27
Galaxy Masses, Oxford, 21-25 July 2014 Marc Verheijen Kapteyn Astronomical Institute Motivation The DiskMass Survey Sample & data From σ z to M /L K Baryon fractions and DM haloes stellar M/L and SSP models Disk Mass from Asymmetric Drift Concluding remarks Outline Galaxy disk masses from stellar kinematics highlights from the DiskMass Survey Bershady,Verheijen,Westfall, Martinsson, Swaters, Andersen

Galaxy disk masses from stellar kinematics - physics.ox.ac.uk · Galaxy Masses, Oxford, 21-25 July 2014 Marc Verheijen! Kapteyn Astronomical Institute • Motivation! • The DiskMass

Embed Size (px)

Citation preview

Galaxy Masses, Oxford, 21-25 July 2014

Marc Verheijen!Kapteyn Astronomical Institute

• Motivation!

• The DiskMass Survey!

• Sample & data!

• From σz to M✶/LK!

• Baryon fractions and DM haloes!

• stellar M/L and SSP models!

• Disk Mass from Asymmetric Drift !

• Concluding remarks

Outline

Galaxy disk masses from stellar kinematics!highlights from the DiskMass Survey!

Bershady, Verheijen, Westfall, Martinsson, Swaters, Andersen

Galaxy Masses, Oxford, 21-25 July 2014

SparsePak - I! PPak - I ! SparsePak - II! PPak - II!!I. overview!II. error budget!III. XC technique!IV. UGC 463!V. disks are sub-maximal!VI. PPak data!VII. RC decompositions!VIII. Disk stability and SF!IX. HI observations!……

Bershady et al, 2004!Verheijen et al, 2004!Bershady et al, 2005!Kelz et al, 2006!!Bershady et al, 2010!Bershady et al, 2010!Westfall et al, 2011!Westfall et al, 2011!Bershady et al, 2011!Martinsson et al, 2013!Martinsson et al, 2013!Westfall et al, 2014!Martinsson et al, 2014

Martinsson, PhD thesis! Groningen

DiskMass Survey - Publications

http://dissertations.ub.rug.nl/faculties/science/2011/t.p.k.martinsson/thesis_martinsson.pdf

Instrumentation :

Galaxy Masses, Oxford, 21-25 July 2014

Motivation

Extended HI rotation curves:

Acurate measure of Mdyn(r),!often reaching far into DM halo.

Rotation curve decomposition !is highly degenerate,!even with 2-param halo models.

Requires independent measure !of stellar mass to determine!Mbar/Mdyn , ρDM(r) , Jz , etc

Two approaches:!‣ SPS modeling!‣ stellar kinematics

‣ break the disk-halo degeneracy →ρ (R)!‣ dynamical calibration of SSP models

DM

Galaxy Masses, Oxford, 21-25 July 2014

Use statistical measure of disk thickness hz from edge-on galaxies... ...apply relation to face-on galaxies!

for which σz can be measured.

* 1.5<k<2 for exp, sech sech2

Dynamical disk mass surface density

vertical distribution*

disk!thickness

vertical oscillations

Σdyn = 100 k hz σz

1.5 444 pc 30 km/s

-1 -1 2M⦿ pc-2⎞

⎠⎝⎛

⎝⎛

⎝⎛⎞⎠

⎞⎠

For a collisionless, isothermal disk in equilibrium:

A dynamical measure of disk mass

disk

Galaxy Masses, Oxford, 21-25 July 2014

disk scale height and scale length

From surveys of edge-ons :

Schwarzkopf & Dettmar 2000!Kregel+ 02, 04!Xilouris+ 97, 99 Log(hR/hz) = 0.367 Log(hR/kpc) + 0.708 ± 0.095

Galaxy Masses, Oxford, 21-25 July 2014

The DiskMass Survey

• Two custom-built, large-fiber, wide-field! fiber bundles on 3.5m telescopes.!

• Phase A:!• 145 Hα velocity fields!• UBVRI, JHK images!

➞ Kinematic inclinations (i≥15)!➞ Tully-Fisher and asymmetry studies !

