68
Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University of Missouri) Scott H. Holan (University of Missouri) Adelmo I. Bertolde (UFES)

Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

  • Upload
    ngotruc

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Gaussian Multiscale Spatio-temporal

Models for Areal Data

Marco A. R. Ferreira (University of Missouri)

Scott H. Holan (University of Missouri)

Adelmo I. Bertolde (UFES)

Page 2: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 3: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 4: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1990

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 5: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1991

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 6: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1992

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 7: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1993

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 8: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1994

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 9: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1995

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 10: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1996

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 11: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1997

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 12: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1998

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 13: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1999

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 14: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2000

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 15: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2001

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 16: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2002

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 17: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2003

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 18: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2004

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 19: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2005

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 20: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2006

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 21: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Some background

I Many processes of interest are naturally spatio-temporal.

I Frequently, quantities related to these processes are availableas areal data.

I These processes may often be considered at several differentlevels of spatial resolution.

I Related work on dynamic spatio-temporal multiscalemodeling: Berliner, Wikle and Milliff (1999), Johannesson,Cressie and Huang (2007).

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 22: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Data Structure

Here, the region of interest is divided in geographic subregions orblocks, and the data may be averages or sums over thesesubregions.

Moreover, we assume the existence of a hierarchical multiscalestructure. For example, each state in Brazil is divided intocounties, microregions and macroregions.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 23: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Geopolitical organization

(a) (b) (c)

Figure: Geopolitical organization of Espırito Santo State by (a) counties,(b) microregions, and (c) macroregions.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 24: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 25: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Multiscale factorization

At each time point we decompose the data into empiricalmultiscale coefficients using the spatial multiscale modelingframework of Kolaczyk and Huang (2001). See also Chapter 9 ofFerreira and Lee (2007).

Interest lies in agricultural production observed at the county level,which we assume is the Lth level of resolution (i.e. the finest levelof resolution), on a partition of a domain S ⊂ R2.

For the j th county, let yLj , µLj = E (yLj), and σ2Lj = V (yLj)

respectively denote agricultural production, its latent expectedvalue and variance.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 26: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Let Dlj be the set of descendants of subregion (l , j).The aggregated measurements at the l th level of resolution arerecursively defined by

ylj =∑

(l+1,j ′)∈Dlj

pl+1,j ′yl+1,j ′ .

Analogously, the aggregated mean process is defined by

µlj =∑

(l+1,j ′)∈Dlj

pl+1,j ′µl+1,j ′ .

Assuming conditional independence,

σ2lj =

∑(l+1,j ′)∈Dlj

p2l+1,j ′σ

2l+1,j ′ .

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 27: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Define σ2l = (σ2

l1, . . . , σ2lnl

)′, ρl = pl σ2l , and Σl = diag(σ2

l ),where denotes the Hadamard product. Then

yDlj

∣∣∣ ylj ,µL,σ2L ∼ N(ν ljylj + θlj ,Ωlj),

with

ν lj = ρDlj/σ2

lj ,

θlj = µDlj− ν ljµlj ,

and

Ωlj = ΣDlj− σ−2

lj ρDljρ′Dlj

.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 28: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Consider

θelj = yDlj− ν ljylj ,

which is an empirical estimate of θlj .

Then (Kolaczyk and Huang, 2001)

θelj |ylj ,µL,σ2L ∼ N(θlj ,Ωlj),

which is a singular Gaussian distribution (Anderson, 1984).

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 29: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Exploratory Multiscale Data Analysis

Macroregion 1 Disaggregatedtotal by microregion

year

175

180

185

190

195

200

1990 1995 2000 2005

year

2040

6080

1990 1995 2000 2005

Microregion 1Microregion 2Microregion 3Microregion 4Microregion 5

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 30: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Empirical multiscale coefficient for Macroregion 1

year

−8−7

−6−5

−4

1990 1995 2000 2005

year

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1990 1995 2000 2005

year

−11

−10

−9−8

1990 1995 2000 2005

θet111 θet112 θet113

year

23

45

67

1990 1995 2000 2005

year

7.0

7.5

8.0

8.5

9.0

9.5

10.0

1990 1995 2000 2005

θet114 θet115

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 31: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 32: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

The multiscale spatio-temporal model

Observation equation:

ytL = µtL + vtL, vtL ∼ N(0,ΣL)

where

ΣL = diag(σ2L1, . . . , σ

2LnL

).

