84
1 GENETIC ALGORITHM (GA), MULTI-OBJECTIVE OPTIMIZATION (MOO) and BIOMIMETIC ADAPTATIONS SANTOSH SANTOSH K. GUPTA K. GUPTA DEPARTMENT OF CHEMICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, POWAI, MUMBAI 400 076, INDIA

GA Lectures IITB 09

  • Upload
    clinton

  • View
    242

  • Download
    3

Embed Size (px)

DESCRIPTION

Geometric Alg

Citation preview

Page 1: GA Lectures IITB 09

1

GENETIC ALGORITHM (GA), MULTI-OBJECTIVE OPTIMIZATION (MOO)

and BIOMIMETIC ADAPTATIONS

SANTOSH K. GUPTASANTOSH K. GUPTA

DEPARTMENT OF CHEMICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY

BOMBAY, POWAI, MUMBAI 400 076, INDIA

GA LECTURES IITB 09

Page 2: GA Lectures IITB 09

2

OPTIMIZATION (SOO) PROBLEM

MAXIMIZE F(x) OR MINIMIZE I(x) MIN I(x) MAX {F ≡ 1/[1+ I(x)]}

S.T.

GET A UNIQUE SOLUTION

L Ui i i parameterx x x ; i 1, 2, ..., n

Page 3: GA Lectures IITB 09

3

MOO: MIN I1 (x); MIN I2 (x)

NORMALLY WE FIND A SET OF EQUALLY-GOOD (NON-DOMINATING) SOLUTIONS, CALLED PARETO SET (e.g., MIN REACTION TIME, MIN SIDE PRODUCT CONCN)

A

B

F2

F1

BB

F1

B

F1

B

Page 4: GA Lectures IITB 09

4

GENETIC ALGORITHM (GA) MIMICS PRINCIPLES OF NATURAL

GENETICS

INVOKES THE DARWINIAN PRINCIPLE OF ‘SURVIVAL OF THE FITTEST’

‘DEVELOPED’ BY PROF. JOHN HOLLAND (U. MICH., ANN ARBOR, USA) IN 1975

BOOKS: HOLLAND, GOLDBERG, COELLO COELLO, K. DEB (IITK), G. RANGAIAH (NUS)

Page 5: GA Lectures IITB 09

5

SIMPLE GA (SOO)MAXIMIZE I(x) S.T.

L Ui i i parameterx x x ; i 1, 2, ..., n

U2X

L2X

U1X

L1X

Page 6: GA Lectures IITB 09

6

DESCRIPTION OF TECHNIQUE (BINARY-CODED)

NO PROOFS; SCHEMA THEORY

GENERATION NO. = 0

GENERATE, RANDOMLY, SEVERAL (NP) SETS OF nparameter DECISION VARIABLES, (x1, x2, ..., xnparameter)1, (x1, x2, ..., xnparameter)2, . . . AS MEMBERS OF A POPULATION

CHOOSE NO. OF BINARIES (SAY lstring = 4) DESCRIBING EACH DECISION VARIABLE

GENERATE (USING RANDOM NO. SUBROUTINE) nparameter lstring (≡ nchr) BINARIES FOR EACH OF THE NP MEMBERS

0.0 ≤ R < 0.5 → USE 0; 0.5 ≤ R ≤ 1.0 → USE 1

Page 7: GA Lectures IITB 09

7

1ST CHROMOSOME OR STRING : 1 0 1 0 0 1 1 1 2ND CHROMOSOME OR STRING : 1 1 0 1 0 1 0 1 * * NP

TH CHROMOSOME OR STRING : 1 1 0 1 0 0 0 1 S1 S2 S3 S4

CONVERT EACH BINARY INTO DECIMAL VALUE

XJ DOMAIN DIVIDED INTO 15 (2lstring - 1) INTERVALS

MAP EACH CHROMOSOME TO GIVE DECIMAL VALUES BETWEEN xJ

L AND xJU

Page 8: GA Lectures IITB 09

8

0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1

0 1 2 3 13 14 15

MAPPING RULE:

SUB-STRING, J

1l

0ii

il

LJ

UJL

JJ s212xxxx

LJX

UJX

Page 9: GA Lectures IITB 09

9

WE NOW HAVE EACH OF THE NP DECISION VARIABLES (VECTORS), xJ, IN TERMS OF REAL NUMBERS, e.g.,

1 (2.71, 3.23)2 (xxxx, xxxx) . .NP (xxxx, xxxx)

