18
1 Gas Turbines Lars E Bakken October 2012 Siemens SGT5-8000H (340MW)

Gas Turbines - · PDF file2. Gas Turbines. Øyvind Hundseid . November 11, 2009 . Siemens SGT5-8000H (340MW) x 2000 . Porsche Boxer x 100

  • Upload
    lamhanh

  • View
    222

  • Download
    1

Embed Size (px)

Citation preview

1

Gas Turbines

Lars E Bakken October 2012

Siemens SGT5-8000H (340MW)

2

Gas Turbines

Øyvind Hundseid November 11, 2009

Siemens SGT5-8000H (340MW)

x 2000

Porsche Boxer

x 100

3

Areas of Application

Propulsion

Power generation

4

World Total Energy Production

World Total Electricity Production

• Total electricity production: 23 274 TWh/year (2012) – Hydro : 19 % – Nuclear : 16 % – Coal: 40 % – Natural Gas: 15 % – Oil: 10 %

• Norway: – 99% energy production from hydro power with an installed

power of 28 000 MW Energi = Effekt x Tid

[W] = [J/s]

1kWh = 3600 kJ

World Energy Consumption • Total energy consumption; 542×1018J (2012) • 80 - 90 % derived from fossil fuel combustion

5

5

0

1

2

3

4

1990 2000 2007 2015 2025 2035

Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035(index, 1990 = 1)

History Projections

Net electricity generation

Total energy

consumption

EIA, International Energy Statistics database (as of November 2009), web site www.eia.gov/emeu/international. Projections: EIA, World Energy Projection System Plus (2010).

World Total Energy Production

6

GE - LM2500

Compressor

Combustor Power turbine

HP - Turbine

7

GE LM2500 – Operational data

• Power turbine output: ~ 22 MW • Thermal efficiency: ~ 37 % • Pressure ratio: 18:1 • HP turbine inlet temperature (TIT): 1270 K • HP Turbine speed: 9700 rpm • Power turbine speed: 3600 rpm The turbine parts are exposed to high temperatures and mechanical stress resulting in deterioration

8

Turbine Bl

ade

spee

d Compressor

Mechanical energy

Kinetic energy

Pressure

Blad

e sp

eed

Pressure

Kinetic energy

Mechanical energy

9

T3

Inlet/outler pressure

Combustor pressure

• GT cycle characterized by pressure ratio and turbine inlet temperature, T3

• Increased turbine inlet temperature, T3, increases thermal efficiency and power output

Comp.

Comb.

Turb 1 4

3 2 T3

The Gas Turbine Cycle

( ) ( )( )

( ) ( )( )

4 2 1

2

4 2 1

3

3 2

3

3 (

shaft

fuel fuel LHV

p p

p

P h h hEff

hh

T

iciencym H h

c T cc T

T TT

− − −= =

⋅∆ −

− − −=

− ideal gas)

( ) ( )4 2 13p pPower output m c T c T TT = − − − (ideal gas)

10

-100,000

100,000

300,000

500,000

700,000

900,000

1 100,000

1 300,000

1 500,000

5,200 5,400 5,600 5,800 6,000 6,200 6,400 6,600

The LM2500 Gas Turbine Cycle

11

• Air cooling

• Material

• Coating

Methods to increase T3

12

Operational conditions

Frequent starts/stops – thermal stress

Rapid changes in loading - high turbine inlet temperature and deterioration rate

Humid environment - salt deterioration

Stable loads – low deterioration rate

13 Snøhvit - Gas turbine system

Filter house Inlet duct,

silencer

Gas turbine Exhaust duct

Bleed duct

Vent duct

14.1 m

22.4 m

14

Jet Cat SPM5-20

15

Jet Cat SPM5-20

16

Jet Cat SPM5-20 (principle)

Side 1 av 6

1

2 3 4

5

6

7

Startmotor

Innløp

Sentrifugalkompressor

Diffusor

Brennkammer

Stasjonære ledeskovler foran 1.turbin

1.turbin

(Legg merke til at de to turbinene er frikoplet, dvs. 2 akslinger)

Stasjonære ledeskovler foran 2.turbin

2.turbin (kraftturbin)

Eksoskanal

Girkasse

Aksling til generator

17

Jet Cat SPM5-20

1 6

�7

2

5 3

4

abe

Sensortype Målested nummer*

Sensorplassering Flow Temperatur Trykk Strøm Spenning

1 Innløp 2 Etter kompressor 3 Etter brennkammer 4 Foran 1.turbin 5 Foran 2.turbin

ledeskovler

6 Foran 2.turbin 7 Eksos Generator

18

JetMan