJm in O 'D 10(MuIhNiOm co m cm mco if o O enr- i0 in —t o(N O O T P»i-H en en i0 oif rn m co enco tn to o enen co m P~ enrH O O O P-cn co en en eno m m co r-t00 if 10 C0 CMr-t P- *f erj mm P* if r^ mio <n co m r--r^ r-t rf m men rn r-t m cooo »o p- en encm rn if o en(N ^" in r-H [^p* en m io rHm 00 CM 10 rH

o o o o o+ + + + +TJ TJ TJ TJ TJp- en m o --ho o o en encn m f m i0en o iû m <HCN 10 Cn rH coo rH en en i0m m ^" r- fO CO rH if r-tin h i0 io tnrn if en p* toO m CM P^ rHin ^" oo co enm if o to mcn en cm r- ioo o r^ o enro in if co enm «r cm co Tco ̂ * en r> cmo cm co en enñT co CO 10 enco en co n? [^en f r-t o cnen CN -H nF cnyo cn en r^ co

o o o cI 1 I

TJ TJ TJ r>

CO if (N i■J COiDfCM O 00 -in in if cm m -h rrn o m 1en m if iro en en r

co o o ecm m co rco m m eo en m rif m 10 »r-t m en rr-t if en eCO if P- r

C0 en if cn m m m >■h n o cm 1r p- m cm t0 m en eN ■u co en en c

i en m en cm

o O O o c

TJ TJCD 10O in

cm inen enen oop» ifr-t rH

o en10 CN

o enen coen enrn en

CN CN enO O OI I I

TJ TJ T)if O mco p- P-en en ifco P- P-O P- oif CO 10en o cmm o ^0p- cm r-o m enoo o oif O cmm m o^f r^ cni0 o m■if en enen co enp- if enP~ CN CNr- rH oin if m00 m rHr- p- Or-t 10 CN

if if inO O of I I

TJ TJ TJvo en coen m men en toñ* m mm o p-cn o p-CM ( C0r- o rH

if r-t Tf^" 10 p^00 co om rn enif 10 p-r-t r-t enp* en enen co io■if m ifcm cm encm en enen en com rH enrn cm en

»o oo en o cmO O O rH rH

I I I I IT) TJ TJ TJ TJtn cm v en i010 CO if 10 rHen to io rH p»oo i© en o p"*rH O r- O rHr- oo co o r~en cn o m <nif cm tn r- r^■h o r- i* r-^ cn p- cm enen p* co cm eni0 co p- o men m en p^ men io co r-t oHVtMl/IHcn en m o m^ o en en rH»r p- cn co enrH if m en ifen rn lo p- encm o p- m eni0 cm p~ o en<-t cm en r-t iocn en p* en <-i

if 10 co or-t r-t r-t CM

I I I ITJ TJ TJ TJo »o m encm p- co mIDIOOTco vo co mr- co io enC0 CM if 00en i0 en tnid p- in enif (N p* rnm o oo oin rH cm coen en ^" n

vo en cm cmO 10 if CMen ^" cm mm p- m cop- m <3> oi0 10 10 Oif p- en CMen m en men en m p-if p- p~ mrH en m '

I I I lTJ TJ TJ TJen m vo «-n\o en \û mOHifinen cm en ifco m m vop- en en r-p- p~ o P-.-H 10 p^ eneo en <ï cn10 rH o cm00 O ^ lOiO r-t en enij* m o lom cm o en-n tt o encn cm lo enlO en m cmlO en co enen io co if■-n en p- cmen \o p* p~m cn en p*co m O cm

p* o

iiriHi'cOHHHMnHfnininnH.

COifrHr-HCnTflOCOr ) cm en en if im*

I ITJ TJ TJ TJCM CM O CMO F> r-t mcm m rn mCM rH p- orH 00 rH 10

P- 10 O CMen co en i0io co en CMCM CM en om m m ^>m if r- enen rn m o10 10 co oO P- CM 00p* m m «Hrn m* en o^* CJl rH oocm m en o«n cm en enr-t m o oCM 10 CM 00o *r en ifco m m mm n? ñ* m

10

TJ TJm en10 CO

O O Oo o O+ + +TJ TJ TJO en men en ^cm en cmm m mm f oio r*- cm

OOOOOOOOOOOOOOOO

r* oH [SrM C010 i0

h C0 ■i en

i en. ren mm enCN CNco men mco coCO CMo coO r-,CN OJ

r- enif m

en cm toen in enij o r~O m cmrH rH mif en en_ h m10 10 or-t en cop- co mr-t m P~p- p-- enoo p* P^O h eni0 co mr-t *r enen if -n

i0 «

i0 en com eo cnr-t tn om rH p*^ in enco cm mcn o enO rH oco o oMOH^coovo en \op- if mif en m10 10 COp~ o en•n m enlOOrji10 P- r-tH m COO CM if

1 CO rH CM en if 10 CO '

TJ TJ TJ TJr-H if co mm p- O rHr-t m if P-en en lO ocm if en men if ^ oo00 CM P* r-ten t ^ o10 O P* r-t<j o co o^* co r*- enen o o -hen o r- com Ni* 10 rHp- o en p^oo o ■"* ■"»cm rn o enif r- cm ifr- if o r-if m if co00 CM CM CMcm rn en enifiinp- roP~ O en p-

rH cn cm c

TJ TJ TJr-t P- ifr-t 00 r-t

in en mcm ̂ tnm . i en10 o m<f en loif p- mo if encn r- om cm coeo r-t op* o mif en cmo m enP~ P* r-t

cn en mm rn mO lO 00O en \0m co ift co r-en 10 TrH in O

TJ TJ TJCM CN ^"m io enen i0 con? cm enen if min en men oo cncm o oCO (N 10CM O CNiû oo ento co cocn if enh- en ioen ̂ o enrH en ioO 10 P-r-t r-t 00

r-t in oen co oen n* iop* oo mr- io "m h co

TJ TJ TJ

io m r-<n en cm^" CO CNen io men en o<f io -a-en en iom cm -nm n* cmen cm mp*. en coco en cmen en tniio hp* f mcn cm r-r-t -tf 10P- C0 p-co m <r«n en eoen ps eno —i enio m io

encnififininiop^co

rHCMcoifiniop-cocnO'

Page 17: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT S3

) O oI I

J TJ TJ

1 in r-t. co en) 10 P*t io en1 rH CM

J if COi oo mt en IDi io en) m ior o ent cm cnl en co

cn cm cnoooooooo

IIITJ TJ TJO 10 r-t

I CO) 1 o) 1 en1 if 10

TJ TJT ifin r-t

r» r»10 *fCN 1010 O

H Iio mco eo10 oP- r-t

io <nrn 10in r-Hm mm mio ioio mi0 ifif Hen oin io

lTJ TJ TJen in cnen o mi* o encn o mT CM ifen co eno CN if■h cm enm m mm ren r CM

\ m r-t 00> en en eni en m eni en p- ioi tn p* en» r-t O 10I CM T r-t1 10 10 10

t p~ in vo> en o eni co m mj f if m

OrHcoOiootnm

MJieoO 00 rHO r-t 10HOlflm rn cn0 <f mcn en co01 f^eo if coco O Oen ij mio io men co O

t co ■

10 rcm en r-tcn p- p-nT enor-t 10 roco cn eoo oo mcm oo mV0 T CM

en «a- mo o oi i i

TJ TJ TJrH en en10 T r-tin cm enCN VO 10O O IDio cn r-O lu CMCN if Oif o mm en ifif h P-o r* enr- co com o mif H CMin m ifun m iD00 if 1o cn p-O 00 rHO tn ioo io 10r- r- cntn o O

in vo p*o o oi i i

TJ TJ TJin if rHcm rn enen rn cnP* CM CMCM P- r-ttn vo p-CO P* P-r-t p> mr-. en ifio m oNT CN Hin en inio r- ifT en men f 00en rn rnm if r-to en cn(N if Oio cm mm p- p-r-t «T 10r-t p- enp* r- oo

co en oO O rHi i i

TJ TJ TJCO P* r-to tn eom O rH10 CM enif O enO O CMo cn mr-t r- eoen oo r-tO C0 r-ten en mo m ioif co 10en p- ior-t p* mco oo oom en co<t.p- too r- eoco p oen cm p*O CN r-trH CJl P^m i p-

r-t cn nT in p- co

I l lTJ TJ TJrH O Om cm tn•-t o m10 p- p*p* en enen io eom m oif o envo p» p.o r- enh en cnm* m mp- m iftn o <nr-t t—I 10en io oooo co min o cmm m mco if mCN if P-m p- iftn in inio m m

l I lTJ TJ T)m en r-if m m

m oo mr-t r-t iTl

p- o m1 CM P-cn p. p-io io enO if CMm co mCN 10 ont m p-O co eo0 m cncm r- OC0 if ifCO P- op- r*- p*io m cmio io en1 o cmO O rHOMCÍ

o cm mCM CM (NI I I

TJ TJ TJen cm enif cm tnco o ooen m p-co f corH 10 rHen p* enp- en coCO 1D rHif p- ioen r en i

10 coCN CNI I

TJ TJeo men cnm om ifCN C0

if P-CD COco enrH ifcn m

CN

P- Oco en10 ifp- en

co co in en enr- o ioO r-t 10en eo r-to r*- enp- p- mm o enlO if coio en r-tif 10 CMcm co ■??m cm orH cm o

0 m m coen en cn entill

TJ TJ TJ TJ1 CO o oio p- en coif in r* r^p» vo en enen io o envo m cn p-co m ^ enp- co io mm m *r oen oo CM oen m oo p.cn ^ m *rO <tf H P-en io cn encm r-t p* inOM^inm co en iorH m cn oop- o o enio tn cm men m vo ioo if i** enh m cn enoo p~ p- en

rn m en if o■a1 if ^r m voI i i i i

TJ TJ TJ TJ TJen rH in oo coo un o o enm m -h cn p*OOlDCDI1O en C0 cm OCM CM P* r-t r-tm p- co co enen cn io p* enen rn rH m enCO in CN -cf rHeo m cm co r-tm io p~ *f *=fen cm m if coio cn p~ eo p-p- *f cn m rnCN rH p- o *fm r-t p* io mr-t CN r-t m CNen m rn o enm en m en mto m cm en oP"- T P* en enr-t r-t co cm vocm m o en ^

jcMencMCNrHr^tnrHinrHicnHtMtniT^eneNrHr^enencMinoOrHeniûCMco

J O O o111 +J TJ TJ TJT O f CMh io en colOf IN- co en ooj r*- cn cnJ P- VO CNr n o r-t•j en if rnr co eo mj ^ r-t m•J r-t cm ̂H CM <D 10J co 10 ^ft en en ifi en m enj i en og f MN> Tf IO if3 o en or rH o r>•j m en cno en en oi co en mHHinif)

o o oo o o+ + +TJ TJ TJco in com cm ooCn rH r-tm r^ ifto rH p-CN O -HO r-t 00o o Oif C0 10cn ^ mnt o 10io m enrn io p-

m ioen - com p*cm en coen r-t coio oo co10 r-t C0rH CM P^en if ^,cm m ocm o o

o o oo o o+ + +TJ TJ TJm m oo10 CN P-r-t 00 CMr-t r-t 10

cm m cm0 cm cnen oo cmP* P- rHVO P- CM1 P- oen ^f cnri ID eoen vo hh r-- enen m men ooco en ifp- m eom >* r>nT P-P-if io m«n m enoo co r-tO CM 10

o o O+ + +TJ TJ TJcm io enp- r» enp- p- cooo p- mio co ooo en cnrH m CM^MDm io r-en m envo en enrH 10 rH

en p- enM* r-t CNif en r»en o r*r-t if VOen rH cor-t rH CO

m io ifm co cm00 tû NT"o o CN

o o o+ + +TJ TJ TJtn C0 rHm r-- enif en ioCN r

en io cnp* io mif CM coP- rH m<í MNen m ooen r-t ifo ^ voo o oco cn mm en p*o VO rHp- p meo en enp- en mm muif 00 r-tO CN Oen m iniT 10 CO

O o (+ + ■TJ TJ 'r-t 00 tif en10 CN

f CN10 enp- iom voio ioen f10 CNen m0 Op- CMrn lû1 o10 Ocn m1 mr- p-10 coP- rH

CM rH

p- mC0 10

CO ifif CNen rHrf m10 eno m

TJ TJ1 10eo enen eocn eno mio mo oo p»h <rr-H 10

co if e

o o o+ + +TJ TJ TJo m cmen o r-p* if enp* m ioCM O C0io m ioen en p-O r-t 0010 O enif CN O

if OO VO) U0 r-t r-t r-t r-t 0>

io enO ipm p»io enO if

-i 10

en ren com f>en p«m eo

co enm p-CM CN

o p»f mo coco enrn -rfp- mp- enrH if

10 r- COm o -hCO 10 rHo cm enH in oen m ien if voO CM rHm rH r-t

O O O+ + +TJ TJ TJ10 10 CM00 rH CM

P- -tf 10O CM ifp- if m•-t p- encm r* enP- rH CDif cn mmm^rn r* enm p- voO O rHif en en-i r- enO 10 CMO CO 10r- en ifen < mp- vo enCM cn o^ CM p-p- o men f eo

o o o+ + +TJ TJ TJif io eno o om CN rHif cm mrH T C0CM O CNH CM CM00 rH ifP- rH 00r- cm enO cn cmCM h moo r- enoo p* en10 cm ooo m mCM CO rH

o m oo10 CM P^if rH P-r-t m rHrn r*- enif m oen co i

O O O i+ + +TJ TJ TJif 10 PrH en enCM 10 if

en p- cno vo enCfO<N cn enen m mO -H OrH IO 10co cm men p- oo <r en10 if rHCN rH om p- ioCO O CNen if eneo if cmcm m en■h en rn

TJ TJ TJ TJ TJO if O 10 Oen p- p~ co cnih en m p- <fco p- en r-t tnHOMOCO<n cn en if tnen rH m m rnvo .h o o vom r* p* o vor- ^ oo cn com if cm if moo en rn en envo cm en if fcm p* Is- CN P*m io m m oop- ih nt" in coo m n? m cnio if t> o 'TCO rH 10 00 10io r^ co Tf enen en en en r-oo cm p* en oo en co en n*OOHCSif

1lNlno^HNn^ln^o^cJiHHHHHr^lr^lNM^^nm1"^^lnlnlOlO^a]c0WHHHHH

r-t cm rn -r m io ^aJC10HN^^^ln<o^cOlJlOH^roVull0^cD*OHC^i^nt'lnl0^cO!JlOrHrHrHHrHiHrHrHrHrHCN<NcNcNCNcNiNcNCNcN cnencnmcncntntncnmN?

o o o o oI

I TJ TJi ^ ent en m• P* enI en 10) eo en> if rH

) P- CM\ io r*t eo m) r- -h1 00 rH•> m iot rn p-J 10 CN) co ot O 00i rn fM■ P- Oi en p*> if r-t1 p- p») O en

