27
Smooth, rough, broken: From Lyapunov exponents and zero modes to caustics in the description of inertial particles. G. Falkovich Leiden, August 2006

G. Falkovich Leiden, August 2006

Embed Size (px)

DESCRIPTION

Smooth, rough, broken: From Lyapunov exponents and zero modes to caustics in the description of inertial particles. G. Falkovich Leiden, August 2006. Smooth flow. 1d. H is convex. Multi-dimensional. → singular (fractal) SRB Measure. entropy. Coarse-grained density. - PowerPoint PPT Presentation

Citation preview

Page 1: G. Falkovich Leiden, August 2006

Smooth, rough, broken:

From Lyapunov exponents and zero modes to

caustics in the description of inertial particles.

G. Falkovich

Leiden, August 2006

Page 2: G. Falkovich Leiden, August 2006

Smooth flow

1d

dze zNSzX )(

0)0( H

H is convex

Page 3: G. Falkovich Leiden, August 2006

Multi-dimensional

Page 4: G. Falkovich Leiden, August 2006

entropy

→ singular (fractal) SRB Measure )exp( tn mm

Page 5: G. Falkovich Leiden, August 2006

An anomalous scaling corresponds to slower divergence of particles to get more weight.Statistical integrals of motion (zero modes) of the backward-in-time evolution compensate the increase in the distances by the concentration decrease inside the volume. Bec, Gawedzki, Horvai, Fouxon

Coarse-grained density

Page 6: G. Falkovich Leiden, August 2006

u

v

Maxey

Inertial particles

Page 7: G. Falkovich Leiden, August 2006

Spatially smooth flow

One-dimensional model

Equivalent in 1d to Anderson localization: localization length=Lyapunov exponent

Page 8: G. Falkovich Leiden, August 2006

Velocity gradient

Page 9: G. Falkovich Leiden, August 2006

Fouxon, Stepanov, GF

Page 10: G. Falkovich Leiden, August 2006

Lyapunov exponent

Page 11: G. Falkovich Leiden, August 2006

Gawedzki, Turitsyn and GF.

Page 12: G. Falkovich Leiden, August 2006

dnndtdnnPtttn 20 )()/(1)(

Page 13: G. Falkovich Leiden, August 2006

Statistics of inter-particle distance in 1d

high-order moments correspond effectively to large Stokes

Rdt

dR

Page 14: G. Falkovich Leiden, August 2006

Piterbarg, Turitsyn, Derevyanko, Pumir, GF

||/1 RnContinuous flow

?|| mm Rn

Page 15: G. Falkovich Leiden, August 2006

Derevyanko

Page 16: G. Falkovich Leiden, August 2006
Page 17: G. Falkovich Leiden, August 2006

2d short-correlated

Baxendale and Harris, Chertkov, Kolokolov ,Vergassola, Piterbarg, Mehlig and Wilkinson

Page 18: G. Falkovich Leiden, August 2006

Coarse-grained density:

Page 19: G. Falkovich Leiden, August 2006
Page 20: G. Falkovich Leiden, August 2006

Falkovich, Lukaschuk, Denissenko

n-2

Page 21: G. Falkovich Leiden, August 2006
Page 22: G. Falkovich Leiden, August 2006

3d

Bec, Biferale, Boffetta, Cencini, Musacchio, Toschi

Finite-correlated flow

Short-correlated flow

Duncan, Mehlig, Ostlund, Wilkinson

Page 23: G. Falkovich Leiden, August 2006

Clustering versus mixing in the inertial interval:

Balkovsky, Fouxon, Stepanov, GF, Horvai, Bec Cencini, Hillerbrand

2/)1( ruUvdiv r

Page 24: G. Falkovich Leiden, August 2006

Fouxon, Horvai

Page 25: G. Falkovich Leiden, August 2006

Fluid velocity roughness decreases clustering of particles

Pdf of velocity difference has a power tail

Bec, Cencini, Hillerbrand

Page 26: G. Falkovich Leiden, August 2006

Collision rate

Fouxon, Stepanov, GF

Bezugly, Mehlig and Wilkinson

Pumir, GF

Sundaram, Collins; Balkovsky, Fouxon, GF

Page 27: G. Falkovich Leiden, August 2006

1. To understand relations between the Lagrangian and Eulerian descriptions.

2. To sort out two contributions into different quantities: i) from a smooth dynamics and multi-fractal spatial distribution, and ii) from explosive dynamics and caustics.

3. Find how collision rate and density statistics depend on the dimensionless parameters (Reynolds, Stokes and Froude numbers).

Main open problems