ALL BOUNDS ON XJ ARE SATISFIED

ACCURACY OF THE TECHNIQUE DEPENDS ON VALUE SELECTED FOR lstring

Page 10: GA Lectures IITB 09

10

USE MODEL EQUATIONS FOR EACH OF THE NP x, TO COMPUTE I(x)

jth chromosome Decoder Model I(xj)

Page 11: GA Lectures IITB 09

REPRODUCTION OR SELECTION TOURNAMENT SELECTION (COPY TO A MATING POOL)

CHOOSE TWO CHROMOSOMES RANDOMLY (FOR 100 CHROMOSOMES: 0.0 ≤ R < 0.01 → USE 1ST; 0.01 ≤ R ≤ 0.02 → USE 2ND, etc.)

COPY (WITHOUT DELETING) THE BETTER OF THE TWO

BAD STRINGS HAVE A CHANCE OF CONTINUING (GBS)

Page 12: GA Lectures IITB 09

12

CROSSOVER CHOOSE TWO CHROMOSOMES RANDOMLY, CHOOSE A

CROSSOVER SITE RANDOMLY, AND CARRY OUT CROSSOVER

0 0 0 1 0 0 1 0 1 0 1 0 → 1 0 0 1

GOOD STRINGS GET PROPAGATED, LESS GOOD ONES SLOWLY DIE DURING COPYING PROCESS IN THE FUTURE

NOT ALL GOOD STRINGS IN MATING POOL UNDERGO CROSSOVER; CROSSOVER PROBABILITY = PC, i.e., 100(1- PC) % OF STRINGS CONTINUE UNCHANGED TO NEXT GENERATION

Page 13: GA Lectures IITB 09

13

MUTATION FOR EXAMPLE, IF WE HAVE

0110 …0011 …0001 …

THE 1ST POSITION CAN NEVER BECOME 1 BY CROSSOVER

TO ACHIEVE SUCH CHANGES, EACH BINARY IN EVERY CHROMOSOME IS SWITCHED OVER (0 ↔ 1) WITH A LOWPROBABILITY, PM

BAD STRINGS, IF CREATED, WOULD DIE SLOWLY

Page 14: GA Lectures IITB 09

14

MATHEMATICAL FOUNDATION (USING SCHEMA THEORY) AVAILABLE IN TEXTBOOKS

GAs WORK WITH SEVERAL SOLUTIONS SIMULTANEOUSLY

MULTIPLE OPTIMAL SOLUTIONS CAN BE CAUGHT

Page 15: GA Lectures IITB 09

15

EXAMPLE 1

HIMMELBLAU FUNCTION

MIN I (X1, X2) = (X12 + X2 - 11)2 + (X1 + X2

2 - 7)2

S.T. 0 ≤ X1, X2 ≤ 6

OPTIMAL SOLUTION: (3, 2)T, I = 0

lstring = 10 BITS, PC = 0.8, PM = 0.05, NP = 20

KNUTH’S RANDOM NUMBER GENERATOR WITH RANDOM SEED = 0.760, USED

Page 16: GA Lectures IITB 09

16

INITIAL POPULATION

Page 17: GA Lectures IITB 09

17

CROSSOVER OPERATION

Page 18: GA Lectures IITB 09

18

MUTATION OPERATION

Page 19: GA Lectures IITB 09

19

POPULATION AT GENERATION 30

Page 20: GA Lectures IITB 09

20

POPULATION-BEST I VS. GENERATION NUMBER

Page 21: GA Lectures IITB 09

21

EXAMPLE 2

CONSTRAINED HIMMELBLAU FUNCTION

MIN I (X1, X2) = (X12 + X2 - 11)2 + (X1 + X2

2 -7)2

S.T. g1(X) ≡ (X1 - 5)2 + X22 - 26 ≥ 0

g2(X) ≡ X1 ≥ 0g3(X) ≡ X2 ≥ 0

Page 22: GA Lectures IITB 09

PENALTY FUNCTIONS

MIN F(X1, X2) ≡ I (X1, X2) + w1g1(X) + w2g2(X) + w3g3(X)

w1 = 105 IF g1(X) ≤ 0; w1 = 0 IF g1(X) ≥ 0

w2 = 105 IF X1 ≤ 0; w2 = 0 IF X1 ≥ 0

w3 = 105 IF X2 ≤ 0; w3 = 0 IF X2 ≥ 0

Page 23: GA Lectures IITB 09

23

INITIAL POPULATION AND POPULATION AT GENERATION 30

Page 24: GA Lectures IITB 09

24

MULTI OBJECTIVE OPTIMIZATION (MOO)