ITJ TJen coo ^rif inr- mr> ifr- ceO coCN 10

if enen cnen cnen io* oo 10O cnco tm <fO ioin p»en iop- eno r-CD 10r-H 10

rH rH CM CNO O O O1111

TJ TJ TJ TJm 1 10 n?rH rH CM OCM CM 00 OO O co m10 CM 10 enm CN CM \0rn r-t i cop- en o mif m co eno o <f r»cM ̂ f en rno m V i>rH Tf cm p*rH ^ m cnoo in en enm m ^" rnp* io m cnen en ^ cmen p^ oo cmen p- en ioif en p- op- co m enr- o co voCO rH if CM

en m0 oi i

T) TJT Oio mio m1 men mh ^rC0 -5Tco mO inm mp- mco CNO rH

if mCN ifm enp- m0 rnr- ifr-- enm p»p- o1 t-eo cm

if tt mO o oI I I

TJ TJ TJp- m cocm io enco en -hcm en enif co enm m tnio en r-i0 io ifO en Om m p--h r- 1en co cmMnnrH o r^P^ 10 rHen eo P-if cn r-in io voo cn men m enm cn ifen t men rH oorr rH CD

io p- co en o cO O O O rH ri i i i i

TJ TJ TJ TJ TJ iio -h o en if erH P- O -H 1 r

p~ m en o eo 'r- <H rn p- if eco i co en m iCN CM rH co en cO m io o --t cif en en en cm r-H i CN to 10 eiOT h h m ten en io p- m -■p- co io en rH cco r- vo io r- tif T en if tn ip- >h eo en m tO r- co co f cif rH o m p- ien -n io cn o tio en co en o 'i en r- cn cm [H) CM if CN P- (r^ co rH co if •in O o p- en cVO rH o en m <

>ifi0COOeNifi0cn-

I ITJ TJ TJ10 -T Oco m enen m ioen m cnCO rH (^

in -H inf 10 ifCN m rHtn m mcm en iom <r ifCM CM rH

in rH ocm en eotn o p-

I CN t

TJ TJ TJ TJen m in men cm co o■h o cn oom co if enm rH if CNen m -h oCO rH CO OCM 10 P- CN

m cn P- nTO 10 P- TfCM co cm mio id to eo10 CN 10 ^"io cm en r-en p- -n ooT P' if ifO CM 10 rH10 1 CM P-

in cm if io-h o r- p-COHOlOr- O CN CN0 in co i1 C0 CM rH

J CN (

I ITJ TJO mO or- iom rnm eom -h

co mrn mrsi en^ ifen cnCI mco mm (-»r- idm o

I iTJ TJ TJO m rnCO o fnT en p-o eo m

r-t io mm o -hen en oonT en vor- rH ""m r vom o enif cm envo en ̂vo vo rnen vo voif CM vo

TJ TJ TJm o corf en com en cop- en oCN 00 ifen m enif VO rHm co ifif en iooo o mp* en m

j in

r- coo r-

pOhif 10 1co ao in

rH cm en m e iHP-mHcsinr-coioncriHHcor

rH 10 COen if ii m enrH in mco co coco m enp~ en r-o en -hco co lOm en r-co m p-en co o

if rH

I

rH O OO O O O O

I + +TJ TJ TJen en p~r- m p-if io moo vo in

TJ TJrH *

m coio r»o enm oO eneo r>rn -Ho voCD -H

if CN10 ifn om io

io enen enCN en10 if

m en voen ^ cmr-- p^ incm en oto if mp- m inen en r-H en cnvo m voen m enCN O nT^lATCN VO rHen m cmif r^ coP- 10 CM00 O ifm o men r-t r-

TJ TJ TJif) P- Olen m irH CM Oif rH rHen vo vo

10 VO CMif

t en ico c enm if cmp- m enp- m vom cm cmen cm p-C0 CM C0if en ifTf Tf cocn oo enen if -n1 p- om vo n*m en ootn ^" in

o o oo o o+ + +TJ TJ TJCO O 10if rH Oco oo mif if vor- ^f mCM VO COrH m mp- cn cnen co cmcm vo ov0 O enO en rHn* en enV0 en cn10 O V0lOHif en cmO f 00rH 00 10co p~ eneo en mvo p- oh (Jimoo -t p-

O O O+ + +TJ TJ TJ10 in enCM rH O-h p- entn i* toP- CM 10en vo enVO in rH10 if om in corH co 1000 o coH P- rH

O vo encn m iflO P- ocm m p-O m enrH CO Om vo voi io coco m iorH vo p»<T CM CM

O CM f

itNcn^rmp-cOrHr

O o o+ + +TJ TJ TJf p- enr-t P- ifen cm ifen o co■cf cm en^ 10 rHm if rH^f rH r-tCN VO CMm rH r-tio en «a*10 CN ̂if ^ eoen en voif rH oPinpen o p-•h en ocm en ooCN 10 P-p- cm enm h *f^" co en10 CO rH

H rH CM C

en hen ^rCO r-H

en o1 mrn rcn om p-co cnm iorn Ou-l CM

rH CN

CD ifm co"i rn <tn rH <cm tn iV0 O '[^ o <0 o '1 p- t

r- <f10 (-.o enCO CMr-H m

> o o+ +

) TJ TJ1 CN T

m rHco r-m i0co en

CN r

T ifr-- enCN CN

p- vo^" P- CM 10

1 CDcn mr- envo enCD 10

p- ifH 10

i O VOi rn eni en coi en m» en vo) CM 10I CM p-

) P- O■ o en) r- o

o o o+ + +TJ TJ TJif CM VOen en voen m en•H en oCO CN if

i CO rH

rn m oen en inO 10 -Hen ^r rnoo vO Ooo to en«h m mvO if enen en mif oo oovo if mm vo covo en mm t -

ooooooooo

TJ TJ TJp- en oen CO enP- 10 om cn om o r-if o cor» r- *ren nT enr-t CO Oen m voro eo cmrf en enO CN CM10 O rHP-lOPo o mco P- en

TJ TJ TJrn en orH co oen cm om <. _OPTO en mrH m CMco m enm m rnoo o com if cnen if enco cm mp- en mO en mcm ri rr

TJ TJ TJvo P- C0m en -h10 CN P-(N en to

en - co

.. j enrH io enrH O rH

O T rHm en nT

in cm tn irH m o iP- rH O <co m p. . _rHVOinOrHCnOrHifen i o i

i io m p-, m n* m, en co en- -h o en

cm en enCM O rH

O O 1en cn cnvo en mm <* men en enp- CM OC0 rH O

VO 00 p-o co coCOOPrH VO OrH 10 P-v0 o men m en

lencnrOififirininvOP-P-coenrHrHr

Page 18: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT

o o o o o cI I

TJ TJ TJ TJ TJCN 10 O P CM10 H CO m encm oo to cm mvo 10 oo en 1CM 10 P- CM ifCO P- O O 10cn en o i-t enr-t 10 p- eo peo en en rH enO en en en mif o vo co rHm m o vo cmCM rH CN O 10o eo en p- pr-t m Tf CM CMif vo p- <h covo m i io inen en cm rn ioINOCMOIp. 00 rp vo mCM rH if cn mrH if VO rH O

CO 10 if VO ifO O CM P- O

TJ TJ TJro en Pr-t en coco m inco en mp- rH enif m mvo O cooo en -n

O mr\l c enen m if(N 1 <Nen en ifen o envo vo coo m cnm m fCM rH 10

rH T COif if 10vo m p

TJ TJ TJrn m en0 p- envo r- mrH m en01 HPco co n*m p- mp- cm oen vo ocm en en

TJ TJ TJVO 10 oen m p-m r

en o cnm in cmrH P CM»OP 1m ro vom rn O

iN l CD

m p- op- o inen co oen p- iom if rHvo cn rnp- m cmTOPrH p- enp p p-rf 10 C0en co o10 CM CM

en <co co cocm in pco cm enCMPON- O O00 r

CO CO TVO iD eNCN 10 r-t

I I ITJ TJ TJCN P- PO O ifif O PCM rH CO

H COCMen T pco o coif CO 10cm en orH P- rH

i en r-en T coen vO 10in cm io10 P- rHrH in en

j en -h en) vo o coi m co oi in en ioj o cm en

rH in enco o eno en oo

|rHrHifrHCn!0COP-<ïrHifVOifrHCNr

I ITJ TJ TJm if voin p- vom o enT T pen h encm vo coco vo mio io coo vo oO en rnf rH Ovo in pT en enen vo -hco io enT cn oco O Xcn en ocn cn pp- C0 ifVO O enco co enif en coco o co

en

en r*p- Pm p.en prH inm mp- voT T

> o o o oI I I I

J TJ TJ TJ TJj en m en voi r> cm cn eni r-t r-t en enJ CM to CM toJ CO H VO CMi vo h co enp co h t mï cn io if mj co co en tJ O rocOif1 V0 en en p1 rn o T Pi en m co cmIHPPtO

en m eo encm p- en mm o if mcm io cm enP ro 01 pco en en ifrn rH en enCO P- IO rH

cm en vo voO P- CM rH

o o oi i i

TJ T) TJen rn en10 tN OT in Teo en com m rnen o oif rH enen vo mm o po p- men m cmf if CMTrotT m cocn o cmrn co inO m coco in Tio p- enrn if p

rH CN VOco in r

nt if mo o oI I I

TJ TJ TJ<-t en m10 CO rH

P C0PO N" CMco o mp eo pO en vorn o inp CM CMo p rnrH CN if

if m (NrH if CDm en cnCN 10 com m envo m om f enen m mm vo coP rH rH

i f m mj en rH if

■0 coo oI f

T) TJcm mO 10en hen cn

f mif coo enif -1-H 10

if co™~i p■c- Ten men tp oP CNm p-

J if vo co o

I I

m pO VOO VOvO Oen oom voCM 10co oen cmeo enO CM

rH P

eo mTJ- IQm ioen o-n mo co

J TJ TJ TJ TJH 10 P C0 10"i en vo co Oh CO rH rn voH Cn IN rH rH

o en o o cn0 cm O en m*■ en in en t0 C0 O OO Pj CM cm cn Po m rH en vof vo if p if0 C0 if rH Pf in en m co- eo co m mo vo f m cmf P P CM Oo in t io eni en en eo oo0 00 VO CM P- m p cm coM P 10 H rH"1 -H P 10 CN

"i O if P m- cn o en -n

en io o mcm cm cn entill

TJ TJ TJ TJrH CN if CMtn m rH Pm cn en cnen co -h oo-H co eo enm in co ifrH rH CM PCO P 10 r-tro O if r-ten vo cm eo

ro en cm rnp m m mCD r-t <f rnen en en coio en -h mo oo vo Pco co eo cmp o en mO P O rnvd vo m voO cn m vop m m invO en io m

HrHPcnrHrniOrHrHrHenin-Hifcocninr m r m T

CM rH rH o OO O O O OI I I + +

TJ TJ TJ TJ TJP cn en -H rHrH m 10 10 Ocn vo en en enO NT rH o oen vo cm vo rpen T co co enen o co en tco en p co orH CN 10 rH encm m co o cmen vo m m enen cn o <h eno cd co -n enif m o h enO en oo en mrH o en en encn vo (N p cn(N o o co pen en en m cocn cm p en oif if en e mp n* m j voo -n m <f tnif en v' o vo

o o o oo o o o+ + + +TJ TJ TJ TJn rf P eoro if en 00vo cn en voT rH if Om t cn tCM if if CDm en m com m vo ifin rH en oo cm co CMo en m enen p p coO p o roO en eo on io rn inm if -h enVO 10 CM ifp m vo pC0 rH P rHen if en pm en vo enin p- io pO co O iof cm m if

T3 «ÔCO *|un '0en OP Hcn min cm im cm «CD rH i

f vo <CD (N lm en r

eo m cen en tif n •

O r-H

O O+ +

m -hm tCN i0en unen en

o o o o+ + + +TJ TJ TJ TJp en rH voP p CN Tf

■H 10 P Of if m en

t Ifl ■ I CN

10 10O ifen mp un

f 10vo inm ,-n

eo O en vom eo rn vooo m o pm co m iom p t eoCM CN p com rH o 10p en en tif if vo enif m m pen m if orH en o intn en o cmm if o vocn m en mtN Tf 10 10co -h p pm 10 co r-t

o o o+ + +TJ TJ TJeo if men rn voCD if pH 10 op if mm vo vo

Cn rH pC0 rH p

o o enrn cn coco p pp O enco m cmP rH r-trH CD rH

in if oT en ocn if enm en f

TcN nrHrHCMcnrrinioooenrHr

TJ TJ *m vo cco co ip if eO O cm en rco i

— CM PC CN CM

— CD VOO 00 Pr-l O P

OJ 10 Tn en co

en pm enen oP rHCO 00m mp CMif CD

in men coen '0eo Tco Tif ^

O oo oO Pf pp mo m-H T

en pen cm en m

VO vO

T cm r

un i0P CNCD CMP P

10 ifT cm en en vo if en

) cm rj t io. IN if- en en

O O OO O o+ + +TJ TJ TJ•H io enif O cnif o cmen eo mm o if10T<NOOHm o voco vo orn if CTip rn enm co hvd eo enO rn TvO r-t rnO C0 rHVO CM C0en p ioen cn OO vO Pm o vorH en en

i en

O O OO o o+ + +TJ TJ TJO if Pr-t rH COiD m pen en pP tN PVO T Oeo en pin P rHp o eom en cnO r-t 10

en m of rn orH 10 CMcm vo m«H rH -H

vo vo eno m ,hen en -Hen h ifm vo p ieo oo en im en m •co T p <

CO rH <~t rH rH r-t

O o+ +TJ TJO Pen pen mm cnCN r-H

p co-0 Oen mO CNco mO mO enO tNCD -hCD P»en coP r-H

T <~DP ifr-H 10

i m

o o o o+ + + +TJ TJ TJ TJf vo en ooen en p mrH P 10 Ocn if in pm cm rH roen o co voCN O rH 00CD O V0 Oin p rn voen cn if oCM if O ifp rH rn m

o -n o eno en m op p oo iovo en co voen p en vovO P if ifm in en enm en rn coen cm cn vont oo en enen n -t mCM if VD CO

r-t rH r-t r-t

O O O O+ + + +TJ TJ TJ TJin cm m cmen co rn enen t t enCM P CM To in if prH if en ifCM rH if OO tn vo ifvo en m rHen in t envo co in mP r- co cmcn vo en pO cm rn iop co T cop cn t en00 VO CN V0p- p. in enO rn rH O-H rH 10 CM

m vo m vocm o en vooo m T coo m vo en

o o o+ + +TJ TJ TJT CM PrH O C0co m enO CM -Hen vo entn rH CMP CM TO O rHV0 00 enO vO PO vO C0en co ooo co mrn en CNO CO Tif CO rHTeo CMP p mrH rH inco m po t enif tn op m m

i if CO r i cn tn T m vo p rn-H' j cm cm cm m en if

inTiniopcomOr imfiniopcoeno HCNrn'ifinvoPcocnOrH OrHCNcnifiniopcornO'■HrHiHrHrHrHrHrHrHrHCN'

m mT VOif pO rH10 00m mp mCD ifT men en10 CN

in mcm enen enen pif oT coo eno coo P

J TJ TJ TJH T CM P"i if (N eni T if cmH P T CN

P rH CD

O if CDP O V0vo en m-n o enen m pen o •CD • enen vo i.en vo men O vOcm co 10p in pm co vom r enif en vom m envo m Teo o -hen oo cm