Multiscale decomposition of the observation equation:

yt1k | µt1k ∼ N(µt1k , σ21k)

θetlj | θtlj ∼ N(θtlj ,Ωlj)

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 33: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

System equations:

µt1k = µt−1,1k + wt1k , wt1k ∼ N(0, ξkσ21k)

θtlj = θt−1,lj + ωtlj , ωtlj ∼ N(0, ψljΩlj)

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 34: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Priors

µ01k |D0 ∼ N(m01k , c01kσ21k),

θ0lj |D0 ∼ N(m0lj ,C0ljΩlj),

ξk ∼ IG (0.5τk , 0.5κk),

ψlj ∼ IG (0.5%lj , 0.5ςlj),

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 35: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 36: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Empirical Bayes estimation of ν lj and Ωlj

ν lj : vector of relative volatilities of the descendants of (l , j),Ωlj : singular covariance matrix of the empirical multiscalecoefficient of subregion (l , j)

In order to obtain an initial estimate of σ2Lj , we perform a

univariate time series analysis for each county using first-orderdynamic linear models (West and Harrison, 1997). These analysesyield estimates σ2

Lj .

Let ρl = pl σ2l . We estimate ν lj and Ωlj by

ν lj = ρDlj/σ2

lj ,

Ωlj = ΣDlj− σ−2

lj ρDljρ′Dlj

.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 37: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Posterior exploration

Let

θ•lj = (θ′0lj , . . . ,θ′Tlj)′,

θt•j = (θ′t1j , . . . ,θ′tLj)′,

θ••• = (θ′•11, . . . ,θ′•1n1

,θ′•21, . . . ,θ′•2n2

, . . . ,θ′•L1, . . . ,θ′•LnL)′,

with analogous definitions for the other quantities in the model.

It can be shown that, given σ2•, ξ•, and ψ••, the vectors

µ•11, . . . ,µ•1n1, θ•11, . . . ,θ•1n1 , . . . ,θ•L1, . . . ,θ•LnL , are

conditionally independent a posteriori.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 38: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Gibbs sampler

I µ•1k : Forward Filter Backward Sampler (FFBS) (Carter andKohn, 1994; Fruhwirth-Schnatter,1994).

I ξk |µ•1k , σ21k ,DT ∼ IG (0.5τ∗k , 0.5κ

∗k) , where τ∗k = τk + T and

κ∗k = κk + σ−21k

∑Tt=1(µt1k − µt−1,1k)2.

I ψlj |θ•lj ,DT ∼ IG (0.5%∗lj , 0.5ς∗lj ), where %∗lj = %lj + T (mlj − 1)

and ς∗lj = ςlj +∑T

t=1(θtlj − θt−1,lj)′Ω−lj (θtlj − θt−1,lj), where

Ω−lj is a generalized inverse of Ωlj .

I θ•lj : Singular FFBS.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 39: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Singular FFBS1. Use the singular forward filter to obtain the mean and

covariance matrix of f (θ1lj |σ2, ψlj ,D1), . . . ,f (θTlj |σ2, ψlj ,DT ):

I posterior at t − 1: θt−1,lj |Dt−1 ∼ N (mt−1,lj ,Ct−1,ljΩlj) ;I prior at t: θtlj |Dt−1 ∼ N (atlj ,RtljΩlj) , where atlj = mt−1,lj

and Rtlj = Ct−1,lj + ψlj ;I posterior at t: θtlj |Dt ∼ N (mtlj ,CtljΩlj) , where

Ctlj = (1 + R−1tlj )−1 and mtlj = Ctlj

(θetlj + R−1

tlj atlj

).

2. Simulate θTlj from θTlj |σ2, ψlj ,DT ∼ N(mTlj ,CTljΩlj).

3. Recursively simulate θtlj , t = T − 1, . . . , 0, from

θtlj |θt+1,lj , . . . ,θTlj ,DT ≡ θtlj |θt+1,lj ,Dt ∼ N(htlj ,HtljΩlj),

where Htlj =(C−1tlj + ψ−1

lj

)−1and

htlj = Htlj

(C−1tlj mtlj + ψ−1

lj θt+1,lj

).

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 40: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Reconstruction of the latent mean process

One of the main interests of any multiscale analysis is theestimation of the latent mean process at each scale of resolution.

From the g th draw from the posterior distribution, we canrecursively compute the corresponding latent mean process at eachlevel of resolution using the equation

µ(g)t,Dlj

= θ(g)tlj + νtljµ

(g)tlj ,

proceeding from the coarsest to the finest resolution level.