K. DEB, MULTI-OBJECTIVE OPTIMIZATION USING EVOLUTIONARY ALGORITHMS, WILEY, CHICHESTER, UK (2001)

K. MITRA, K. DEB AND S. K. GUPTA, J. APPL. POLYM. SCI., 69, 69 (1998)

EXAMPLE (2-OBJECTIVE FUNCTIONS, TWO DECISION VARIABLES)

S.T. XL X XU

I

T

Max I (X) (X X ), I (X , X ) 1 1 2 2 1 2

,

Page 25: GA Lectures IITB 09

25

NORMALLY WE FIND A SET OF EQUALLY-GOOD (NON-DOMINATING) SOLUTIONS, CALLED PARETO SET

A

B

F2

F1

Page 26: GA Lectures IITB 09

26

CONCEPT OF DOMINANCE AND NON-DOMINANCE (MAXIMIZATION)

IF ANY CHROMOSOME’S, I , IS ‘BETTER’ THAN THE I OF THE OTHER IN THE SENSE THAT I1 AS WELL AS I2 ARE LARGER FOR CHR 2 THAN FOR CHR 1, THEN 2 DOMINATES 1

2

1

I2

I1

Page 27: GA Lectures IITB 09

27

NSGA-II-JG ELITIST NON-DOMINATED SORTING

GENETIC ALGORITHM WITH aJG GENERATE NP PARENT CHROMOSOMES (IN

BOX P), NUMBERED 1, 2, …, NP

EVALUATE RANK NUMBER, II,RANK (BASED ON NON-DOMINATION)

CREATE NEW BOX, P’, HAVING NP LOCATIONS

Page 28: GA Lectures IITB 09

28

TAKE CHROMOSOME, II , FROM P (DELETE IT FROM P) AND PUT IT TEMPORARILY IN P’

COMPARE II WITH EACH MEMBER CURRENTLY PRESENT IN P’, ONE BY ONE, AND COLLECT THE NON-DOMINATED MEMBERS IN P’ (RETURN DOMINATED MEMBERS TO THEIR ORIGINAL POSITIONS IN P)

CONTINUE TILL ALL NP MEMBERS OF P HAVE BEEN EXPLORED (IRANK = 1). REPEAT TILL ALL NP ARE PLACED IN DIFFERENT FRONTS IN P’.

ASSIGN RANK NUMBER, II,RANK (= 1, 2, . . . ), TO EACH CHROMOSOME, II, IN P’ (LOW RANKS FOR DIVERSITY)

Page 29: GA Lectures IITB 09

29

EVALUATING CROWDING DISTANCE, II,DIST

IN ANY SELECTED FRONT OF P’, RE-ARRANGE ALL CHROMOSOMES IN ORDER OF INCREASING VALUES OF I1

(OR I2)

FIND THE LARGEST CUBOID ENCLOSING II IN P’, THAT JUST TOUCHES ITS NEAREST NEIGHBORS

CROWDING DISTANCE, II,DIST = SUM OF M SIDES OF THIS CUBOID

I1

I2 II

Page 30: GA Lectures IITB 09

30

BOUNDARY SOLUTIONS → HIGH II,DIST (HIDDEN IN CODE)

HELPS SPREAD OUT PARETO POINTS I1 BETTER THAN I2 IF

I1,RANK I2, RANK

OR

(I1,RANK I2, RANK ) AND (I1,DIST I2,DIST )

Page 31: GA Lectures IITB 09

31

COPYING TO A MATING POOL

TAKE (WITHOUT DELETING) ANY TWO MEMBERS FROM BOX P’ RANDOMLY

MAKE COPY OF THE BETTER ONE IN A NEW BOX, P’’

REPEAT PAIRWISE COMPARISON TILL P’’ HAS NP MEMBERS

NOT ALL MEMBERS IN P’ NEED BE IN P’’