I TJ TJ 'i vo if ii oo en t

cn enco com mm rHm pvo cncn enco Tcn pco p

en. rn^H min enm cor-t f10 CN

en cmcn un*ï enco unCD rH

m cn

m pen enid mCN if

p pm pen vovo o

T vo co CMO O O rHI I 1 I

TJ TJ TJ TJp o en enm m m rHvo m t enO (N CO Pen p if enO co en cmcm io in mCM PO rH rHcn in cm (Nen o <n inh vo rn en

vo CN iCN CD rvo in <

i P P■ o enl en o

m inm voCO COun cn

T en en vo io CN CO CM rn rH CM r

o p «n inp m o von co m oom cn t enen o co prH m co pen en vo cnm o en inifi^1 OroO O -H en

J rH P

— rH VO

o o OI I I

TJ TJ TJen P oTiÛIOp m iop m enen co inrH rn oo T ino m men f oOCOPen m pvo cn pp if vocn m ten vo mO vO COCO O P00 P TrH 00 00VO CO 00in CO rH10 P rHcn cm enT m tn

ITJ TJi0 OO rnen peo enp CMrH O

co ent ioen eo

CN i 10 .

p envo T10 oh entn p.f pm iocn .33tn ifr-t 10

en io

o en vo unin rH m encm en en enen in p coco co r-t in■H rH VO CNen in P Ovo T en mp rH m enVO P -H CD(N ** en enif m oo prH rn en mp en T pen ih en cnP rH rH CNrn if m oen m p tp T en covo if en oen p en cmif cm en (N

TJ TJ TJ 'P if if i•H VD P lO CM 10 i

V0 P O 'O VO m rco en P irH CN VO iVD V0 O '10 I en i

vo en en iCM <* r-t (

vo in p ien p O iO CN CM r10 00 if ■cm en O (m co T irH m en [m •* cm <tn m co <

t vo rH en T m r en r

TJ TJCD en^ O

P 00p mp vop o

vO envO C0vo m

en

TJ TJ TJm vo enif O PP vO enO T Pm en pvo m cnin p tnP m rHen tn coen rH voCN rH Op o enO vO envo rH enm en p10 -H 10

j m c 10O CM Cp m m en mcn m rp vo iO T eCO CN Ven tn c00 00 r

rn en cn if p

> m rn co■ tn en enJ vo en Oi oo in tn

TJ TJm ifio p

TJ TJeo mo co

T O Ico en ico T 'o T i

—* m p in eCN I

^ \D enO P CDU TO<d co mn m in

O oo o+ -fTJ TJen coCD 0110 Oen ifm r-H

en pen mP CNen ioP CDen .-ip o

U") r-t

m voT V0co en T envo vorn un

h en

en <T r-t r

if rH tT en iCO co <

) CO cen c

) co mj en en

rH r-t V0 T Oí 10

O O -H rHO O O O+ + + +TJ TJ TJ TJen O VO lOen T O cmen cn en cnun m p vooo o co vo■h m o enO CN O CMCM 00 CO rHvo en en mvo un cn r-tco cn en invo co en TT «H P CMin co m mco t p enen vo cm ocm co o enm ^* p pCM if rH Ocm en p rnp T en (nvo 10 co enC0 10 CM TfCO CM CM IO

CM -H -H O OO O O O o1 I I + +

TJ TJ TJ TJ TJO VO rH CM pCO en T O 00r-t m p en encm -n m en tm rH p en enio eo p m cncm en m o cmr-t r-t if 00 VOO en vo oo m10 CM rH P Orn en p p en■n en o o enm o t vo coT en rH p ten rH rH P CMio p T cm enco en en in coCD - 10 .

en f -HiNrnifvoen.Hr

un if un o voen T cm un rHvo rn vo r-t roO O VO P CNen T un o enen n vo T cn

in en p rH cm

o o o o oo o o o o+ + + + +TJ TJ TJ TJ TJ00 tn P in TrH en m p coO en m m voun o T T cnin rH rH p (N

-n rn en en ent en t cm corH vo p en eno en eo r-t unen o m rH enrH o en m envo vo un p vof O CO rH voeo -n o un mcm o co m pm cm en in covO vo en P coO CM O rH ifrn rH o rH mp vo m tn encm en en en pen m en co rHco en CN *tf CMcm if co if rn

O O O O O+ + + -f +TJ TJ TJ TJ TJen co o p mO T cn f 10m vo m T encm en m vo eoT p p co tnp en en en ocm o cn m enm 10 CM T r-tcm O m en pif T m m oif >H vo co in(N P en T Mo co vo co mitf P CN T Po cn en m voen m cm rn enco o cn vo enT vo t en pif cn cm un pen o vo r-t mrH in co co enen <N cm o coif o o p mrH «f p O m

lifinPen-HrHrHCNtN

r-t cn en f un (Neniftniopcorno -HCNfOifunvopcocnOrHCNenTin

Page 19: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT

> O O O O !lili

J TJ TJ TJ TJ r

■> -H T r-t CT<

> CN O CO COj m in if ioj cn o un ior m en co t: cn o vo eni en o un or p t en co1 vO O P 001 T rH vO CO3 P O CO P-I 10 en T P- T r-t rH cn1 vO f 10 ifj tn en o rn* rn o cn mí en en O unj T T CO -Hn o co vo o- P rn vo ín> cn io vO T

J TJ TJ TJ TJ0 en O VO CMf en p un en

HPOlOOOrHPP ifCNlO

) TJ TJ ii en vo e-) CO if r

O O em m eo run m vO c

HCOHCco un cn rO P CO Ccn m co oT en O CrH if 10 CCO rn P ien en -h cCO 10 10 rco co T um r-t un erH CN O i

if en en rrn co en uín ^ m cm cm -H eO T T i

P Oun iorH CO

en o

. p- voi cn unI Un rH

i o en■ rn uni co un

O m

p p-CN CN

rn mP H

en O co cop p en coro 10 T COrH P rH CO

eo p un pp vo -h en•h en rn mm rH en Tp un

co p ien o ip CN ien cm iun p tco co <

-, . h coO o un unvo p co envo en en o

J T vo t vog CM H CM CNi co T vO T) O en un pg if O -h CNh un tf io O-* o h en h

m cm m hvo rn co Tif en un vocm en cm pco en vo corH CM T OO Un rH p

vo h T unrH cm T To en m pvd un m cnCM if H Hen un un ifcm vo vo ocm m p hT un co cmCN CD VO CN

P P O CMf Un P rHcm vo cm enen co r-H cmvo p rH unf en cn r>

! TJ TJ TJl O V0 Oi -h rf T

T -HL,n e-v

CO -g-en co

p mH ifm o10 eno Tpj mO CO

eo vO uncm en enrH 00 CM

) to m p1 CM i g un

cn en voun m p-H m rH

en vo Tvo p voCD P CM

CN L

T rNX- Oen en

t en(NOT

H 10 Pcm rH mco m Tp m eno io P

TJ TJ TJm p vocm cm men CM CMp co 10if cm men O coO cn cnio O enT cm corH O C010 VD 1000 T 10CM CO rien -h pen en pO O O

rH co oOPTVD P CMun m tnm co cnco P pm •

TJ TJ TJen eo vovo -cr en

en o eNp en rHm -h enT P Pcm un ÍNO VO CNcn o enco t op T Hp CM oen -n eoen io ino T P10 CN Op un coun T TrH CN Tco T unp cm unen m enid co cm

TJ TJ TJen en pC0 T OP O vOun p cmm co coT co enun -h enm o mCM co CMen vo uncm un un-h cn enun p encn T encm m voco p voO p vo-h co TCM T PT CD CDO CD Oco en pif en cn00 en cn

IHHHlÛfO' in - HeNrornTrofNrHunrHin.Hr i P CM if if CN m r

O O O O O

TJ TJ TJun un mun en op o cmun o coCD T PrH VD C0un vo cmCO l 10

C0 vOp T eno T men -H CMen p rovo en pO P oro T vOO VO Ocm en coT p PP T 00O fO vOCO P OCN P co

TJ "JCM VOP OT men mf op pO TCT- OT Trn eneo cnT mT voCN P

O (NCD 10

en oen encn en

p un

O O O OO O o o+ + + +TJ TJ TJ TJrH CM O Oun cm en uno H co Tr-t if CO COO ri C0 rHO O un CNen rH m ioT en vo unT t en unvo T m HCM O CD eno m m enO rH CN ioP O VO rHm oo o -hun en vo oen co o pun vo en coco CM -H 10en t cm coun co p vo10 T P TT T rH lum co T O

Ci oo o+ +TJ TJCO ̂m enCO rNen rHp. f"

r- un

if (0co TP CNen h

CM iHP CDun T—| CN

0 iû01 mO Pen cnun cnCD CDp un

o o oo o o+ + +TJ T) TJm CN rHT en PCD en TCO eo r-tcn en cmun m eor-t T PT rH Tun H -HO H Ovo m rnp co oT rH 10P eo P10 O Tvo en enV0 CM rHp m cmCO r-t CMen en vocm en pun vo enun o enT t T

o en co ivo eo in to T un t

cm vo cm run un m cco co T iCn rH P rrH O (N tr-t CD O fP P C0 tCO VD r-t tP T ro tO T CN tif en en to -h m <vo p p t

vo m un -tn un o ■un p h (

) o O■ + +J TJ TJi io pi o cm) en voJ T Pi m cof VD 00

P 10T T10 OCM Tco unco en

o o o+ + +TJ TJ TJ00 rn 00en O pen en cmvo un pp vo tco en rot en cmUn CM rHOOPT vO en

rH 10 iOrH CM rH

o o+ +TJ TJ

un r m tm un cm iT en .H ten eo t ten vo co *rH eo p lcm o en <p en o '

o o o o+ + + +TJ TJ TJ TJen rn p eoo r-t vo enun cm p voT CM O C0en co cn voco en h voP P p covo co un cmm en T rnun co vo po vo o Tro un r-t ocm eo co enun o o unh en vo vop rH co unio en un pP ro T PCO o co COen un co ioun en en enun rH vo unvO cm en enp o cm un

o o o o+ + + +TJ TJ TJ TJ10 en T O10 CM rH CMm m rn ofO rH un .HP 00 O enp p en unun en un oT rn P vOO vO n enCD T T Tcm T vO PH en O PO CO co oun T C0 vOC0 en vO CMen en T PC0 T O enP P rH TP vO O TT vO O rHro co vO mO P T mCN P P CMen r 10 r

o o+ +TJ TJO uncn oO PO vocn enen pco mce ■•-.H TrH m

un id10 CDen rren cnC0 rHm enco -Hio enO ifco mco oun cmun m10 m

HmunenrHrHCNforoTi vo p co en h rH r iroenroroTTuniniO

•h cMroiftnvOPCOenOr

TJ TJm rovo TT eo

vO VO 'eo en (CM CO •P ro iH O lCN CM l

eo ^f ■O P tT P <CM 00 lC0 T 'en P ten en <rn p t

i o o ti i

I TJ TJ 'i m cn i- CD O

) CO Pl P CM■ en eni vo T■ rf 10i io ent t eni o TI 00 CM) T V0■ P C0

) CO CMi co ini m eni co <H) o enI o co> un en) T en) co 00t if pj p en

co rn mco co 10rH CM O

O VD VOCO VO ri

vu T TP CD COT CD unO CO Tun en oeo un oH 00 TC0 VO Ten h m10 <N riif fN <Nif if unO CN CMrH m VDun t eno en cm

i m rT 00P ifP ifT CMen pT TO Hin enen roCO CDCN CN

O Tfa en

O 10co mm ioco p-m men min tO -Hm m

T T un 10o o o oI I 1 I

TJ TJ TJ TJun r-t CN mrH m un cnvd vo co CNen p oo cnen Tf co enun o p cmun co -h ifP O P rHp en un mun en >h olO 00 rH CMm co oo prH m <n ent vo co orH rH VD T

m un

TJ TJ TJ TJ rCM CM T r-t ren co en t tun if un co c•H cm vo o eCN VO CM Pm to en eoen un un rnro p T o

en o co meo o un ifen r-t un tj>VO ri ri rHcm t en ovo rH en enun en en co

TJ TJce eocd mCD 10

co enen cop ifen o

1 CN r

co o cm enP fM O T^ en un io

vu co en iûV0 r-H fN en

en co10 if10 O

co eom ifif mun cnO pf enp un

p co rp co rco o rp m roo CMcn mm oen om Kfen enp p■er iori OP OrH un

- en t■ vo uni vo en

CN 10¡D O-H T

O un

en cnp iom covo men oo

ronppun coo oO unun en

CD ChCM ifun tVf cmp rrO COen cn10 oP en

in mP CN

O en

TJ TJco mO CNen eno enen ifp eno om hco enen cn10 p

m -HT ifeo eocn cncd enP rH

un tO 10

I ITJ TJ TJ TJeo en O cmen œ un tvo cm p en

CN rH O 00CN C0 C0 Oen m un rHvo co P TT co co vovO (N un pcm co O oop vo en Tun co cm mO CM T enCM CO T C0CD O P CDrH H CO CDrH m co unUn rH CD p

vo en p oVO P ri covo f en co

I VO rH CM rH

P- rH rH rH rH in T e ( lAHin rjl HHlOf

CM rH ri ri

O O O OI I I I

TJ TJ TJ TJ

en enen enp COp unco unvo P un enCN CM rH pvo un o Pcn ri o unvo oo co p

o oo o+ +TJ TJT enO eorH en

o ifCN C0

T OP CM VD 10 rH ri 10P CM "

CD r

TJ TJen eoCD P

io men rfun m

TJ TJ TJen co pen eo Poo CM prH Tf OT un vD

O O OO O O+ + +TJ TJ TJif io envo eo enro CO (M

en o p

O o o+ + +TJ TJ TJ 'rn un T Iun en en i

O 00 T IO un co i

OOOOOOOOO

j un

un rT PrH OO fMen pO rH

T TVD roO Tvo Ooo un

if pT Oif ioO ri

en en10 CM10 10

T eneo O10 CD

10 CD

10 ifen co.H 10

H Oun cnm mO CDm unco mm mro i0CN rH

p unun oco coO un

O -tP OO 10en pCN 10

O 10en enm cm

CD pO unun iom mvo en

1 CD i

CD 10 VD •10 eO CD tP CM rH run cm cun p inp un coun t coV0 rH Tp rH unp rn enio T cn