• Phase B:!• 40 stellar σlos measurements ! ➞ MgIb & CaII at R≈7.500-10.000!• Spitzer 4.5, 8, 24, 70 μm images! ➞ SFR & proxy for molecular gas!• HI aperture synthesis imaging (VLA, WSRT, GMRT)!

➞ extended rotation curves & atomic gas

SparsePak/WIYN PPak/Calar Alto

UGC 6918 Hα velocity field

Hα + HI!velocity field

➞ Measure Σdisk versus color, L, μ, SFR, etc!➞ Determine M★/L and ρDM

Galaxy Masses, Oxford, 21-25 July 2014

50x50 kpc - SDSS

a wide range in physical size, morphology, surface brightness and colour

DMS sample: physical sizes

Galaxy Masses, Oxford, 21-25 July 2014

2x2 arcmin - SDSS

a wide range in physical size, morphology, surface brightness and colour

DMS sample: morphologies

Galaxy Masses, Oxford, 21-25 July 2014

2x2 arcmin - SDSS & SparsePak Hα velocity fields

a wide range in physical size, morphology, surface brightness and colour

DMS sample: Hα velocity fields

Galaxy Masses, Oxford, 21-25 July 2014

40 nearly face-on spirals B-band 2.1m DSS Red Spitzer 8 μm Spitzer 24 μm SDSS (50x50 kpc)

a representative sample

Galaxy Masses, Oxford, 21-25 July 2014

40 nearly face-on spirals

x100 in luminosity x10 in surface-brightness 2 mags in B-K colour

a representative sample

Galaxy Masses, Oxford, 21-25 July 2014

λ = 4975−5375 Å R≈7500 Texp = 5−11 x 3600 sec

intensity observed VF model VF residual VF velocity disp. S/N

PPak IFU spectroscopy

Galaxy Masses, Oxford, 21-25 July 2014

continuum

EW [OIII]

σlos

σ starslos

σ gas

los

V gas

sin(i)c

V star

sin(i)c

V sin(i)c ✶ : stars!o : gas

✶ : stars!o : gas

PPak : stellar and gas kinematics

Galaxy Masses, Oxford, 21-25 July 2014

Radial σz(R) profiles follow expectations

For an exponential disk : hσ,z = 2 hR

Galaxy Masses, Oxford, 21-25 July 2014

HI 21cm spectral line aperture synthesis imaging

from VLA, WSRT, GMRT

Galaxy Masses, Oxford, 21-25 July 2014

HI 21cm spectral line aperture synthesis imaging

from VLA, WSRT, GMRT

Galaxy Masses, Oxford, 21-25 July 2014

MHI

ΣHI / ΣHImax vs R/RHI

DHI (kpc)

ΣHIave

MHI vs DHI at 1 M⦿/pc2

Log(MHI) = 1.72 Log(DHI) + 6.92

Resolved HI scaling relations

self-similar ΣHI(R) profiles

Galaxy Masses, Oxford, 21-25 July 2014

Vflat = 120−250 km/s Rmax = 4−10 hR

physical normalised & scaled

HSB !LSB

HSB !LSB

HI rotation curves

Galaxy Masses, Oxford, 21-25 July 2014

From μK and σz to Mdyn/L and M★/L

Radius (arcsec)

σ z (

km/s

)

Radius (arcsec)

Σ (M

⦿/p

c2 ) o: dyn!⦁:stellar

HI

H2

Σ★ = Σdyn − ΣHI − ΣH2

Σdyn = σz2 / π G k hz

Radius (arcsec)

M★/L

K

M★/LK = Σ★ / μK

Radius (arcsec)

μ K (

mag

/�)

bulge

maximum disk

Galaxy Masses, Oxford, 21-25 July 2014

V★,disk

V★,bulge

VHI+HeVmolec

VDM

Vc

cored pseudo-ISO cuspy NFW

Vc = V★,bulge + V★,disk + Vatom + Vmolec + VDM2 2 2 2 2 2

= Vbar + VDM2 2

Rotation curve decompositions with (M★/LK)dyn

VHαVHI

Galaxy Masses, Oxford, 21-25 July 2014

Baryon fraction!Fbar ≡ Vbar / Vc

Contribution of baryons to Vc

Maximum disk

Fb ≈ 0.4−0.7 at R>hR

Galaxy Masses, Oxford, 21-25 July 2014

Dark Matter halo rotation curves

cored pISO cuspy NFW

Galaxy Masses, Oxford, 21-25 July 2014

DM halo parameters from RC decompositions

⦁ : based on (M/L)dyn !o : maximum disk

⦁ : based on (M/L)dyn !o : maximum disk

Bullock et al (2001)