Page 32: GA Lectures IITB 09

32

COPY ALL OF P’’ IN A NEW BOX, D, OF SIZE NP

CARRY OUT CROSSOVER AND MUTATION OF

CHROMOSOMES IN D

THIS GIVES A BOX OF NP DAUGHTER

CHROMOSOMES

Page 33: GA Lectures IITB 09

33

BIOMIMETIC ADAPTATION 1: JUMPING GENE

[KASAT & GUPTA, CACE, 27, 1785 (2003)]

1: Transposon inserted in a chromosome; 2: Genes in the transposon; 3,4: Inverted repeat sequences of bases/nucleotides; 5: Double-stranded

DNA of original chromosome

Page 34: GA Lectures IITB 09

34

JUMPING GENES (McCLINTOCK: 1987; NOBEL PRIZE: 1983 Medicine)

DNA CHUNKS OF 1-2 KILO-BASES THAT CAN JUMP IN AND OUT OF CHROMOSOMES

IMMUNITY TO ANTIBIOTICS

Page 35: GA Lectures IITB 09

35

REPLACEMENT AND REVERSION

JUMPING GENE

REPLACEMENT REVERSION

P

R

Q

S

P

P

Q

Q

R S

Q P

ORIGINALCHROMOSOME

TRANSPOSON

CHROMOSOMEWITH

TRANSPOSON

Page 36: GA Lectures IITB 09

36

JUMPING GENE OPERATORS SELECT A CHROMOSOME (SEQUENTIALLY)

FROM D. CHECK IF JG OPERATION IS NEEDED, USING PJUMP. IF YES:

NSGA-II-JG:

USING TWO INTEGRAL RANDOM NUMBERS, LOCATE TWO LOCATIONS (BEGINNING AND END OF JG OR TRANSPOSON)

REPLACE BY A SET OF NEWLY GENERATED RANDOM BINARIES OF SAME LENGTH

Page 37: GA Lectures IITB 09

NSGA-II-aJG:

CHOOSE/SPECIFY LENGTH, fB, OF AN a-JG

USING ONE INTEGRAL RANDOM NUMBER, LOCATE ONE LOCATION (BEGINNING OF THE a-JG)

REPLACE BY A SET OF fB NEWLY GENERATED RANDOM BINARIES

Page 38: GA Lectures IITB 09

38

ELITISM (DEB) COPY ALL THE NP (BETTER) PARENTS (P’’) AND

ALL THE NP DAUGHTERS (D) WITH TRANSPOSONS INTO BOX, PD (SIZE = 2NP)

RECLASSIFY THESE 2NP CHROMOSOMES INTO FRONTS (BOX PD’) USING ONLY NON-DOMINATION

TAKE THE BEST NP FROM PD’ AND PUT INTO BOX P’” (IF WE NEED TO ‘BREAK’ A FRONT, USE CROWDING DISTANCE)

Page 39: GA Lectures IITB 09

39

THIS COMPLETES ONE GENERATION. STOP IF CRITERIA ARE MET

COPY P’” INTO STARTING BOX, P. REPEAT

Page 40: GA Lectures IITB 09

40

SIMPLE EXAMPLE OF NSGA-II-JG (ZDT4)

MIN I1 = X1

MIN I2 = 1 – [I1/G(X)]1/2

WHERE [RASTRIGIN FUNCTION]: G(X) 1 + 10 (N - 1) + ∑i=2

N [Xi2 – 10 COS(4Xi)]

N = 10

Page 41: GA Lectures IITB 09

41

99 LOCAL PARETOS

GLOBAL PARETO HAS

0 X1 1; → 0 ≤ I1 ≤ 1

Xj = 0; j = 2, 3, . . . , 10; → 0 ≤ I2 ≤ 1

Page 42: GA Lectures IITB 09

42

Gen1000(NSGA-II)

f1

0.0 0.1 0.2 0.3 0.4 0.5

f 2

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

Gen 1000 (NSGA-II-JG)

f1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

f 2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 7

Page 43: GA Lectures IITB 09

43

f1

0.0 0.2 0.4 0.6 0.8 1.0 1.2

f 2

0.0

0.5

1.0

1.5

2.0

2.5

Pjump =0.1Pjump =0.3Pjump = 0.5 - 1.0

Page 44: GA Lectures IITB 09

SEVERAL CHE APPLICATIONS OF SIMULATION AND MOO

INDUSTRIAL NYLON 6 SEMIBATCH REACTORMIN tf; MIN [C2]f s.t. : Xm,d, μm,d USING T and p(t) or Tj(t) and p(t)