T m TV0 T rHm un unO vD CNen en P

p co - 10

T un OO en rH

H O fMH en f

co vo CNT vo envo cm oO CO coo co mP fO rncn cn copmf

un p t -. .oo o vo p co unun p o cm cn en _.TomeorHcnuninrHO CO TCO rH o

1 m r

en o ip en io T <p T (co p *if p .en un <co co 'CM T Ien o im o ien cm i

C0 r

r m

rH co uno cm unif un p

T CM■h en voen t poo m en io un o io <-i en ■

en co rvO un ivo O ¡

TJ TJ TJCO o cocn m Ten en r-ip un cmvo m pp un po t eno un unP co ovo m voen o unP CO rivO P fMvD en TT P TrH en enp if unif cn unO m cmen cm cnco m TO —t r-tP O uno m un

TJ TJ TJen un op CM 10en o enp rn rnh t enen T rncm vo 10co en rnio en cm

o -H pro o en(M t mrH rH ifrH CM O

OTTcn T ooen un t

O O O O+ + + +TJ TJ TJ TJco r-t en enm p m pH f H 10un p m eop o en coP T T COO rH P COrH P T Po t en cop p eo eoun vo cm oo p o coco un en voT cn en rio en m prH CN rH ooen cn t unun oo p ooen o T Tco p h enun p p cori fM o eoCM T T Peo cm P co

l n m vo h r-t cn f I VO P CD ri r-t r rCNCNCNCOmcOTTin

HCMcoifuniopcocnO'-

Page 20: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT

«h ih fM en uno o o o oi i i i i

TJ TJ TJ TJ TJvo o en p ínp vo cn p cnvo p t en ocn en o en t00 P- rf eo cnT P P un TvO r-t o P Tcn if oo r-t ocm if ro cm vOro vo m vo vO■h en r-t p mp co cm un uno vo vo un oen cn cm o vovo p vo p voT T 00 VO rHVO ro P CM (NT <n un p uneo oo cn rn oco o co un >HO co rH T enoo if en un vOen o un t rnCN O m CN rH

cn eo vO eo cn

I I l iTJTJTJTJTJTJTJTJTJTJCDcnroOro^'ineNOOOrH cnT VDiHCOrHPTrHCMOcncNrHunvOOvOOVOcNtnTrovOCOPPuOvocnTOrHmcNcNOvoPCOOenTeoOTCNunTrHiOiOunvDPunTcNpuncncocnvOPvocnenCOfOTCOOPCOrHrHVOoeocnpcMoencnrHOooeneopp-TrHvoeNvomcnppcncoocoovOincNvOinmPTvococouncMooouncoooencorH^unoofOPpcnvocnoOvOuneouncMcnpcnTrHOomcoiHOPPUnunPrH^'OTrHPlOco voeno meoinprHCNrHrHunpuncNvOpencNco Oí cot cn rooioTinvOcMunfMPOrHrHvOroeneounrHfocncovOrHinpppunpentompcN

fHCMrHuncOVOCMCOrHcn

rHrHHrHCNfOfOTVOPmrHfOVOOOOOOOOOOOOOrHrHrHCNi i i i i i i i i i i i i i i

TJTJTJTJTJTJTJTJTJTJTJTJTJTJTJunTmTcnOCOPpencMrHiOrHfOvotNpocooooPovorncncnvovDpunpoocMOTcncovopTTcomTPpcouncOrHCNcnun^'rHiDPooT enunTcN rOrHPpiHvo OTeounrHlOrHCO^CNOCNVDrHtOOCOCnvOToororHOPcnuniDOPOunoorHVOrHUnvOVOfOrHTOCMVOCMOOoovDcocncn'HOTcounounocNpfOrHinCMOOOrOunvOfMCMTfOOOOTCNmuniOOT-HCOTCOcncMOTcnvouncMoooooounvOrHrHunromrHOrHvococouncncNTcocMOvoununvOfMvDTcounOPVDpcMCNfMPOOimOOVOCOTCNTCNvOenvOCMOfOOCOTCNincOunTcoOcNOvocoenrHCMfOPvOcMCMeMmencopPcniorjoenovDcNencocoooPcMcoTpcntoTvoeococnrHocnTcocopTrHpvCOtnooiOPrHVOPPVOCNTCOTTOrHPCNCNOOOTrHPrHUOCMrHifunfOrHenCMifCNrOVOlDCNCOcoenppunoocnunmoenopOrHcMiHenOvornrHOOrHenPcoTun

r-t IN , iHfOPrHrHVOCNCOrOrHrHrH

rH O O O -Ho o O O oI + + + +

TJ TJ TJ TJ TJen cm en ro unT O CO P OT «H 10 ro Oco vo un eo ooco cn t cn iñO VO CO 00 rHen co o o rn10 P CN rH 1010 VO T rH Oo vo p m oT P T rH CNCN O rH O CNun p vo m cmT r-t T O CMP O V0 O COT cn m if pO P O fM rio co un un corH CN T P Tp m o un unp r-t p en ChT T ro en roO CM rH 00 Po m P rH CM

fO M tO P rH

•HrHOOOOrHrHrH^i

OOOOOOOOOOII++++++++

TJ TJTJTJTJTJTJTJTJTJcocoTTTvompcocnrHOfOCOOOCOOCOCOTUOrHifrHUnOrHUnCOcocncNunoomTTununCOiHCNrOtncooOOOcocnPTTCOOOrHCOPTOCOeocNOOTPcninOmPrHvopuncovocnrHvDTvOinfNenvOrHPencofoovocococnTrHcopcNOTinininTunmcooTocoenvovoenC0 rHCOfOOuncMrHrHCNcnpcncounococoooTun CNfnOrHVOVDCOOOOencNPoopenuneoenovocnrHunouncocncncnPuncoOeoifinovoTuncoOiDrHTTPPPCOOCNrHOTOOrHpeOen TcouncMroTcnunfncn cncnvDOrOrH^'VOOOnivoenoocoocncoocnuncocoTiOTrHvocNcn

iHPiHCnuncOrHrHfMCM

HHOOOOOHHHHHHHHoooooooooooooooI I + + + + + + + + ++ + + +

TJTJTJTJTJTJTJTJTJTJTJ TJTJTJTJTV0l0rHmrHV010iHPununcNTrHouniorHencncnrHfMCOfnTToouneompíMunvopooTunocNcopooTenocNOrHineoocNiHfM^'vOcncocnfounvopcMOrHTfNPooPcneococncovoTOvOiTTvooíncnpToounco^-coTcopfNcnunpcnoni/iinnflincifl-nnniMHiiirri

w n v ii n; *> w i./-n •—• r—, v *•* * - —•

ovopcompcovopTuoTinvopTCDununcnpcovoencncocnvDvoenCMPCOPPOOrHrHfMrHOOOCMOCOTrHfnrHVOeOlOPCnrHPrHfMPOPTOOOOOTPTcnOCMiDPOOCMTfoovoroppcovopcnoTcnincntovocomcorHcocoenuniocNPOTPOrHPTCNPrHcncMrHcnincnTTOcopcomrHCNVOrOTPPCnCOrHuni010COl0CnCOrHrOOrOVOrHin TPrHVOCnvOPCOrHfnCOVOOOOOrHOOpTmrjOCNrHrHPCOVOTinOOCMCMCOPTVOOrOVOOuniHOOCO

i un ih cm m un p I H H fM N ro rO T

rH cn CO T un tiNrOifuniOPooeno rHfMfOTunvOPOOenOrHCMcoTun

cNrHrHrHrHrHCNfMrMfMfoeo^uOuniopœrnOrHrMioiniocDenrHrouopOi^OOOOOOOOOOOOOOOOOOOrHrHrHiHiHrHrHrHCMfMfMCMfnfnmfOTTTunun

t I I I I I I 1 I I I I I I I 1 I I 1 I I I I I I 1 I I I I I I I I I I I I I ITJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTÎTJTJTJTJTJTJTJTJifcDi0unenTOcniocnrHcnt0fDtnoi0i0vococnTOrHr^TocNPrH'cj'PrHifpunopprHTiNP'ûpiûcj>Oco^œrNHOiTOp^iûninpnPOiHp(N^HTOiHiH^!\i'iHpcofMfMunOTOcDCMiocNpifHPPCDOunvûOvOeDrHunOPrHuncDCOOO^fOCOO'NVOCNPfOMMOfMfNTCOOitMtMrNPriOTiNO MO 00>tÛNiOinOCOiN^(OCJiiOrocDroCO^^iXfJiTœrHincDcnininiOrHCMPfnTOPcNcnTcNrHPcNrHŒœrHPfnTcDTffiHioioœTOinijiroiDHmHriiNOi'OTcsin^iOTOHininino^iOTPHHroœcocDinajPTinTencocMcnooorHrHfOunTinOrHcnrnvoiounfNunpunc^TOWHaiTHProHeoTTOiœnmiDwHajio^pnrococoTHOipinno^inpœioo^cNlû«3lOOp^lnHOHœo)^oOoJr^HNHlOnl^OlelcNCOHlnlN^lOlnln'Jr^lfl^f^NHHœolDlfr^fflootcorolDlDncOlßT<íOl0^^^p^H^HNOlrol^1al^co^oPOOiciOP^\D{jirii^œ^iOfOfM^^rj|ioNOcoiOioiONiniOHrofOHHiniOioopinoJ^NnoTHHo,fONroNOlOMln(JlVl^H^lnHlnTHlnOlln^^o^f,^aîPlnlOnNrONPiOOCOCi|in^iDincOiO(JitDTiniOTrilcriCOcnfJiHH'NTinT'OONroo>a)iDOpcDppunœcoPCNcnunenenTcncouneococNrHcnfnfOfnrHfnunfncNPc^pPOiûOr>lPP03HHNrgre)*OinNcûONOcoro«ajrjiiOfOOfoœr>ioiOcocNio(jiinTfcncDeoenvorHcnfOfnvofMfocNoeNpinœcNTeNiDincniNi^tOHPH^nOfOHOlDOMPlOHlDHPnOCJllOHflPniOCOfNpOliOOfSCOHHPflliDrnioornroin^o\OOCNpTTPcooi(NOioeiiijii^iritíoipiOHOiupinoOiO(JiHríOeneneoeDOTCNprnpeoTiDeMOTiDTfOCDun^ifunoOfMTTCDencnfncMcnv^OeDcMOcDunijrHtnvoœcorDfMfnrHOcDuncno-HvOiNunirrDrHcnuneoc^ONcfln^e^|l^^ro^OlTOHln^Ol^o^cOHHO^rn^^HHln^^corNcoOHlO(rJ(Of,JPnfN^lnalHlDNo^rpfNlnTT^'OTOl(Nr^to^o^o[^lnolelTH'TH^ocofJl^HlnTToiNa3PHHc^ioininpinncOHino>œiOTeMncîioiniJinppTroiOiOHTOHHfNPfNrH^unifrHununfnoOfocDfMfnfOfncMiDenrrproœfncMrHCDco

unrHHrHrHrHPTCNrHTrHfnenrHCnTVDVOunT' lUnrHUnrHrHCNeMrHPCMifUnCOrHCnrHeM

ÍNHHHHOOOOOOOOOOOOHHHHHHHriHHHHHHHHHHHrirlHH

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOI I I I 1+ + + + + + + + + + + + + + + + + + + + + + +++ + + + + ++ +

TJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJTJOrnœunrHOPUncnOrHrHiOPcDTOfOTvOfOrHOOrOfncDTcMPVDrHCMOPCOiHPiirHioo^ioœpppo^ciiioPHN(jifSTc«i^OHPNf\ioH(jiNT^NiOTOiinHrHijnvocMrHfMfM^TfNPcocMcncOfOununmeno^fMuncMunencDcnrjOrHu^OHTeNiíincJlinTTTMiONfO^T^OTTHNHNiOHiUOíCOHPiOrOOlNHOiTiCluncDenPvocDPvDTununofncnocnPfnfoiDcniPeDTrocnpocoiDunfncnT(ífOromcO'ONP^PijiifrjiíoiO^iOCíOiinioOuiiOiOaDrnrvipfOroOHinTCTiiOiuHrNcMc^iovocnœrHrH^uoprnocMœTttœiOrHinrH^ocncDrMTcovoeDvoœrnHiOlOTTOOOOJNrnoliOPTinmCOTPflOICOTNOOiiOiOHiDHTiOTTPOfiTOiTPinHiOC"T*inuinOHOipTTMHOnorviPNHiNPWHNca'iinfjiotûiOln^rí^^^fOTrOH^roŒcOl0^lnrJl0^r^l*(Jl^oo3lnmooln(J1^noNlO^TlnlnoTorncMfnrHœcncDiofncDrHr^cDrnuntocDiOrHfOrHounfofnrHfo^TPrHrHrHrH^OiOOTTTrHeOTrHfMfMunrHTTOPunenen^rHrHcnTOOrOTrfDCOfMunTv0rHenv0untncni0cNunfnofnvDOíTinTrHCMppcnounTfNvov0PTOPrHÑ*uncDu^^fJlcoo^^NcoHifCNlnOHOílnTcocNMOlOlOocol£HHO^roŒ(oolnroHPTfJ«^|lDŒuncnTunenvOOOeMunrncMcnuncnTC^uOrHunPunfnenTeDininoi^(OrtTnT^HHOPinmppininncop^iocoinHHHPPfí'ííi>o)^ininprHenOOCDVOvDrOvOfNfMCnrnroiorvitj^^eMPeDr-H^ineou^«INTrnri|H010COTTiDTH^^C^03HPT^TC"OTiOTinONOTiniOCOTiO(OfJlr^fNTOTCDOrHunvOTrH^PrHPiOrnTvOTOunvOrnOT^TvDPPTvDtNTfnenencOfNOuncDrHrHeotorounooiOfO^pvopcNunTfMinro^rH^rHfnr^rHrjoajOi0cjii0ror^ooini0PvocMv0rj^rr)cnocnrHO<NfMf^^fflcof>JtDH^lDHHlnTOTo.T^OlO^PH(s^lnlOcOH^PHHO^coo^^fJlHfJlcofJlOOHnrOPOOPOOlinojpnPtOPOiOajfOcíiOTrO^iAfurOfíOiOCOrOHgHPCOrHrHPOOrHV0Ml0fOCnPunTTTunOtNtOifl0p-fnrHfOunPencNifPOCOPiHunOunfN

I UO CO rH r jroroifuniopcofnrHrHr t rH fM CM C .eoromTTTuOunvOvDP

Page 21: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT S7

CN H

O OI I

TJ TJcm mT Oo enp coO TCN Oen hfO P

en unt oo oo p10 CMo enO rH

ro feo fMCD CD

o o oI I I

TJ TJ TJP rH PT O CMfO O CNun cn ooT co voT en eno un rHT co eop p uneo vO oot t cnco m cníOMf)rH P rH

f 10 COHioroP -H CNT CO Ten tn T

cm cnp roen mCN CN

t un c. .cn oo oco CN poo un cnun t o

fM CM COo o oI I I

TJ TJ TJT CM P

T rH 10impvo vo ofO P VOrji eo Oo en roHPTCM VO rHVO T CMen vo coen eo mto to unp co voco un ocm un en10 00 rH00 O fNP T VOO fO PrH T VOoo en roVO T C0

co T To o oi i :

