71
Fusion Energy 101 Jeff Freidberg PSFC & NSE January 2012 1

Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Fusion Energy 101

Jeff Freidberg PSFC & NSE

January 2012

1

Page 2: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Outline

1. What is fusion’s role in energy production

2. How does fusion work?

3. Where is fusion research now?

4. Where might fusion be in the future?

2

Page 3: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Consumption of Energy by Sector

Transportation

Electricity

Heating

EIA – DOE 2010 3

Page 4: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Where does fusion fit in?

• Goal of fusion: make electricity

• Lots of it!

• Base load electricity – 24/7

4

Page 5: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Electricity Production

Gas 19%

Nuclear 21%

Hydro 6% Other 4%

Coal 49%

EIA – DOE 2010 5

Page 6: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Electricity Production – Other 4%

6

Oil 22%

Biomass 25%

Geothermal 9%

Wind 53%

Page 7: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The Big Picture Fusion Pros:

• Huge resources – a renewable • No CO2 emissions • No pollution • Inherently safe • No proliferation issues • Small radiation and waste disposal problems • Small power plant footprint

7

Page 8: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The Big Picture Fusion Cons:

• It doesn’t work yet

8

Page 9: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

How does fusion work? Science

• Nuclear physics • Plasma physics

Engineering • Materials • Magnets • Blanket design • Economics

9

Page 10: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Nuclear Physics

Two types of nuclear reactions:

• Fission – split heavy atoms (Uranium)

• Fusion – fuse light atoms (Deuterium)

10

Page 11: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The easiest fusion reaction D-T

D + T → He + n + 17.6 MeV

11

Page 12: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Fuel Inventory - Coal

12

Page 13: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Fuel Inventory - Fusion

13

Page 14: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Fuel Supply - Fusion

• Plenty of D from the ocean • No natural T – half life = 12 years • Need to breed T in the reactor

Li-6 + n → He + T + 4.8 MeV • Li-6 is 7% of natural lithium • 1000’s of years of natural lithium

14

Page 15: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

A Big Problem • Like charges repel

• Huge energies are needed to overcome the repulsive force • This turns the gas into a plasma

15

+ +

Page 16: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Definition of a Plasma

16

Electrons have enough energy to detach from nucleus Temperature is a measure of energy Energy is measured in electron volts (eV) 1 eV = 11,300 C = 20,400 F Fusion plasma = 15 keV = 17,000,000 C

Page 18: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Properties of a fusion plasma

• We need enough plasma: (air/100,000)

• At a high enough temperature: (air x million)

• Holding its heat for a long enough time:

• For a sustained fusion plasma – Lawson Criterion

18

−= 20 310n m

=15T keV

τ = 2 sec

τ > −8 secp atm

Page 19: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Picture of a fusion plasma

19

Page 20: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The Dick and Jane Fusion Reactor

• Alphas stay in and heat the plasma

• Alphas (He) stay in and heat the plasma • Plasma cools down by thermal conduction • Balance determines the temperature • Neutrons enter and heat the blanket – makes electricity • Blanket also breeds tritium

20

Page 21: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Basic Plasma Physics Questions

• How do we hold a plasma together?

• How do we heat it to 15 keV

21

Page 22: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Hold a plasma together – some ideas

22

• Put it in a container – dumb idea

• Gravity – not on earth

• Inertial confinement – hurry up

• Magnetic confinement – no hurry

Page 23: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Magnetic confinement

• Cyclotron orbits • Good confinement perpendicular to B • No confinement parallel to B

23

Page 24: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Too bad about ends

24

Page 25: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

A simple solution

• Homer Simpson “Donuts. Is there anything they can’t do?”

25

Page 26: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Too simple! • Field is weaker on the outside • Plasma wants to expand • Hole gets bigger • Need to wrap the field lines around the plasma like on a

barber pole • Can do this by passing a current around the plasma • Can do this with corkscrew magnets

26

Page 27: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Many attempts at good magnetic field configurations

Belt pinch Reversed field pinch Cusp Screw pinch Elmo bumpy torus Spherical tokamak Field reversed configuration Spheromak Force free pinch Stellarator Heliac Stuffed caulked Cusp High beta stellarator Tandem mirror Levitated dipole Theta pinch Mirror Tokamak Octopole Tormac Perhapsatron Z pinch Plasma focus Z pinch – hard core

27

Page 28: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Two have risen to the top – why?

Tokamaks • Best plasma physics performance • But two tough problems remain Stellarators • Performance approaching that of tokamaks • May be able to solve tokamak problems • But other engineering problems arise

28

Page 29: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

How does a tokamak work?

A tokamak needs three types of magnets

• A toroidal field magnet

• An ohmic transformer

• Poloidal field magnet

29

Page 30: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

30

The toroidal field magnet

Page 31: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The ohmic transformer

31

Page 32: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The poloidal field magnet

32

Page 33: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The total magnet system

33

Page 34: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Tokamak magnetic field lines

34

Page 35: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

A real life tokamak-Alcator C-Mod

35

Page 36: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Picture of a fusion plasma held together by a magnetic field

36

Page 37: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

What is good about a tokamak? The B field holds enough plasma together in a stable way for a reactor

Stable Unstable

37

Page 38: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

What is good about a tokamak?