INDUSTRIAL THIRD-STAGE WIPED FILM PET REACTOR NSGA-I FAILS TO GIVE PARETO IN ONE-SHOT

APPLICATION; USED MULTIPLE RUNS

SS AND UN-SS INDUSTRIAL STEAM REFORMER CHROMOSOME-SPECIFIC BOUNDS

Page 45: GA Lectures IITB 09

INDUSTRIAL FLUIDIZED-BED CAT CRACKER (FCC)

MEMBRANE SEPARATION: LOW ALCOHOL BEER DESALINATION

CYCLONE SEPARATORS

VENTURI SCRUBBERS

PMMA REACTORS (EXPERIMENTAL ON-LINE OPTIMAL CONTROL)

HEAT EXCHANGER NETWORKS (LINHOFF’S PINCH METHOD)

Page 46: GA Lectures IITB 09

46

MOO of an INDUSTRIAL FCCU, B Sankararao & S K Gupta, CACE, 31,

1496 (2007)

Page 47: GA Lectures IITB 09

47

Argn, m2

Make up cat.

Regenerator

cat. withdrawal

Regenerator

Air, Fair, kg/sTair, K

Zdil, m

Zden, m

Riser / Reactor

Tfeed, KFeed, Ffeed, kg/s

Hris, m

Dilute Phase

Dense bedTrgn, K

To mainfractionator

Separator

Aris, m2

Riser

Spent cat.

Regenerated cat.,Fcat, kg/sCrgc, kg coke / kg catalyst

Schematic Diagram of A FCCU

Page 48: GA Lectures IITB 09

48

Gas Oil

Gasoline

LPG

k1

k2

k3

k4

Dry Gas

Coke

k5

k7

k6k8

k9

FIVE-LUMP KINETIC SCHEME USED IN THIS WORK

1, 2, 3, 4 are second order5, 6, 7, 8, 9 are first order

Page 49: GA Lectures IITB 09

49

MULTI-OBJECTIVE OPTIMIZATION PROBLEM: FCCU

Max f1 (Tfeed, Tair, Fcat, Fair) = gasoline yield

Min f2 (Tfeed, Tair, Fcat, Fair) = % CO in the flue gas

Subject to Constraints and Bounds on Tfeed, Tair, Fcat, Fair

Page 50: GA Lectures IITB 09

50

BOUNDS ON DECISION VARIABLES: 575 TFEED 670 K 450 TAIR 525 K 115 FCAT 290 kg/s 11 FAIR 46 kg/s

Page 51: GA Lectures IITB 09

51267.23Regenerator Pressure (kPa)

253.85Riser Pressure (kPa)

29.0Feed Rate (kg/s)

34000.0Inventory of Catalyst in Regenerator (kg)

4.5Regenerator Diameter (m)

19.4Regenerator Length (m)

0.685Riser Diameter (m)

37.0Riser Length (m)

VALUEPARAMETER

DESIGN DATA FOR THE INDUSTRIAL FCCU STUDIED

Page 52: GA Lectures IITB 09

52

NSGA-II NSGA-II-JG NSGA-II-aJG

MOSA MOSA-JG MOSA-aJG

30

32.5

35

37.5

40

42.5

45

0.001 0.01 0.1 1 10

% CO in flue gas

Gas

olin

e yi

eld

at e

nd o

f ris

er (%

)

30

32.5

35

37.5

40

42.5

45

0.001 0.01 0.1 1 10

% CO in flue gasG

asol

ine

yiel

d at

end

of r

iser

(%)

30

32.5

35

37.5

40

42.5

45

0.001 0.01 0.1 1 10

% CO in flue gas

Gas

olin

e yi

eld

at e

nd o

f ris

er (%

)30

32.5

35

37.5

40

42.5

45

0.001 0.01 0.1 1 10

% CO in flue gas

Gas

olin

e yi

eld

at e

nd o

f ris

er (%

)

30

32.5

35

37.5

40

42.5

45

0.001 0.01 0.1 1 10

% CO in flue gas

Gas

olin

e yi

eld

at e

nd o

f ris

er (%

)