TJ TJ TJvo m enCO T rHCN ro cnvo en com cm envo un cmeo eo PCN if cmeo en Pun un cnT co mT rH oooo p enP 00 riO vo unvo ro mVO CM Tp en cnun co iHen vo enm tn tvO P Pun p ooUn O rH

un vo po o oi i i

TJ TJ TJun p unP rH Ocm p unun T coun tN en■h un unun T p

p en mto en vop o unif m pfN <N PUn rH oun eo voHrtHro cn enCM 00 COÍN CO Tm vo vo00 P rHrH T rH

O 00 COen T vo

coffin Ntoin p cjiH roiocoOOHHiI < t 1

TJ TJ TJoo en un

i enfN p eno en uno co un(N t coCN 00 PO V0 Po un unrH 00 VOo un coio oo oCM p orH ri Too en rHo co CN(N CM ri

T 10 VO■h p men t voen h oen co unfO rH tncm un o

TJ TJ TJ•n m coCO -H PO CO rHVO O T

co id enT Oi OO T rHrf ro 10ro T vOrH C0 fOen p tt t oUO rH coVO CO TrH T fOrH en un00 rH 10CO (M CMCO CM Th en ooo un pT un ooeo O T

t rH fM CMI I I IJ TJ TJ TJ1 CO fO o5 O eo pi vo un en"> P rH CMD un co cn■i ro ro hr rH T 10g vo vo tr un t co- ro T coi P VO 10r\ t T pD O VO CN0 un t m1 co en voi ri m unn en en ooh p co P

i iTJ TJVD CD

co enCO O10 Tf•h enro pen roen en10 fNm ior-t ri

o voo unT Hp <fT T

h en1 10 rH 10 O -H1 O P CM H VOi p co un o o■ 10 CN rH CN rH> un cm cn en enI H CM CN en rH

cm un en uneo co ro TI I I I

TJ TJ TJ TJfM O CO rHVO un CM 10CO CN P CMcn un co coCN 10 P CMoo t cn enO 10 o COcn un m rHCM rH O V0cn en VO CMVO 10 P CMIO CO O «Hp m fM vo00 ro cm oO P O COm eo cm mo «h rn mvo o en vocm vo -h mt o oo un«H CM 00 VOri cm un pun ro o oT P 00 T

liHHHHincSCONIOHHNNCMHœrOHrvIifin^rrllOHIJlCilHCO

TJ TJ 'vo un •un o <

O O tO P «vO P <VO O tP rH 1

P O <en en *co vo (

p un to co <un en (T co -O cn iT T 'O vO •

I TJ TJt CM COi vo uni p p1 10 VOi o en■ p en) o p■ CM coI ro COI m rHt m p• CM VO

) ro TI 10 rHi en unI 10 CM\ if PI rH 10

O en10 V000 C0

O o oo O O+ + +TJ TJ TJPCOTo un cn

O CO T

O O Oo o o+ + +TJ TJ TJCM CO eo

CN

CD r

00 CO 10VO o om o enCM P CNO ri oovo m tO O rHT en OPHlOm un orH p coT cm covo en tun oo pco cm enun oo voP T eoT P Pp p tn

10 rT CN OT 00 rirH 10 P

•h m CM00 P OT 00 VOeo T eneo e enUO rH Peo ro TVO T coO O O00 ri rH

H VO VOun h ioun o coo en voun t TCD 10 CDoo T unTOTm en vo

O O O+ + +TJ TJ TJCM VO 00rH VO CMP VO fNCM VO PVO P O00 C0 riun T OT P OCO 10 10ri P C0ro eo Oen o voCN CM ̂ *oo cn mo cn enVO O Tro rn enO VO PfO rH C0

o co enoo P CMPOTun p orH CO 10

o o o o <+ + + + 'TJ TJ TJ TJ 'o un o p «CN VO O VO <P T V0 un iV0 T O fO <m p un un fVO rH t cn <O ro ri ro <T t un tn tT P en un <en vo en un fen t co co irH P CM T Iio ro vo o iun p p cm íun eo CM O <o o en t ten rn o T -p m vo m ■vo m co m tvo un cn io iCM P O Un ren vo co t <un m co vo 'cohtp-

O O (+ + ■TJ TJ r

10 CN r

P O Lco un iri VO VVO CM Ceo T -cm 00 vO CN CP n run un cco t coo cm e■h o rCM rH eco en cto un rrH T C

T T CT O Cun en •en un co un iO ri iun en c

> TJ TJ) oo p> en. m> oo coi en ti t uni vo p> un eni en co) vD Tl rH O

I O P) oo un• p eni vo T> m ro• P CM

> P COt 00 O, oo T• VD O) CO ri1 T CO fi un co r> 00 CO c

o o+ +TJ TJVO O-H P-

O -HT O10 roO VO10 Pif unV0 roVO Oen enco pm mCD CDen eom ioun voT CNm enP rH

co o

rH ri rH (N

O O O O+ + + +TJ TJ TJ TJrH CO CM TCM un 00 P00 CO rH Om oo m unvo m o cmen vo o unfO CD un ooun io en r-tfM rH U") 10en vo o cm00 10 CM 10eo vO O eoco en un tun ^ ^ uncm T P coro cn T coCM 10 oo eoen m un pP rH T enp co m voo vo un mC0 P m rHT p un ^>ro rH -t o

unrMvDHrHCNfOTvOPcnrHrHrHrHeNcNCNrororoTTinunvOPœcjirH

rHfMfOTuniOPcofJiOrHrMro^uniOPrDcnOrHfNfO^uniOPcDcnorHrHrHrHrHrHrHrHrHrHrMCNCMCMCNfMCNCMCMCMCO

CM r -t rN

O O O O OI I I I I

TJ TJ TJ TJ TJrH P ri en C0rn eo m T O•h co oo O unen en un cn ^un p t r-t vop ^ ^ m tcn un p en unO un m en rn•h en vo T eop T eo cO unP T O vO unCN P m rH ifun p o vo pm o vo co voen P O vO Pp p co en coun o r-t un cnCO rH T 00 CNco en cn rn ppeoroNHO un (N P Tco ri *t un roun m en T fMro P co fO io

CN fO fO

O O OI I I

TJ TJ TJeo 00 vOCO rH 00T P OOHTO 00 O

^fuoiDoocnrHeoinpOTcoo o OI I I

TJ TJ TJ

10 r

i vO

fM rH Ovo VO VO00 00 PCO P 00T T P.H T COrH 00 T

co p enOOPcm m pP fO TO eo T

O eo 00ro 00 O

m eP P O 'fO r-t if cO un O '00 P CO fcn en o rUn VO rH (^ P fN t

T T CN 1ro P VO 'eo m en rr-t VO O len t cn fO vO p ir-t en m •rn rn un un rT en un vun rH T I00 00 O 'oo eo un ■un oo ro l

P vo m iif T o <

I IJ TJ TJi 10 O

ro Pr-t unen ovo m00 fOrH rH

O VO

I t ITJ TJ TJco vo unT p unm o unrH T CN

O CN Oeo un voun p tCO CM rHo p unp un ifen un cmP T T

I I ITJ TJ TJ■h rn en

en r 10

ro en teo VO fP T f

cm en TP rH O

j T en pJ (N H rHi cm un un) p T CM■ m en p

rH O rHp m fMvo t pr-t n rHrH 00 CNro vO coT eo Ori rH CnfO 00 OO rH PT 00 10co un Ori ri Q

10 P CNcn un enro 00 cmP rH PP (N T

h un ^ CM5 10 VO CO) 10 CO Pi if o m

o O O OI I I I

TJ TJ TJ TJvo un o men en cm covD t en un00 ro T r-tcm T C0 fMun io en rnp m o cmCM CM rH ^reo co VD fOun m vo cooo vo un rMUO O P rim o un vorH P O PvD rH en oCM UO rH CMUn 10 rH rH

m o cm pC0 CM V0 V0T ro ro oi10 rH m ifr-t un ro ifCO O T Tun un p if

(N rN

O OI I

TJ TJO OT nj(N fi0 r

cm m T •O O O 'I I I

TJ TJ TJ 'CO 00 00 <

. vD cm co it en un t <

3 ro - ■D i

) p m) o o

i iI TJ TJ. p ioi cm uni p eni T Ti co CMI (N CDi en vo

P CNen tr-H fO

vo unp CM

CD if-H O"

cm eoco pvO Pio ifO in

T rH cn en rH co voo co vovo un coO fN -H

P T

en o

en. r

m (N unrH T Oen en pT T cmun ín ttT O 00T 00 00

t en T

fM p pvD T Pen cm enfM rH p

T rH ri

p m vo10 P Oio cm enif m pP O VOfM P 10

P CDo un10 if

i rNio mCN TCO P10 ocn mm r-jVO T

if en en un m

l i i iTJ TJ TJ TJrH P VO unO o un ifO CO CO TT rH m COi0 O cm unvo en cm cn<î oo p roen m cm unen vo t Ti0 rn ro Oi0 cm un covO un un iovo p en r-tfO P rH fMt fM en oen p cm rHen cm eo eoP co co rom p un oen t p enco co en cno en t pT cn O enrH m O un

- en cn t co r-t voi rH CM CM fN m eo

J TJ TJ TJ TJ TJ TJi ro io vo vo o enh co -h \0 en CM P) (N if ro un if ro

vO p p en OC0 iD T vO cnri t T en roT rH f O Pp o en rH enen en -h en meo oo eo p enm o en eo vo

. .-, V0 P P fN VOeo 00 CM ro CM O fO•h p p o eo en cnT O CO VO P 10 PCD rH CO CO co t mr-t P *? CM P 00 O10 10 Un rH fN rH coCN rH m P CM rH 10m p o en r-H p unC0 ro ro lO CD co rim if un co cm m oco en p un cm rH voin id P ro tn rH in

fM (N r

P TCO ifT Tp eoen un

mrHiHrHVOCNiniHrHrHr t cn co HrHrHrHmTrHrOTTr CD rH P rH n

O O O (I I

TJ TJ TJT CO PCO rH Po co encm un cmP o corH CO TP CM fNri CM rH

O co ento p unT rH Pp un vop oo mm t unOTTVO T rHVO eo VOP vo enrH co unco un un

vo oo coen vo roun en vo

TJ TJ TJ

rH rH CN

un m trH p CNCD O 00cm en vofO rH oun m vDO eo pp en unoo CO coT CM VOT rH P

en O OT 00 rHp m coun t unO un roT fO T00 T CDP O rHO P rHri vo un

o o o+ + +TJ TJ TJen -H unCM o pp vo pen vo coun oo men cm cnp fM mT rH CMPOTp un ifun vo Pcn un if-H un ooO un enp cm en

en co pp en PP T Pm to cmp en tun oo voT O CDVO CM T

O O O O+ + + +TJ TJ TJ TJP CO P coT ro P PvO CO P 00P CO P C0P T 00 Oen o o rno un oo cmP T O COen p t voun o O rorM ro un eocm co O cocm en cm TT vo un cmun ro oo enm vD vo OCD P Cn riCM rH o un00 00 P TT O P T00 00 O rHen cn o ooen un un enp ih un m

o o o o o+ + + + +TJ TJ TJ TJ TJcn vo un ih unp if un o enun p rn p mrn rn T rn mo -h en m enun cm un cm rnp co vo un roP O T CO rom CO VD CN Pto un en vo cmP P un T roO O CN CM roCN un T P OCN CO UO CM rHrH vo en p mO P CO V0 eoCN T <H m OrH UO CM 10 10co co cm en pr-t vo un cn pcm rn eo en cnvo co io un pO oo to oo unm o P un vo

PCOenrHfMTunPCnrHrHrHCNeMCNCOTTunvO

HCNcoTunvopoomOrHCMroTunvopoomorHrHrHrHrHrHrHrHrHrHC\

TJ TJm voO fMro eoC0 00O VO00 rH

O Ten ooo eop enen oT rHen tvo mp oT P10 PCO CM

H O O O5 O O OI + + +J TJ TJ TJH 00 T Oy t~- un rHo rH en unf O CO ifH P CN ri

> oo O un- p un cm^ P O O

i t en uni o vo un1 T P O• p T un> en p oi un o un> tn P Oj rn un en■ if CM fM

TJ TJ TJT m VDfM O Pm en om oen - i m

i unen c. _.o en unvo o moo ri mun t cocm un coen en unvo un uncm o mun oo unm o o

oo co Pcn p Tun m vo

o o O+ + +TJ TJ TJ

rn m enCO eo rHen vo enen un rn

- m cm rfi en m ot o -i en

p fN enp vo pCO T PT -H pO CO 00un oo unen vo mVO ren un oo o ovo en un

oo T CMcm p unT V0 OUn rH if

o o o-f + +TJ TJ TJm cm O

P m rHun o unrH un Peo un cmun p coV0 P rHm ri COun un unp en enT ri roen 00 OOT T rHun 00 eorn m envo m tCO P PVO P rH10 rH rorn p enen o -Hvo vo covo en cm

o o o+ + +TJ TJ TJO vO coif m ifcm cn mun p hCO O eom vo pt en envO un ihen T unvO V0 TfM VO CNO O Tvo en unrn VO TrH T PP rH rH

O vO CDun i CD00 P VOVO O PIN CO Tun m rHco cm unlO o t m T O

O O O+ + +TJ TJ TJO CO COp m voVD O rHCO V0 VOO fM fNun ro oUn P rH

o m mT fM V0O P PCO P TT Un rHP VD Oro 10 Pm o oen en unT rH pco rH enro un ori 00 OT un coro vo O

O O O O+ + + +TJ TJ TJ TJcn vO oo unO vD C0 CDp un if pun co p pO en O vo^r un o enT 00 CD eoT ro cn mCO en r -en r ) ioT CM fp cm m ooO P en vOCM CO if rHO 00 VO fMCN CO P Pcm ro un pfO T O TT en rH oom m un coco en p coo o p om m un rovo T co un

groTinpfnrHiHrHrHiNCNrOfOfOTuOinvDPOO

rHfNfOTuOVOPcOrnOrH OrHrMfONTUOVDPOOmOrHCMrOifunHHHHHHHHHHNlNfUrJNlN

Page 22: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT

OOOOOOOOfI I I I I I I I

TJTJTJTJTJTJTJTJfOifOunrHmrorOunroiofMroenifrH

m f cO 10 -m io tO if ■O CO t

couni0CDcn.Hromi

i un oj m p■ 10 CO

i o pi p un¡ rn eni en pi P unI fO -Hi CD eni en ioI fO rH

■ n uni ro enI fM o■ p oi P T

r~ xi0 Ten ioco eoVO Tm ox X10 CN— 01-h r-

01 0m i0CN 'fvo T

p O m ro r

r- if unen co Ot o -hO vO enT P vO

en O PT T vOO P roT en hen io tm un pp rn cnm co ent en men un <n

TJ TJ TJ

10 P PCD 10 Pco un p-10 ro fNun CO roOOPO CO 00CN 10 Ocn co encn O TCO rH rH

cn un covO un tcn ro eoco m ovu co unn1 cn io

TJ TJ TJ

p ro Pn vo t

i0 CD P CO ro

rH p- tnO T rMco un unvD p O

O Tun .010 ruro vO

-< CO O vO cm10 eno n—i p00 cp 00

h en. -vD cn vOun rn enp en pro rH Oeo in m

J CM r

) p ro CM r

X ■

TJ TJ TJ TJ TJC0 P CN fM ifio vo T un pro m co o mm —i en en cm

CD ri if 10 oun io -h t unoo m un o unen co t vo cmp ro cm T enco un io o Ooo -H vD O unun io if io cmun p cm P eovo o rn en -nen rH f if cnH P CM CO rHCD -H fN O PH rH eo CO Hen vo ro vo Om ro co T vOcm un rH m vDp io un un cmh un cn ro CM