+ = Plasmas are heated by microwaves or RF waves to fusion reactor temperatures

38

Page 39: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Picture of a fusion plasma confined by a magnetic field heated by

microwave power

39

Page 40: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

What is good about a tokamak? • The cooling down time is long enough to

sustain the plasma in a fusion reactor

40

Page 41: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Tokamak Progress

41

Page 42: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Two tokamak problems

• The need for steady state

• Avoidance of major disruptions

42

Page 43: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

• Transformers do not work in steady state • Mechanical and heat cycling bad for structural integrity • Need a way to drive the plasma current indefinitely • This can be accomplished by microwave current drive

43

Primary current Plasma current

t t

The need for steady state

Page 44: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Microwave current drive • Launch waves in one direction around the torus • Choose the frequency and wave velocity carefully • Wave scoops up electrons as it travels • Preferential scooping produces a current

44

Page 45: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Current drive analogy

45

Page 46: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

How well does current drive work? • The good news: current drive works

• The bad news: it is not very efficient

• 1 amp requires 10 watts of absorbed power

• 15 MA requires 300 MW of wall power

• Whole reactor produces 1000 MW wall power

• Not economical

46

Page 47: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Possible solution • Depend on the good will of the plasma • Naturally occurring transport driven current • Known as the “bootstrap” current • Carefully tailored profiles can produce 75% bootstrap

current • Not easy to tailor the profiles in a reactor • Plasmas are not your friends

47

Page 48: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Disruptions • Rapid quenching of the plasma pressure • Rapid quenching of the plasma current • Physical damage to the first wall • Tolerable in existing experiments • Intolerable in a fusion reactor

48

Page 49: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The tough little plasma • Start with a little ohmically heated baby plasma

• Feed it some current

• Feed it some particles

• Feed it some energy

• Plasma grows bigger and stronger

• Just a little more to become a grown up “fusion plasma”

49

Page 50: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Too much!

50

Page 51: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Possible solutions • Build a very sturdy first wall – not really feasible • Avoid disruptions – leads to puny plasma • Disruption “extinguisher” – good to prevent damage

51

Page 52: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The bottom line

• Tokamak plasma physics work reasonably well

• Steady state is doable but tough

• Disruption avoidance is doable but tough

52

Page 53: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Stellarators may be a better way

• Inherently steady state – no net current flows

in the plasma

• Without net current, stellarators do not

observe major disruptions

53

Page 54: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Two big stellarators • LHD in Japan

• W7-X in Germany

54

Page 55: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Stellarators have their own problems

• Magnets are very complicated

• Cooling down time is not quite as long as for a

tokamak – at least not yet

55

Page 56: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The next big fusion experiment - ITER

56

Power out = 500 MW thermal

Pulse length = 500 – 2500 sec

Major radius = 6.2 m

Minor radius = 2.0 m

Plasma current = 15 MA

Toroidal field = 5.3 T

Heating power = 73 MW

Cost = $4B, $10B, $20B

Page 57: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Goals of ITER

57

Test most plasma physics, some engineering

Page 58: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Switch from physics to engineering

What are the key fusion engineering problems?

• Materials

• Magnets

• Blankets

• Economics

58

Page 59: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The problems are tough but

• We can see a possible solution for magnets

• We can see a possible solution for blankets

• Way too little funding for engineering research

59

Page 60: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

The first wall materials problem • Survive heat load • Survive neutron load • Maintain good mechanical properties • Maintain good thermal properties • Maintain good electrical properties • No cracking or becoming brittle • Can’t do it right now

60

Page 61: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Leading contenders for new materials

• Superbium

• Miraculum

• Unobtainium

• Major research effort needed

• Not well funded

61

Page 62: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Economics – a tough problem • Which costs more?

62

Page 63: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Which costs more?

63

Page 64: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Power Plant Economics

Capital + O&M + Fuel = COE($/kwh)

Page 65: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Compare fission and fusion economics

• Key point: Capital separates into two components

• Nuclear island – basically the “furnace”

• Balance of plant – turbines, buildings, etc.

65

Page 66: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Fission vs. Fusion Type Capital + Operating + Fuel = COE Fission (4.2 + 2.8) + 1.3 + 0.7 = 9 c/kwh Fusion (8.4 + 2.8) + 1.3 + 0.7 = 13.2 c/kwh

66

Page 67: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

But

Fusion has other advantages

• Safety

• Waste disposal

• Proliferation resistance

Will this be enough?

67

Page 68: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

A long range fission problem • Natural uranium will run out: 50 -100 yrs • What then? • Fission solution: Breeder reactors • Breeder reactors:

• More costly • More delicate to operate safely • Takes 10 – 20 yrs to breed • Entire fleet must be converted to breeders $$$$

68

Page 69: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Fusion-Fission Hybrid • Fusion reactor is surrounded by a lithium blanket

• Replace it with a fission blanket

• Fusion neutrons make a lot of fission fuel

• 1 fusion reactor fuels 5 – 8 LWR fission reactors

• High fusion cost leveraged against multiple LWRs

• No need to convert fission fleet

• Plasma physics easier, engineering comparable

• Fission energy for 1000’s of years

• Hybrid – Optimum or Pessimum?

69

Page 70: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Hybrid economics Crossover point between hybrids and breeders Break even point where hybrids win

70

====

cost of an LWR fission reactor cost of a breeder reactor cost of a hybrid

number of LWRs per hybrid

LWR

BRE

HYB

CCCN

< − ≈

1 2.5HYB BRE

LWR LWR

C CNC C

Page 71: Fusion Energy 101 - PSFC Librarylibrary.psfc.mit.edu/catalog/online_pubs/iap/iap2012/freidberg.pdf · High beta stellarator Tandem mirror. Levitated dipole Theta pinch. Mirror Tokamak

Summary • Fusion has enormous potential • Problems greater than anticipated • Funding less than anticipated • Hybrids may serve as an intermediate goal • Hybrids may even serve as an end goal • Problems are incredibly interesting

It is worth the effort!!

71