With these draws, we can then compute the posterior mean,standard deviation and credible intervals for the latent meanprocess.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 41: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 42: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Posterior densitiesD

ensi

ty0

510

1520

0.20 0.25 0.30 0.35 0.40 0.45 0.50

Den

sity

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 50

ξ1

ξ2

ξ3

ξ4

Den

sity

05

1015

2025

3035

0.0 0.2 0.4 0.6 0.8 1.0

ψ11

ψ12

ψ13

ψ14

σ2 ξ1, . . . , ξ4 ψ11, . . . , ψ14

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 43: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Multiscale coefficient for Macroregion 1

year

−8−7

−6−5

−4

1990 1995 2000 2005

year

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1990 1995 2000 2005

year

−11

−10

−9−8

1990 1995 2000 2005

θt111 θt112 θt113

year

23

45

67

1990 1995 2000 2005

year

7.0

7.5

8.0

8.5

9.0

9.5

10.0

1990 1995 2000 2005

θt114 θt115

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 44: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 45: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Discrepancy measurement model

Consider two subregions at the same level of resolution withobservations yt1 and yt2 at time t, observational variances σ2

1 andσ2

2, and aggregation weights p1 and p2. We define the DiscrepancyMeasurement Model (DMM) by the dynamic linear model

(yt1

yt2

)=

(p1σ

21/(p2

1σ21 + p2

2σ22) p2

p2σ22/(p2

1σ21 + p2

2σ22) −p1

)(µt∆t

)+ vt ,(

µt∆t

)=

(µt−1

∆t−1

)+ wt ,

where vt ∼ N(0,V), wt ∼ N(0,W), V = diag(σ21, σ

22), and

W = diag(Wµ,W∆).

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 46: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Relative discrepancy

Consider the DMM model and two subregions at the sameresolution level. We define the relative discrepancy between thesetwo subregions as W∆/Wµ.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 47: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Multiscale clustering algorithm

1. For each county, create a link to one of its neighbors whichminimizes the estimated relative discrepancy.

2. Create intermediate-level clusters of counties. Counties are inthe same cluster if and only if there is a path connecting them.

3. Obtain the data at the intermediate-level through aggregation.

4. Apply steps 1 and 2 to the intermediate-level clusters in orderto obtain the coarse-level clusters.

We illustrate the algorithm with a dataset on mortality in Missouri.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 48: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Estimated multiscale structure for the State of Missouri

Columbia Kansas City

Saint Louis

Springfield

Jefferson City

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 49: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1990

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 50: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1991

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 51: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1992

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 52: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1993

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 53: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1994

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 54: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1995

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 55: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1996

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 56: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1997

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 57: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1998

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 58: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

1999

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 59: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2000

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 60: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2001

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 61: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2002

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 62: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2003

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 63: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2004

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 64: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2005

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 65: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Missouri: square root of standardized mortality ratio per100, 000 inhabitants

2006

Observed Fitted

under 28.228.2 − 2929 − 29.829.8 − 30.6

30.6 − 31.431.4 − 32.232.2 − 33over 33

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 66: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

State of Missouri application. Residuals check.

Observed

Fitte

d26

2830

3234

36

25 30 35

Theoretical Quantiles

Sam

ple

Qua

ntile

s−3

−2−1

01

23

−3 −2 −1 0 1 2 3

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira

Page 67: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Outline

Motivation

Multiscale factorization

The multiscale spatio-temporal model

Bayesian analysis

Application: Agricultural Production in Espırito Santo

Unknown multiscale structure

Conclusions

Page 68: Gaussian Multiscale Spatio-temporal Models for Areal …jrojo/4th-Lehmann/slides/Ferreira.pdf · Gaussian Multiscale Spatio-temporal Models for Areal Data Marco A. R. Ferreira (University

Motivation Multiscale factorization Model Bayesian analysis Application Unknown multiscale structure Conclusions

Conclusions

I New multiscale spatio-temporal model for areal data.

I Estimated multiscale coefficients shed light on similarities anddifferences between regions within each scale of resolution.

I Modeling strategy naturally respects nonsmooth transitionsbetween geographic subregions.

I Our divide-and-conquer modeling strategy leads tocomputational procedures that are scalable and fast.

Gaussian Multiscale Spatio-temporal Models Marco A. R. Ferreira