Galaxy Masses, Oxford, 21-25 July 2014

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−iu−

g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−iu−

g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−gτ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−iu−

g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−iu−

g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Bruzual & Charlot 2003: Chabrier IMF, Padova’94 tracks, τ models for solar metallicity

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.3 Gyr

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 1 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 8 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

CSFR

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−gτ = 0.1 Gyr

Bruzual & Charlot 2003: Chabrier IMF, Padova’94 tracks, τ models for solar metallicity

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.3 Gyr

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 1 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 8 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

CSFR

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Bruzual & Charlot 2003: Chabrier IMF, Padova’94 tracks, τ models for solar metallicity

DMS

0 1 2

2

1

0

g−iu−

g

τ = 0.3 Gyr

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 1 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 8 Gyr

DMS

0 1 2

2

1

0

g−iu−

g

CSFR

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Bruzual & Charlot 2003: Chabrier IMF, Padova’94 tracks, τ models for solar metallicity

DMS

0 1 2

2

1

0

g−iu−

g

τ = 0.3 Gyr

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 1 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 8 Gyr

DMS

0 1 2

2

1

0

g−iu−

g

CSFR

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

g-i g-i g-i g-i

u-g

Bruzual & Charlot (2003): Chabrier IMF, Padova’94 tracks, solar metallicity, τ models :

DiskMass Survey : dynamical measurement of stellar M/L Bershady et al (2014)M★/LK from dynamical data and SPS models

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

g-i g-i g-i

u-g

Galaxy Masses, Oxford, 21-25 July 2014

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−iu−

g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−iu−

g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−gτ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−i

u−g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

0 1 2

2

1

0

g−i

u−g

τ = 0.1 Gyr

Maraston 2005: Kroupa IMF, Geneva tracks, τ models for solar metallicity

DMS

AB=0.5

0 1 2

2

1

0

g−iu−

g

τ = 0.25 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 0.5 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 2 Gyr

DMS

0 1 2

2

1

0

g−i

u−g

τ = 5 Gyr

DMS

0 1 2

2

1

0

g−iu−

g

τ = 20 Gyr

Bershady et al. 2014

DMS

M/L*K

0.1

0.25

0.4

0.55

0.7

g-i g-i g-i g-i

u-g

Maraston (2005): Kroupa IMF, Fuel Consumption Theorem, solar metallicity, τ models :

DiskMass Survey : dynamical measurement of stellar M/L Bershady et al (2014)M★/LK from dynamical data and SPS models

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

.5 1 1.52

1.5

1

.5

g−i

u−g

DiskMass Survey: dynamical measurements of stellar M/L (Bershady et al. 2014)

0 1 2

2

1

0

g−i

u−g

0 1 2

2

1

0

g−i

u−g

AB=0.50.3

0.0

M/L*K

0.1

0.25

0.4

0.55

0.7

g-i g-i g-i

u-g

Galaxy Masses, Oxford, 21-25 July 2014

Dynamical Disk Masses using Asymmetric Drift

See poster by Kyle Westfall!(downstairs to left)

Example: UGC 448

Vga

sV

star

sσ s

tars

Disk mass using!asymmetric drift to infer σstars

Disk mass using σstars directly≈

Galaxy Masses, Oxford, 21-25 July 2014

Conclusions

• σz declines exponentially with radius (hσ,z ≈2 hR )!

• sub-maximal disks with 0.4<Fbar<0.7 for R>hR!

• consistent NFW pars for sub-maximal disks!

• (M★/LK)dyn consistent with Maraston’05 models! (Kroupa IMF, FCT, TP-AGB, τ≈few Gyr)

Questions / implications:!

‣ build-up of M★ over cosmic time?!

‣ baryonic Tully-Fisher relation?!

‣ disk stability?