30

32.5

35

37.5

40

42.5

45

0.001 0.01 0.1 1 10

% CO in flue gas

Gas

olin

e yi

eld

at e

nd o

f ris

er (%

)

Page 53: GA Lectures IITB 09

MOO of a (4H/5C) HEN

Min f1 ≡ cost

Min f2 ≡

Point A (MOO): $2.961 × 106/year, utility: 54,805 kW

● SOO: $ 2.934 × 106/ year, utility: 57,062 kW

■ SOO: Linnhoff and Ahmed

10-3 x Utility requirement (kW)

50 52 54 56 5810

-6 x

Ann

ual c

ost (

$/ye

ar)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Point A

, ,1 1

c hS S

cu i hu ii i

q q

Page 54: GA Lectures IITB 09

MOO RESULTS FOR A 4Hot/5Cold STREAM HX NETWORK (point A in next

slide)(A. Agarwal and S. K. Gupta, Indus. And Eng.

Chem. Res., 47, 3489-3501 (2008)

327

220

220

160

300

164

138

170

300

40

160

60

45

100

35

85

60

140

113.56

154.0.8

188.0

147.7

127.0 70.5125.4

107.6.8

106.0

193.8

110.0

Page 55: GA Lectures IITB 09

55

MOO OF AN INDUSTRIAL NYLON-6 SEMI-BATCH REACTOR (NSGA-II)

K. Mitra, K. Deb and S. K. Gupta, J. Appl. Polym. Sci., 69, 69-87 (1998)

WATER REMOVED TO DRIVE REACTION FORWARD

HISTORIES, p(t), TJ(t), USED

Rv,m

(mol/hr)Rv,w

(mol/hr)

F (kg)

N2To Condenser

SystemVT (t) (mol/hr)

Condensate

Condensing Vapor at TJ(t)

Vapor Phaseat p(t)

Liquid Phase

Stirrer

Valve

Page 56: GA Lectures IITB 09

MOO OF AN INDUSTRIAL NYLON-6 REACTOR

M. Ramteke and S. K. Gupta, Polym. Eng. Sci., 48, 2198-2215 (2008)

• MIN I1 [p(t), TJ(t)] = tf/tf,ref

• MIN I2 [p(t), TJ(t)] = [C2]f/[C2]f,ref

• s. t.:

• xm,f = xm,d

• μn,f = μn,d

• T(t) ≤ Tdegradation (= 280 ̊ C)

• MODEL EQUATIONS AND BOUNDS ON p(t), TJ(t) 56

Page 57: GA Lectures IITB 09

MOO OF THE INDUSTRIAL NYLON-6 REACTOR

57

Page 58: GA Lectures IITB 09

TWO RECENT BIOMIMETIC ADAPTATIONS OF

NSGA-II-aJG

Manojkumar Ramteke and

Santosh K. Gupta

Page 59: GA Lectures IITB 09

59

Haikel’s Biogenetic Law (Embryology)

• SOLUTIONS OF AN ‘ORIGINAL’ MOO PROBLEM AVAILABLE OVER ALL GENERATIONS, E.G., TOPT(T) IN A PMMA BATCH REACTOR

• REQUIRE THE SOLUTION FOR ‘ANOTHER’ SIMILAR (NOT THE SAME) MOO PROBLEM, E.G., TRE-OPT(T) AFTER A DISTURBANCE

Page 60: GA Lectures IITB 09

60

Ontogeny (9 months)

Phylogeny (Billions of years)

Ontogeny Recapitulates Phylogeny

Haikel’s Biogenetic Law

Page 61: GA Lectures IITB 09

HAIKEL’S BIOGENETIC LAW

THE DEVELOPMENTAL STAGES OF EMBRYOS SHOW ALL THE STEPS OF EVOLUTION

MODIFIED PROBLEM:

INITIAL CHROMOSOMES ARE AKIN TO AN EMBRYO, HAVING ALL THE ELEMENTS OF THE STEPS OF EVOLUTION PRIOR TO THAT SPECIES

Page 62: GA Lectures IITB 09

62

MIMICKING HAIKEL’S BIO-GENETIC LAW IN NSGA-II-AJG

THE FIRST GENERATION OF THE MODIFIED PROBLEM IS AKIN TO AN EMBRYO

STARTING CHROMOSOMES TAKEN RANDOMLY FROM THE DIFFERENT GENERATIONS OF THE ORIGINAL PROBLEM (SEED !!!)