TJ TJ TJ TJ TJ■H fN CM CO OCN CN m rH O

P if CN CO -HC0 O eo O CMen io cm cn oH m ro T PvD co O P ro-h o o p en-h ni O un 00P P H CO roCM CD co T encn en cm m oen iû ro co enP CD rO rH CDT T eo co OCO cn P rn Tt cm vo vo envo en p rH cmp t m o Teo m P CM -H■H un ro m covO eo vD vO Pm en un «a* TIN VO rH 10 10

TJ TJ TJcn P oio p enC0 -H o

co co uneo m vocn T men t unco en cmif m ifh co vo

■h co TT vO rofO VO Oen r-t enT un eoco t coo o vo(N cm un

TJ TJ TJcn o pco o enT ro PP ro rHm p enrH ri CO

CD CM CNp m CMun io pP P rHrH en T10 p Oio o inro 10 rHCO P r-tro co unT en r-tun cm Oun cm eoro O Tro h T

. n CO Or fO P pJ r-t fM T

ro ro *I I

TJ TJP X)P X)m xcn er-o -HO cnT VO10 10

CD - .eo en cm co mp oO cnm f>en cnjun i

. iTJ TJ TJO CD Oun m orH P rom un uno p envD co vOtn co vof un unh vo -

-i enco mo eno 10co mCO —iO Pcn 0o- o-

) vO i . .un o cop O fMen o t10 P (NCO tO CNCO f - .CN ro ifCD ro Or-t en TfPOTvo vo enrn o pif vo T

O UO rH

un un voi i i

TJ TJ TJP CO roO T vOr-t r-i 10

p en roOTTcm un unCM ro rnCO O PCO rO OO CM HCN rH Po co mfN 10 Ph m co10 10 CDun cd Ocn T un10 I CO

T co mt rn enun if iom o tnm eo oro if vD

(HHhf INOl eOrHCN10rHCNrOiffffOC t un cm vu n en T L i T co en un rH rH c m

o o o o oI I I I +

TJ TJ TJ TJ TJiO VO un fM CMro en co o enm T r-i rH oro T oo en rop io cm o mm o eo h unm rH en p ent en cm en trH o vO un hun o un co pj

i CMun ; rN rro 10 T co mO en co eo cnfO fN if 10 rirH co ro un Pin -H fM rH pro ri un co Oco en o co enen o un f voCD CD P -H oun p if p o10 P fO rH CM

p m co en t

co r

o o oo o o+ + +TJ TJ TJcn en enm o coro ro (OO T unen <N vOT P C0VO rH T

en vo uno en tno vo Pif cm enif H rHrH en unif CO rico io T

o oo o+ +TJ TJH Oro O10 unen enco oen oun coro n riT co cP rH e-H fO rP mvo p-O roun OCD P

O O rH rH

O O O O+ + + +TJ TJ TJ TJo co m unP ro 10 COm H CD COCO ro CO fMr-t p if O

en -J VO ri en T

en ro CD rif m cm Len co o vO un ro c00 P ri cvO ro ro tO QO P r

■h p m coco P V0 cofO (N *ï COO O fO Pun un un Oi0 o en coen en cn coif O un TCO O r-i CDH V0 O rH

o o o+ + +TJ TJ TJo o enro cm OP Un rHio en coO H rH

m co riCn CD rim en rn10 ro unp un pro T PCN (N CDP rn hrH -H unco rH pvo vo ro

rx rn vDT 10 oin VD rHvo T cmp un covo vo Pm un p

OOOOOOOOOO+ +TJ TJ TJ TJ■H if P pCO O ro ifO io un unCO vO T Pro m CO TVO P CD if

l TJ TJ

o p1 m p

1 CD r ■■o ■P O O eo .un io m cm iO CM un rH iun if vo un irH m -h ro IVO T O O ien un m p .O vo m un i-H rH Cn rH Iri rH CO Oí I

un o cd -H •CD 00 CD CM .CN r rn rm ro p fN ■V0 O O CO <O un -h eo 'O cn un p- i

TJ TJ TJ TJO co co uncm un p tt

■i t un vo uni m f h rjih T p en vofi co m un io^ un rn m or t cn o voJ vo vD 10 oi if vD vD rn- O O VO o

•t un o ri mJ fM CO rH ri

r co m rH or t p p o1 10 eo fM On un if in un3 en en vO oo^COrii vo un m fM- o t o mu ro fû VD un1 P O T 00

O O+ 4-TJ TJen m

m mx cnun uno CMT Oun Tj

m oio mcn en■0 00un m

en cnen cnen io

M 10P Oen voo O1rn enCO -h

n pT OC0 Pun enen p-t0 oCO CMen- po pm vuif m

O o+ +TJ TJCO 10ri P

m lu<î «#m cnun OiCN CDun cn■j- m10 TO m10 "u-,-h m-h m

o o o o o o o

un io 'P rH ■rM PO ceun i0un ioCN ifP Om mO Pc" enm mCN CN

T COif CNa to- oIfl CMP O

-t cm p vo en co

cm if en m cocm co p en oeo o T eo pco CO un un voio un ro io coin m o o po fM un o un10 p VD -H pm p o en -nun un p rH coP fM CO fM TCD T T P OrH vO CD 10 coun T VO P cm00 vO O 00 VDen eo en o enri 10 T O ri

O vD vO vO Tun o un ro hm p rH cm roCO P P CO CMen o -n cm t

if CO rH f J ro if un p co r | rororo^rifrrunmiOiOpPrDm fji H -

jroTuniOPCOmOr

o oI I

TJ TJun oce oT mcd enco Teo i0en 10en oif unif oH unrH m

un cn10 ifCO Oco en

lOrHCOiflOPCnr

TJ TJ TJun vo ocm en voP PJ rHP rH CMcm t enT CO PT CO COtN (O CDoo p en10 P OO P 00Tf CO oco in mCO rH CM

VO O vOen co Tf

l P (O rH 10i0 HP OCN CDrH en

rH 00 CO

vo rH unP O VOT T rHCD P PT -H OT T rH

un ifT mCD COT T

i unT CMen mP COco roT PT COen enT VDCO TrH O

I TJ TJi p en■ if roi m ti ro cmi en un) ri P

i t en) CM VOt o un) m unj en en) en co) rH co

' O Ti en CMi O co

rn m p m 'm vo fp 00 een un i

en ~>p ot en10 cor- unH \Tt(N 10m <HP 1010 CDiû enO <NT TP rnen PCN CN

O O

TJ TJ TJ TJ TJen cm o m hif fO rH tN C0Un CM CO fN r-i00 O P VO vOvo en cm m un00 O P O rH(N CO O CN CMco o o t unCN vO "un m ip- m rco p <eo o rVO T 'un ri P 00 l

un ioco ocn coro co

if rH len en iO t <oo o •o m <

en enp ifro 10

TJ TJ TJ TJ TJeo o eo cn -hoo o un un -nT ro P eo PCM O CM f PCD VO T O! rHO p co un TfM O T P CO■H T -H P PCM CD T O r-i

tN 00 eo iD 00vD un p co tnvo ro cm un TO T rH P- ifvo co p co un00 CM 10 P 00ro p o en unro ro P to inC0 ri cm p PC0 vo ro in Pvo T vD co rofO T tN rH mo m t en peo co CD iD m

i r-i rH CN CM CN

I I I I ITJ TJ 1iD en CVD P v

- eo r

lO unen oun xif -n

T O irn un r

T T i

V0 m ro P roro rO ^r if unI I I I I

TJTJTJTJTJTJTJTJTJp p vo en rnrH O P O CMO rO P ro CO10 ri *T CO rHun co co en enp t p en enO cm m co cmoo co en en voo cm un P CDen.O vo vo cmo't o H fMcm m ro en inif m if un ovo 10 o p coun eO co co unO V0 O VD r-to vo co -h voO "N tN O TrH fN P P PCM fO VO P OP P O T VOun T vo -H roif 10 CM rH CNco ro co ro m

) P ri rH fM [

• m p in p• O en ro un. if CN P VO- T en co un

rHlOrOmrHPrHProoocNptnoOrHvovomfomvoppNfcounvooocorHtDvOr-HCncOTOOfoeoinoenfMifPvOPOTPiOuncNmrrcovocorncoinrH P rH rH O O f

J UO r-i

i 10 cm1 O fO1 p p

- m p•> o cot en cn1 P ro

1 P rH VO rH

j p co un o

ivDfOrHunrHTfcOrHfMrororofMrHiOCMCOCMroununrOr un rn en T vo c

1 TJ TJ TJ TJ) ri ri Un 101 O T CD CNI cn CO T CO1 m rH T VO> pj co en vo) o un en vot p m en oo. ro 00 T rHi cm un o vo1 10 rH if i») r-t Cl fM CD> un cn eo o) cm o o en) Un 00 T ri1 O <N CO r-i) P eo cm en) vO O un mi p o -h m) 10 CN CM P) un un co mi r-i eo un ent oo o m coi n tN un fO1 O 10 CO CM

o o co o <+ +TJ TJ rfO 10 tCN CD CVO riun ovo rocm oO Oro OCD mm cor-t t>

CD CNT coun ifi0 op enif uni0 mm encm o"T 10CM ro10 eo

) OrHrH rHrHrHrHrHrHr-irHrHrHrHrHrHrHrHrHrH

.oooooooooooooooooooo

ro pio enP CNCN rH

CN p-

m oun mro pen enx oco Oeo pun oun coun enin rH-H CD

TJ TJ TJ TJC0 fN ri 10T T T Trn o en tp p m too un o coCN P vo vorH 10 T CMO O Oi T10 10 CO 00•h un o pcm m o unO P rH CNen un T Tcm cn t enVD "H lO 00•h p en TC0 T O 00ro rH n rHrH eo O vOCM rN vO Oen p un tm un rH Tvo io to Poo <-i co un

TJ TJCD 10

P oif or-H enf roro 10CO CDP P

en mn vD■0) unp men cnCD PP Hrf r-vo enm oX unif coO unCD O

TJ TJ TJ TJro ro en om en cm if00 m rH r-ten p ro eoen co vo roO 00 P Tco O eo Oun en o cn10 P fM Pen vo o coro rH if unun vo T mun un if r-tCM un rH 10en h vo ovo co en o(N T ro pm co m com CM vo pPHOHri P r-t inrH 00 P PCM O rH ifro vo en <n

TJ TJ TJ

rM oo voP fM fMun un nm o vom o cofN r-t P

T C0 00tN o envD p coO UO rHun vo pcn o inCN O Oun if poo en roV0 CN Hp T enio -

'O TJ

if Pun o

rN ifco tOen ifCN -Hun pm mp Pro HCO CNtO roO Tcn enco 10en ioen co o

cm o voh o un o voO CO CO fM COvo m CO CD CM

m rH un<h p mp T unro cm rMvO P Teo T ro

ro T fMro un Pro un oop oo mro ro cmen p mvo m ooro en Oo en voT O cmo un vom o op m rMCD O PCD eo r-tp co m

H vO-h p10 O"

T enun mm coun co10 œ

h unun unun enCD roP ifun oO oH co

O O O O+ + + +TJ TJ TJ TJun if 10 COcm m en cmO O CO fMo tN P 10oo un pj pT eo cm fen cn co ri

CN CN CM 10

00 VO CO T00 CD T fOrH 10 10 10rO vO -H ioen -h o ro10 P CO CDrN O P fO10 VO VD CDo en cm voO cm un pri un rM enun in co oT T co cmT co en coO en o cm

icNeoTunvOrOen-HrHrHrHCNfNr lififuounioiopcocncri'

Page 23: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT S9

O O O O O

U TJ0 CNrn un0 CD,n oo cnH Tn px OÍ3 INP CN0 «T01 ifo- cnT PP TrN OH TO un

I ITJ TJ TJvo vo rnm O rHO co voVO T T10 10 Op co enco co unun un cm

co T

m roO CI I

TJ TJ

T un vo pO O O OI I I I

TJ TJ TJ TJfO 00 CO TrH p if unin ro P eo

O V0 ri p t

cO - en <O T (

p vO if fO un o tP un p ivO O O fvO '

- cm ri uni O P vD" CM O P

i vD O Pi co m ro> O CO r-i

O i010 10

(N Oro 10rO 10

un o-H -H

co

- if r-i en r-t1 p ru oo un> rO un T vD> f if fN CMI VO VD rn m3 O un O cmi P T T eni m cm m co

rH O P COp un p tco en vo T

) CO Ti O O un voi io un un io

CM 10 r

o en vor-t m rop rM unro O 0010 T VOT cn Ocm en pjen if enp m roCM CO CDun m ten o coco co en

tn vo rom o unCM rH enen t Ten o rHfM 10 VO

I I II TJ TJ TJi fM 10 Oi co co m

CM T eoVD 00 r-tun un oun cm enV0 T ri00 CD rHP ro CDCD c ro

J CMfO 10 PCM T Oh un pen m enp m oooo P Ph o fNrM o unp en r-tun co tCO T OVD VO (NOTO

•h f enCM CM fM

I I ITJ TJ TJT rH fMio eo unP ro PrM vo hfN ri VD

oo en cooo en --too m oid rn TP ro 10tn T COvO fM V0fD 10 fMp un roP ro mP P OCO P TrH CM OCO (M CDco en niO un roVD O CNen O rHVO ro fM

O O O O O O fI I I I I I

i enm ico . . _ro vO OCM f (Oun vo Tri if Pro tN Tun o eorH O Oen en Tun en unVD vO Oen O cmCM O 00en oo oVD VD C0T CO TT en rnp if nri p IN

eo O 00

TJ TJ TJ

un ro tOO vO eoco en T

P T 00vO un rofM CO COO co unm en orH fM unp oo (Np oo unCM CM OCM '

TJ TJ TJh en TrH TOCM CM Ooo en ent en pro p oCD P TVD rH fvo fM enro if cmro 00 CMrM m vDCN p eovO vO coT T O

X i

CO O 00co m unun en com vo mO 00 rHvo un ifm t eoro o ooO P ro T vD VO

O VO OT rH OP O Om o cmun ro p

un vo po O oI I I

TJ TJ TJrH 00 unun fM op m unO P rHun en riT T TP CM CMfO CN fMCM P CNm fM CDCN T TCO P CMun T CDCM <-t CMP CM OCM rH 10 f

CM 10 rHT en Troororo cn TfM O un

) CN r IO r

un r

TJ TJ TJ iun iT T Ijun ro en cCO 00 O Co t en iH ro o c

m vo r-t run m vo 'co un p ip o en cri O O (cm un rH io t en ico un co eco T O rpj m un rO vo rM cfM un fM cCM O VO <un m eN cen oo p cO CO ri «un oo O rrH fM Cn r

i i, TJ TJi en unl O co

p en cnH rH CMI I I

TJ TJ TJ-H fM unun rH enP 00 VDro C0 tN

' VO r un

O! rHo coun cmp TfM 00VO rHP fMfji VOcm untn voT fMrM VO

rn m PJvd un unrn o enun eo voen cm rn

i vovo r un

vO fO vOo cm enp un mun rH Oun p vo

un oo cn pCM CM m roI I I I

TJ TJ TJ TJO io un voO CO P fOO CM C0 fOco p tn corH CM CO CNvo o p enO CO P rH »P fO rH PJun tN un mun p m ooen t oo unp oo co voo vo cm voCn O rH voun o en TVD vO rn C0vO cn en voen o vo cnen vo rH vo•h O O unCO P C0 Pun T T un10 un 10 rHCM V0 rH co

JTvOvOTeNP.HCNrHini0r IfOTTCMrHunrHrOlOCOCnP- T-HVOrHC J h T vO ro un un

I rH rH rH O

r O O O O111 +

l TJ TJ TJ TJi CO m ro Oi t un co vo• oo cm T en> o ro en cmI m CM P rHI H O 00 COI T rH rH CM

i VD P P Oi CM cm ro m1 10 10 VO r-i■ P O rH O1 o pj en or O 00 m r-i■ o cm en ro< vo en vo oi m en vo rHi t cd en eni un t en voi un en p ti un o un pi eo co O T' Un rH vo Tl un o p un1 O O r-t if

O O O Oo o O O+ + + +TJ TJ TJ TJP P T PT T en Pun en t tun p vo enrH fM ^f OCN m CM CM•h if un vovO eo p enCM 10 CM CMin o vo voen rn vo oen rn p oun if en coV0 O ri iot rn m Tm en rn(N if Hro O un oen en vD un00 ri p coP T -h co•H un T P■H m rH PrH C0 CO 00

i o o o o o o o O O O o

m po oX 10-h en-h r-H m

X; ifm co10 CDT eno mO rH

un prH X

m riI fM fM

T OT v0eo PP Oi0 CN

m coO if

TJ TJ TJif if unun m enT p coT o coT OMN00 rH rH

m t coco o coCN CM Pro T VDO O CD10 CO COrH T TCO O OCO (N TVD T unT 00 roco ro pen 00 TT un cmP rH P

p h en

TJ TJCM Xio encm en10 O10 (O

en pCN 10

un men oen o10 HT r-t

X "TO Pco P10 O

en tco mP inO OP Pro PO unun p

TJ TJ TJ TJCO P T Oun vo <-i roro h ro Oro en CO PrH P T enP vO ro rorH P rH fN

m O rM unT rH P ifrM m o corn co (N po o pj enco en co rocm r-t p mt en -h men cm co ot o ro ooro fM 10 (Nm un co un*T vD P eoio en t -hoo p p coT co m roO ro p eo

— ro

lI TJ TJI ri uni o vDi m Ti un vo> p eoi ro vo1 o roI T rH

vO Pi un T

m oO ro

i m eoi fM Ti CO <N

i COi m ro. [^ pi p Pi O fMi p mi ro en

tj TJun mun enen oo corO 10rN rop- unp- uno voun mro XO CDm unP -HP OP rH

co mCM 10

t fCn r-H10 oT VDif 10co H

o O O OO O O O+ + + +TJ TJ TJ TJ^ CM CO rH

rH O (O VDco p m teo T eo TO O co roCM C0 O COcn co co mun vo vo unro ro 00 fNrH VO VO ri

CO rn m rovo o en coco P CM coro ro o unrH O Un r-tO rn cn cmif un if iop tn un fMvo O O unun vo co Tm r-t eo unfM P fM unm rH if PvO ro o co

TJ TJ TJif un iofNNHvo co pp m enen P unco cm un

CO CM rH

O O TID ro ifvO t en

P pm o Ten co cmP ro OrH T PtN CM TCO P COP rH inO T HCN CO P00 CO O

cm m10 Pun com p -m co ren T rm o iun p vr-t en cO VD ien eo vpj m ro vo 'un un een o e.oo T cm vo vP ri C

O 10 Cp un ren vd L00 T 'ro oo r

rO P ri ri

O O O+ + +TJ TJ TJ■H fM unoo p unO P vOTOO

I fM 10 rHi cm O VO> vo m oi co VO CN' 10 rH ^,

4 co co n en, o un> p Ti VD vOi to unI O CN> en o' P co- P co> o un

co oo unO fM To m pcn m uno p eno un tT en -hun m >h(N un voo vo unCD to Tm p enVD CM rH

tn pj un

o o o o+ + + +TJ TJ TJ TJvo O un m(N fM O CDen p p -Ho oo CM fMo o rM moo vo co TCM ro rM CDm en -h rnpj vo en tp eo o coeo T T Pp un ro voT en ro roP O T tOP ri P 01T en CM eoCN P O VOm m co unp p ¡-t mun cn en pif un co r-ten rn pj m^ fM 00 VOCO CM VO CM

rofMunrnrHfMfNroTvOPcnrHr t PI CM fM ro COrHrOPrHrHfMfOfOTunPrDenrHrHrHrHr

i vo p co en o r .roTuovOpcornO

P VDO P CDun en rnr-i io cm

— vD tM r-i eC CO CM CM

■~~ O 10 fM4J C0 00 VOsz tn rn voCi1 tO rH o

•H r-i if eo01 rH eo T3 un co un

■H P Tun io Po en

i iJ TJ TJi T fM) CM T} P CD) ri P

I eoP O10 XO o

eo mo unp p

eo ■ 10 «

V TJo enT i0rO CM

en or- coio unun ^ro en

C CM if—- VD fM

-h enen pen rop p-H Oco eno op ro

TJ TJun oen om m-H CN

r-t enCM 10

eo mex Tro mun coro coO enio Oro fMm TOi vOT un■0 T

(N ifri OfM 10G enO en

TJ TJen pCN 10

P Op pco pro ioPJ CO

CM ifen ocn unro CN

P 10if unCO CDrO CN

f eni0 mCM XCO co

I I I ITJ TJ TJ TJun oo co unen cm vo riro o vo mh ro T coen rn fM cnP en P niO T O unr-t C0 CM O

un if io cmrH rH Un Pm CO P rH10 10 10 fNCM P P Pen vo p enrH CD CD vovo cm -h ro. . co un enen vo T unT ro p opj h cn fMco ro vo O10 r

fM <i en

TJ TJH O10 T

J CM CM CM f

) o O o cI I I

TJ TJ TJ 'en un un <un r-t vo veo un ip t

) 10 r 10 l

en cmP CMP TP CMun enp pp xun oio enCO rH

œ encn eno Tun O

POT«o en eo ip o n •T Ooiim un ro rm t vo ■cm m o iro cm vD icm vo en iif t m iun P un 'en ri m IP P o Ico vo un iun vo o i

en un if co p- o

l l l lTJ TJ TJ TJO un fM mVO H fM TP rH P 00cm n en uni0 un pj pO T vo OT co en oCM CO CO COio p m cmT P rH Oif m O PrH h p unVO P rH TCD VO P OO P m unvd p co enCO CO rH oO T un oT T P VOfM en m oco un io tco un lO rovo p m p

OIHTPHOHHHNt I I I I

TJ TJ TJ TJ TJO T ^ m COO un o en TrH Un pj T ricn o rH o cnp cn un co pCM co p- iD mt en p en rHvo o co eo vorN T tM O 00ro H vo T vDO vO if p ifT CM CM en fOr-i o o un enen en en vo >Hio o t o fNfN 00 if m PIr-i vo m V0 10VD Un PJ ri coco m co t mro m fM P 10lO P f Un r-ip cm io p untD VO CO O rip vD r-t en eo

co co cm -h co i r-t ro if f cm en n r vo vo io

H CMp ioX 10un oo cnO XH mP Tr-t CO

en p

m coT Pm t

TJ TJ TJT ro To un mro un TCD T Tm o tT vD fN

m o -hco vo unen un ifun oo voT T encn ro Tm un ph cn tnvo vo unco t unP rH OT fD VDo t enfM T C0Un O rH

CN 10

X CMm unen mo unp un

— m voC fN if

— m o

cn eno oco coC0 œio p-T enCO CN

X ifen. h

I TJ TJ 'i T ro f) vo P e> 01 fN r

fO IN ffM rH rfO C0 lfM if <en un •o ro t■h en io enp coif enp pro un-h T

O" CNun if-f enp CN

O 10cn enP -Hm co i

o mx unen ocn enUn rH

p tflo unCN CO

O Xun ioen h

TJ TJ TJ TJr-H en fM 10T vo en r-teo en co pen pj ri enCM tí 00 vovo if o unm PJ PJ rHun pj f oun m cm oo en p voT rH fM CM

un o T Tun if un oT co CM 10m eo o pun o m PP oo T ofM O CD TCM T CO rH

t en p oo co en or-t m tn voro f O OO cm rH un

O O tl l

TJ TJ10 T

io œCN Oun un

) O O) O o

+ +I TJ TJ) cm un

J CD

O T10 co

10 oen xm en.un ioo <*CO CN

co mun m—| CN

VO OX cen <nO CNro rop uncn P

CO 'CD p en vD eoco un cmp en Tr-t en unCD ro Ovd c10 m r-tP 10 rocm T coen rO P rHro C0 10T -H rHT fN Tm o enT P VOCO r-i 1010 O fNp m enrM O fMP rN rovo fM en

) Un rH10 peo œp pP CMX Xin hP OX xun p-O unen ioto Xen. Trn cnm o

t x

O O O HO O o O+ + + +TJ TJ TJ TJP ri rH CO

un vo co encm p t en

o co p enfM vo o vofN ro un ifo pj en enrH co VD Tio o t enrH if rH fO

vO T P Tco vo co unVO O <H CMP 10 T fMm h o orH p m rHun ro T unif eo fM P*f m p voH O ro Hcm ro (N pun un h if■H vO T O

o o O O+ + + +TJ TJ TJ TJun fM fM (N10 fM (O rNO VD rH CDT CO fM OP rM O roun cm ro ifvO cn un r-t•-t en m pun co p cmco m en eoo n un oco vo co coo co vo coT un en pT t o enco en co pT CM co CM10 o vo o

un coPU ; h eoT un vD eom co T enoo p co opj un en T

i CD r-t fO vO P TCn-H CMiflOCOrHr J ro un vo rD r

: fM ro T un i T un io p co m o leOTunvopcomOr

Page 24: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT

) TJ TJi T Oi h en) en o) P TI fO CO

i m un■ V0 Pr P eoi un p-, un tNi 00 io. o iDi iD un

i iTJ TJ '-h O f

en o ■T P C10 10 tun p t

T un «fN rH í

tn un e

J TJ TJ TJJ 10 O Oi P 10 rH

) O CO rH) «f P unj m en ti un -h cO' PJ Un r-t

i rn m eni eo en p) fM O eo- i0 ro fDi rH m ifi cn eo rn

I rH r-t un T rH r

i o p oo m en ci r-t iû O un iO rimp fD -H -H f

i fM ro ro fO fM -

TJ TJ Ten i0 im cd 'co if tro en rO o cT P tO un ieo o •en o fr-t fN fT O eVD fN 'O I?! r

ro CO ien un r

> •-< T CI CN rH t

) vO in ei CD ro ri T io f' T P v■ CO ml iO fOi rn co

I 10 -H if P '

TJ TJ

ro CDif '0fN PT Pm 10

P OfM COco en■H unCO 10if fNi0 TO O10 un

TJ TJ TJCD T rH

10 O iDP CO p-fN (N if

en un rHvO in oo c

i O tN rI r-t r-t r

I 1TJ TJ "■CD CD C00 lO -00 r-< e

O T C

I TJ TJ. X 10l CN 10■ T CD

TJ TJ TJ 'P f rH -fO 10 O r

ro O en í

10 r

ro ro enT ro r-(O fD roP tn 10fM T OO vO OP P fMrn co enun f ooo co cop oo en

ro if un m —t ifO T -h T vO if

X 01P eom, orf mm en-> TCD '0rO X

io enCD eo10 oun tO ^CN ifp en.O if

un io rn p. un o OO rn O rH p co unro p rH ro vO en 00en io ro un un o p

O un tN10 o fNO un pco if unun un inp ro unun co p

un o COcm P eop 10 cm

en if fMi/iTPP T T

rH CN fM

I rO rH 1

I P 10 <I un io rt P fN L1 p p 1r co un ir p p t1 vo fD v) nt un ri com ri rn r-t r

P -H CDCO ^ rH

m "N coO O T00 O ifvO un un

TJ TJ TJm if eo

O CD vOO i0 eneo if rHen rn mrH ID if

rH p vO

O 00 Tcm io m

un iOTO"

p un roO un roP p m-h ro rofM un un-h co o10 10 OP T 10

-i enun o pcm co coO vO vOP ri ioP lO rH

OPTO —i unt o enm o mP vD O

i C0 fM if f <N ro r

TJ TJ TJm —< roio p un

P rn if-h in unT cn r-

rN -h corH O ro

VD P CDrn ro ifCO CO fNfM if rnro if cOCO O Oen in en

m O rHco co or-t O ro

fN

CMrHrHrHrHOOOO

OOOOOOOOOI I I I I + + + +

TJTJTJTJTJTJTJTJTJrooOfunrHCOrHPrNiniOOCNifrOOCDirifOrnvomvocnPTfomocopuncornrHen TfNcncocNiocno

i n œ en) tN cm un

ro 10 en 10 f

o oo o+ +TJ TJfO O

o o-O -HrH eo

P fO

i en -i i■ rH V0 l. IN CO lI fM CO lI T CN tI rH O [

? un tJ cd r

ro co o en vo mro rn tj o un unin ro r-H cd en cro un r-H rf vo rP ro p O un i-n tN en co un tun rn if p fN im o tn oo en fO vO ro ro ro '

J fM iiD p fM fCM rH CM l

en -h P iP CM CM•nomco cm m10 co voin m if

i m p -hi un -H -Hi co o T fî un vo un tj m un cm t

O o OO o o+ + +TJ TJ TJun if rom r-H PCO 10 fOun p po p envD eo eo ifO CD T CvO ro ro ■-h p m cP rH CD 1

O O rH

O O O+ + +TJ TJ TJif m i0un fM mfM m rH

un i un

r-H CO <

vo m ivD if CT tn r

o o-f +TJ "3O Tm om xif Xp 10

un xO i0cn O"m rN

m ifO o

i un p io cm un

ro -h P fM IN

T ^ P -H Pco un oCO p ifro ro tNeo ΠvOP 10 T

ro m ro-h 00 Om t mT 10 Pen co hp en pf co eom o oO 10 eom o o

■ en <) eo r

fD COun xP X« ifO ^0un coio m vo inrH CD O CM

T P »N P10 O vO fMrH (O f 10

o o+ +TJ TJen enX mO Om Xm rnco ro-H X

ro mm en.0 oif m.x om oX ifro ifun unm ifen x

J X r

O O O O O+ + + + +TJ TJ TJ TJ TJvo un io -n Oun o fD eo 00fM rH O rH 10fM O v0 P unCN rH fM fM roP ro O -h TfP fN rH if PJP P P rH PP fO ro 10 Poo in m if ifCO 00 rH if INfN ro m 00 eop o o o œif in V0 m rHen co oo pj orH fM vD ro Tro i0 m O PO fD CM if lOnt un -h if cofM p un oo unr-t *T CM un CDif en 10 eo i0o m m rn fco m rH ^r io

10 i10 «N Pri co roh p mO un i0O O rH

O O VD

ro P -hcn un p.r-t CO rH

en rn vofM Tf roi0 un pjun -H r-i

m fM OT en TrH O T

m io op un op œ inm vo ioco —i T

i o o+ +

I TJ TJ■ m io

t m

t x I

O fX oT TP 00 O V0p rop r-<T u".