Page 63: GA Lectures IITB 09

63

2

, , ,

2 1 ,2Range of

1

pNNj i j opt i

j i j opt

p

I II

N N

N = NO. OF OBJECTIVE FUNCTIONS

NP = POPULATION SIZE

OPT = OPTIMAL VALUE

MEAN SQUARE DEVIATION

I2

I1

Pareto-optimal set

I1,opt,4

I2,opt, 4

I2, 4

4th point

Interpolated value

Page 64: GA Lectures IITB 09

64

THE MEAN SQUARE DEVIATION, σ2, IS A MEASURE OF THE LEVEL OF CONVERGENCE

σ2 SHOULD BE LESS THAN 0.1 FOR ‘CONVERGENCE’

σ2 GREATER THAN 0.1 SHOWS CONVERGENCE TO A LOCAL PARETO FRONT

Page 65: GA Lectures IITB 09

65

(PA)(P)(OT)(OX)Phthalic Anhydride

o-Xylene o-Tolualdehyde Phthalide1 4 5

67

Maleic Anhydride (MA)

COx23 8

S4

S3

S2

S1

L1

L2

L3

L4

L5

L9

L1

Coolant

(a)

(b)

S4

S3

S2

S1

L1

L2

L3

L4

L5

L7

AN INDUSTRIAL PHTHALIC ANHYDRIDE REACTOR

• (a) Original Problem having 7 Catalyst Beds

• (b) Modified Problem having 9 beds

Page 66: GA Lectures IITB 09

66

• RESULTS IMPROVE WITH THE INCREASE IN THE NUMBER OF CATALYST BEDS

• B-NSGA-II-AJG CONVERGES IN ABOUT 25 GENERATIONS (NSGA-II-AJG DOES NOT CONVERGE EVEN IN 70 GENERATIONS)

Yield of PA

1.08 1.10 1.12 1.14 1.16 1.18

Tota

l cat

alys

t len

gth

(m)

0.4

0.5

0.6

0.7

0.8

0.9

Original Problem,NSGA-II-aJGModified Problem,B-NSGA-II-aJG

Yield of PA

1.08 1.10 1.12 1.14 1.16 1.18

Tota

l cat

alys

t len

gth

(m)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

B-NSGA-II-aJGNSGA-II-aJG

(a) Gen = 71

(b) Gen = 25, Modified Problem

Page 67: GA Lectures IITB 09

67

ALTRUISTIC GENETIC ALGORITHM, ALT-NSGA-II-AJG

Page 68: GA Lectures IITB 09

n n Queen Bee(Mother)

n (Single)Father(Stored sperms)

n n n

Meiosis

n n

n n n n n

SeveralEggs

(Different)

SeveralSperms(Identical)

Di

Daughters(Several)

Si

Sons(Several)

Page 69: GA Lectures IITB 09

69

EXPLAINING BEE EVOLUTION IS DIFFICULT USING NATURAL SELECTION

QUEEN, DAUGHTER WORKER BEES ARE DIPLOID WHEREAS MALE DRONES ARE HAPLOID. THIS HAPLO-DIPLOID BEHAVIOR GIVES RISE TO ALTRUISM

ALTRUISTIC BEHAVIOR EXPLAINED USING THE CONCEPT OF INCLUSIVE FITNESS

WORKER BEES PREFER TO REAR QUEEN’S OFFSPRINGS (SISTERS) RATHER THAN PRODUCING THEIR OWN DAUGHTERS

Page 70: GA Lectures IITB 09

70

MIMICKING HONEY BEE COLONIES: INITIAL ALGORITHM

CROSSOVER BETWEEN A QUEEN CHROMOSOME AND REMAINING CHROMOSOMES; TWO ADAPTATIONS:

ONE-GOOD-QUEEN-NSGA-II-AJG: GOOD QUEEN IS INSERTED PURPOSEFULLY (FROM CONVERGED RESULTS); MEANINGLESS

ONE-BAD-QUEEN-NSGA-II-AJG: QUEEN SELECTED AS THE BEST FROM THE POPULATION

Page 71: GA Lectures IITB 09

71

ALT-NSGA-II-AJG

ONE-BAD-QUEEN-ADAPTATION NOT TOO GOOD; EXTEND INTUITIVELY

MULTI-(BAD) QUEEN (IN SOME HYMENOPTERANS)-NSGA-II-AJG WITH TWO-POINT, THREE-MATE CROSSOVERS: ALT-NSGA-II-AJG

Page 72: GA Lectures IITB 09

72

THE ZDT4 PROBLEM

1 1

12

12

min

min 1

f x

ff gg

xx

10 1-5 1; 2,3, . . . ., (=10) j

xx j n

2

2

1 10 1 10cos 4n

i ii

g n x x

x

Subject to:

Page 73: GA Lectures IITB 09

73

RESULTS

No. of generations

0 50 100 150 200

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

One-good-queen-Alt-NSGA-II-aJGOne-bad-queen-Alt-NSGA-II-aJG

No. of generations

0 100 200 300 400 500 600

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

multi-queen-Alt-NSGA-II-aJG (new crossover)

(a) One queen adaptation (b) Multiple queen adaptation

Page 74: GA Lectures IITB 09

Reactor feed

Process gas

Shell and Tube type reactor

Coolant out

Coolantin

Switch Condenser

s

Scrubber/Incinerator

AN INDUSTRIAL PHTHALIC ANHYDRIDE REACTOR

74

Page 75: GA Lectures IITB 09

75

(PA)(P)(OT)(OX)Phthalic Anhydride

o-Xylene o-Tolualdehyde Phthalide1 4 5

67

Maleic Anhydride (MA)

COx2

3 8

S4

S3

S2

S1

L1

L2

L3

L4

L5

L9

Coolant

9-ZONE PHTHALIC ANHYDRIDE REACTOR

9 catalyst beds

Page 76: GA Lectures IITB 09

76

No. of generations

0 10 20 30 40 50

0.01

0.1

1

10

100

Alt-NSGA-II-aJGNSGA-II-aJG

kg of PA produced/kg of oX consumed

1.10 1.12 1.14 1.16 1.18

Tota

l len

gth

of a

ctua

l cat

alys

t bed

(m)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Alt-NSGA-II-aJGNSGA-II-aJG

B

A

(a)

(b)

Page 77: GA Lectures IITB 09

77

RAMTEKE, M; GUPTA, S. K. IND. ENG. CHEM. RES., 2009, DOI: 10.1021/IE801592C

RAMTEKE, M; GUPTA, S. K. IND. ENG. CHEM. RES., 2009, IN PRESS

REFERENCES

Page 78: GA Lectures IITB 09

78

ON-LINE OPTIMAL CONTROL OF the BULK POLYMERIZATION of MMA

(PLEXIGLAS)

SA Bhat, S Gupta, DN Saraf and SK Gupta, Ind. Eng. Chem. Res., 45, 7530-7539 (2006).

Page 79: GA Lectures IITB 09

79

POLYMERIZATION IN A BATCH REACTOR

Initiation

Propagation

Termination

Gel Effect

Time

Conv

ersio

nCalls for On-line Optimizing Control to Ensure Desired End Product Properties !!!

Page 80: GA Lectures IITB 09

80

ON-LINE OPTIMAL CONTROL OF A PMMA REACTOR

Polymeri-zationReactor

Disturbance

Data Acquisition: T(t), Power (t)

Model (Parameter)Re-tuning

Soft(ware) Sensing

Computing the Optimal ControlAction, T(t), to get Right Mn at the end

Page 81: GA Lectures IITB 09

81

SCHEMATIC DIAGRAM

2

PC with PCI-MIO-16E4

STEPPER MOTOR PI PI

PARR 4842 Ar

COOLINGWATER

NEEDLE VALVE PI

V2

M

V1

V3

COOLING COIL

HEATER 5B Modules

N

I

TTo HeaterController

Page 82: GA Lectures IITB 09

82

PARR REACTORSymmetrical Reactor (with Parr Head)

Page 83: GA Lectures IITB 09

83

Experimental Result: Solid Line: Optimal Profile with no failureZone 1: Simulation of Heater Failure (complex dual slope)

Control restarted at end of Zone 1Zones 2-5: History as computed and controlled (Note changes as re-

optimization takes place)

Page 84: GA Lectures IITB 09

84

Thank You