O P

O O O O+ + + +TJ TJ TJ TJO m rH COvO rn ro unCO CD eo o

fN rorN r

t i0 ep m

o o

p ent œen p

T m vo iop un if unP 10 O -H

leNfOiTifunvDP m* t CN r cj i

CD ■p m p ifvO m eo rNo rH rH mp p r-t unfM -H CM OfO fN ri fMVO O O rico un o pco un o un10 oo O ooun o in rotN p m vOUn m T rH

i T T T un io

iiopoomOrHiNroTiniûpcocnO'

J CN ' -I CN r

O O O O OI I I I t

TJ TJ TJ TJ TJ00 P 00 rH Poo eo m o cmT T P VO Oo un un p pp m p co unen o vo -n oo t vo vo cocm m un o -H

un co vo co mO cn o rn mVO rH ri O CM^ cm m un CNn en en en <Nun oo T p cofM 00 CO rH CO00 O O P eorn m en cm -np vo m ro uno t m o enun m rn un envD pj O un vorH m 10 10 -HvO ro r-i m O

rn i CCVO rH Pun un roun o coO ro inm O rDfM ro T

if fN ro

rH O Tro T unrH rH VO

O O CMT P P•«T m un

ro T unO O OI t I

TJ TJ TJm en op un <mp vo mT CM OVO r-i O

T P VD

00 'vo in mun en po en ooo t oo^ m vooo m t

4 vOm ^ mp o unvO vO eoun en coT P roO un mT ro pm un prH PI 10

m un pm m ooo vD rooo 10 ppj p mPJ O rHP vO roO vO eo

10 10 P

O O OI I I

TJ TJ TJCD ro 10un VO cm(N O encm m pCN P Tm eo 00o vo enm t pPOTp vo mt o uno en rnrn m oif co un-H rH P

m un om p mo o Tro CM mm oo unvo co men en rnun eo rH

CO O rH

OhhI I I

TJ TJ TJCO (N m00 P vOP O unTOOun m <nO fO rH

vo un unun un o

m o cop m eoro if un

t un -hT 00 roT O unro un pirH VO rH

m r-H p.O -H OfN CO Ot m pfO rH ifOOP

i f un p m r

1 ITJ TJx xo unr-H 10

P 10CM fO

co mm x

H fN f

I I I ITJ TJ TJ TJif T un unCO T vo Pro m -h fMrO m -H ro10 un —t pjo p oo enrH CN CM mrH P ro en

Tf fM Cm t cfM VO f

h m < ro r

1 O CO 00 CDt 10 V0 rH n

ï m o p nj o o cm o

10 t

P 10un i0un mr- fMro pp- ioCO rH

I vO eMm uno xm pr-- cm

I I I I ITJ TJ TJ TJ TJ10 T 10 P CDfM fM un fM mT p ri cd mco o ri m ifco vo pj m oh romo mo t m P -H

t X i 10 '

i un cni O VO CO rH T CO T

i en oo> VD VO■ un TI rH P

1 rn Ti O IN

t io co rP ro T (N T iP m C0 ro O -i un P m vo tj ri m m m i

T co un o mun r-t en o oru p o un oif rH rH P PV0 T if ro 10n m ro if COif P fM 10 Om T if Un rHUO 10 if CN ro10 T P CN fOun un un cm eorH t un oo mO CM VO ri r-tro r-t m ro coeo m vo en oin m pj ro m

ITfOfOrHtDfOrHfMunOOrHrHrHPmr ÎrHrHtOUnifrHCOrO

o o o o o oI I I I I +

TJ TJ TJ TJ TJ TJun PJ eo ro un PJ

i un io plOrOT

O O rco m rpj m rHHlUO rH c.en un cun co •m t v

CO oPJ pcm m00 CDoo unun m

i o pj m ti PJ T T) O VO PJ) PJ T T' T m VOi m ro oo-TOT• v0 O Op O cn uni ro tn pj- pj cn eni p t o) oo Oi rH1 T 10 CO* 10 PJ pJ VO T H) P VO fOJ rH CM rH

o oo o+ +TJ TJT ifun mT ri

X CDco mfO p-

un iovo np pvo cop pm vovo pro CDco unm mcn roun mT nrH unvo mro unro rom un

o oo o+ +TJ TJO Po unO fOun cn-H 10

co P10 CDvD OfM CDrH P

un po eno roVD OCO VDm oO unP unun fMP Oro unro mcn mcn m

o o o oo o O O+ + + +TJ TJ TJ TJ00 vO vO vOcn ^- co mvo un t unCM vO ro mm t oo oP rH CO TCM CD CO rHp p un iovo ro m r-tun p o Oco en vo rHcm if m enun rH o mvo cm un roco p fM mvo m O Tco en p pp oo co un00 00 T vOen o un o00 O ro COP PJ tn rHVD CO m vD00 CO 00 o

o O o o+ + + +TJ TJ TJ TJ-H m 10 00fO if rH ifVO P C0 COO ^r un ioen rH P CMco vo O Ocm en un mUn rH rH rHun un ro unp O un op vo cm enp co p eno m t ovo on cm ifP r~t fO ri

co vo o enen co o vo10 CN fM 00C0 P vO Ocm vo un en00 <N 00 Oun pj cm voro p fM C0co o cm ro

O o+ +TJ TJvo mro mm rOm ri

oo rT CO 'T CO tp 10 l

o O o o o o+ + + + + +TJ TJ TJ TJ TJ TJcm co un m co >H

> un P m• un T m■ ih cm un■ ro P vO

j œrH if

m mt mCD P

o eneo mx TO rHCM ri

en unun eoco CN(N ifio unun p-

pj unT vDvo r^

m rH -VO if r00 00 cfO CN fro m cun ro c

) un p enI O P rHi ^r en unt en p un> m un co•TMCl) m p cm) ro T un) T T rH

P VO 10POTm m -h

O O o o+ + + +TJ TJ TJ TJm rH cm unPJ rH Un rHp un un p(N T un rMo m en ovo O fN PJt m T fMfO T eO unun p en mm cn un pOi T CM Pco p m tT vO vO PO Un rH ifco m o voT T VO rHfji vo m tvo m m rivD un m To p if mP T T TP fM eo rop m oo -hvu O un cn

cNiHfOiocn-HrHCNfocoiruniDcocn' ífNPJPJPjmrOTTun

jtOi*uniOPCDmorHfMrn^uni0PoomorHfMrn^,uniDPoorno<-irHrir-ÍrHrHrHt-irHrHC^t tNfNfNfMfNfNfNfMCNfO

Page 25: Gaussian Quadrature Involving Einstein and Fermi … of computation volume 44, number 169 Gaussian Quadrature Involving Einstein and Fermi Functions with an Application to Summation

SUPPLEMENT Sil

) o O O O O O O tt cn if un vo tD O '

TJTJTJTJTJTJTJTJTJTJTJTJTJiTfNmcofNrHPcn"IOiii

i m mi vD un

> O O unr id O T fM vO P m* in o o en o ro ot ín m m pj vo p mirHrHfMinpunro

ro enm pvD Tm eofD OOo enCO ro

eo iO r-t ,

CO CN ■P T 'ri O^i 00

t m t •» T ro i) T m (1 O fO t. IN p f

) T un .

i if iD r1 rM co ii if un ci CO tD ii m o 'i O un (i p vo -< m vo -

x œ-h unCD 1010 CN

o oO" eoO" P

ITJ TJm oo œm co10 o

I i

O inif unro un

> un vo) oo o) 10 co> un mt o m> CO un

ro ro P rH r

lunifvOrHfOunOiOf

p coO i0X pro xx mCO PX OO" Pcm n if m10 fM CO PJp ro en pP ri CO TfN lO 00 fN

if vD p unco m vO rnfM if p ro^ m if unfN 00 fO rH

TJ TJ TJ

iD lO Tro eo inP T i0-h m to en œcm un pO O fO

p m vom rm pj pvo p T

co o CMo o op o mo vO ovo o mT P VOh -n mfD vO -hh«t roun m -H

I I ITJ TJ TJcn O co-n P o

m h oCM lO ININ P ifri eo r>10 T OO cm pp vo mO CM pvo o mO 00 pro -h cocm cm eop p mIN rH r-.

ro O unco O Ot m pO vO pPJ p 10T 00 vOO P 10

TJ TJT PX T10 10

ro rNif en10 eo

ID PX CNCN 10

CD 10

CN P-

rN mm oO m

TJ TJ

O vOn r-~-m coeo O10 OO eoif eor^ unfD (NO fMm o00 fun opj mO TCO eom fOUO rH

rn m

t mCM ri

P un

TJ TJT XP Oen rnun vo■o mif mm r-T TP roX 10P PCO C0

• m

J IN fN roI I I

TJ TJ TJtt un mP CM Om if voro p pvo p pm m pt m mrn eo mm rH oun un unrH ro CMO un mVD if rH•h id mP if eo

ro 10 if Ori *r p uneo o un ifm - H x

i œ ■

un cnX ifCO fO _ -fO P P m fN

T PtN ro ri rM fMvo o o oo mvu fO O 00 Hrn m p p mco ro o ro mro p ^ un oo

p- eo co i0rH 00 10 Tun fO O ri

T vO m OP CD if fOm co pj oop ro ro invD O un <Nm pj o enH CM 10 CMfM O T VOrn un o fMm CO P rHp p un roo en t io

■ if un un io

I TJ TJ TJ TJ1 00 00 T fN

I Un P lO rHi rn o vo en) p ri m m' o o t m

o PJ vo Tp m p pp m p mio pj un oun m m coT P O TO un O PCJMOhTO un rn Pt o m coCD t m CDco o o envo m io cmvo ro m mVO P 10 TT T T fMif m T unrf iD vO PJm CM H CM

rHfNfOfOrOfNrHCOeO' 1 CN - J eo if f vO id ,

O Pm mm pun pun mlO fN-H CDCO P

m rHcm ifCO Om vor-, CO

un coCN rn

P X

I I ITJ TJ TJO P PP P Om t cocm m voT vO Oun vo o-h m mm p ifh m unP T rH

co co roV0 r-t P|

ri 10 P

ri en unfM 10 ropj ro m•h en opj PJ 10un eo cmp m oPJ VO Pm co unp p m

o o o oo o o o+ + + +TJ TJ TJ TJvO O eo -HrHCOmrOTfMOfOTvOPPrHrHCTilOfMocounoomvOPo co m vovo in un i0m m m o

o m o cop eo cm pp m o ooCM CN ro rHfM ri if Ooo eo m vo

o oo o+ +TJ TJ

en rocm m10 cocn r-

m um fM n *f 00fM P ro P mfN T ri O COT O O un HCM 10 CD CM rip io un un r-trn m un oo TvO un o >-H mo t m t en

i vo vo■ o uni p uni un pj. pj if) p vot un m■ O T> if r-t

o o o OO O O O+ + + +TJ TJ TJ TJin eo in ioP O uo Tri fM fO r-i

*T p un rim o un cmn ro o unT m ro fOT P un Pro fM P riCM 10 CD rHfM o O OO fM fO vO

<-h un m voCD O P VOvo m m oom o co pj^ O CJiroh -h p unP rH O P

m cm if tcd T fM unun p 10 rMm oo cd en

o o o+ + +TJ TJ TJfN P 10ro P fMUO m rH

m 10 HCO rH rofM VO 10U0 rH P

un o unro rn rovO ro TfM fM fM

00 m 00

m p «np un o10 if fM

un rn mun un ioVO CO COO in un

TJ TJ TJ '

O fO pj {ro T un iif m co ipi m o tro T v0 <p o m tIN 10 O lun i CD t

> O O■ + +> TJ TJ• O rot P T. n *r

T fOun mi0 roO TT Tcm m

o o+ +TJ TJ<H p

if ro IV0 T 'rH m I

o ro eun vo "p m r00 00 CO 10 00 (O <CM O P fO (

00 un p- ro O'

O O O O O O+ + + + + +TJ TJ TJ TJ TJ TJ

m un OfM vO unfN T O

rH O CDm -h ioo vo opj o oun un pjvo T TvD O vO

I CN r

1 ro i10 O ifO O Oro un riPJ ro unO en Tr^ -H CN

t o mP UO rH

m t oco un p-

x10 CNun ioO œm p-vO eoX roun mX mlO ifX o

T O 'un ^ .un if .

m eom cnco co

m(N

un xX roO" XO OP oT Oif P10 X

J un

110un cnm -h

p m ofN 10 ri

T O unT ro Tp t mrH ro fN10 (N roun co ifcn tt mT -H pO eo OlO 00 "H-h vo unm co vo

O V0 coHfOlO

en run o vD

P fO OCM T Pun ^ roro O T

m cn un

O O O O O+ + + + +TJ TJ TJ TJ TJO O 00 T fOvO T T vo mvO m rn r— VDT p m oo voun m eo m unP rH lO r-t ri

00 -h O un roP P T vO fOun co co m P-h p p m pjvO P O <N OO VO ri ri fN

in un ^ p fMT O P CM 10T un p CO roT en un co rufM ^ fN ID Tn <N T CO 10eN en 00 O vD•H 00 p un mm t m en ooo oo o t mP 00 VD ri ri

m en oo t ri

ri r-t PJ Tf P ri r 1 if IH Un 10 P CO ' irNiNfNrOroromiriTTinuniOP

rHfNfOTunvOPcomOrHrMroifunvOpcomOr