81
0 1 st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies 1 st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies Jose Silva-Martinez Department of Electrical and Computer Engineering Texas A&M University Fundamentals on Electronics: A Design Oriented Teaching Methodology

Fundamentals on Electronics: A Design Oriented Teaching

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

01st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

1st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Jose Silva-Martinez

Department of Electrical and

Computer Engineering

Texas A&M University

Fundamentals on Electronics: A Design

Oriented Teaching Methodology

11st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Mixed-Signal Integrated Circuits

Mobile DevicesMedical Imaging

Sensing and Biometrics

Amplifiers, Filters and Analog-to-Digital Converters: Interfacing with the world

21st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Market Growth in Wireless Communications

Smartphones By 2016 market > 2B units*

*Business Insider: The global smartphone market report

31st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Important Features: Wireless; 5G and Beyond

f

Carrieragregation

GHz

singlecarrier

High bandwidth (160 MHz)

β€’ Carrier aggregation

β€’ Full band capture

High resolution (>10 bit)

β€’ Presence of blockers requires high dynamic range

β€’ Better Linearity (Co-existence)

Low power consumption

β€’ Extent battery life of wireless receivers.

41st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

There are multiple architectures to select, depending on your bandwidth and resolution requirements.

4

6

8

10

12

14

0.1 1 10 100 1000

EN

OB

(b

its

)

BW (MHz)

ΣΔ

Pipeline

SAR

Flash,

t.i. SAR

Sigma delta (ΣΔ) and pipeline ADCs are the bestarchitectures for broadband wireless receivers

6 8 10 12 14 16 18

0.0

1 0

.1 1

1

0

Cable TV

Spectrum

Analizers

Ultrasound

Radar

Automotive

Wireless

InfrastructureFlat Panel

Defense

Communications

RadarSonet

Digital

Oscilloscope

Emerging

802.11ax

Effective number of bits

Sig

na

l B

an

dw

idth

(G

Hz)

Mixed-Signal Integrated Circuits

51st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Technology Trend: Increased throughput

Low-Noise and Linear Amplifiers

High Performance Filters

High performance Up/Down Converters

High-performance Frequency Synthesizers

High performance A/D and D/A

But technology trend is towards faster and smaller

transistors but limited performance for Analog Functions:

Back to fundamentals: Linear feedback (Calibration) is a

suitable option

61st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

How to prepare for these challenges?

β€’ Teaching electronics:

β€’ Millman-Halkias: One of the most popular books in the 70’s and early 80’s.

β€’ Nicely written and large number of examples. 75% Analog and 25% Digital

β€’ Sedra-Smith: Replaced Millman-Halkias. The most popular textbook on electronics during the last 20 years. Many authors follow this style. Less algebra and more insight. >1800 pages, 50% Analog and 50% digital electronics.

71st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Teaching Electronics:

β€’ Ravazi: Recent book, becoming very popular. Updated material. Nice book with videos available through youtube.

β€’ A large number of excellent textbooks are available, but students have to digest the material in 14-15 weeks.

81st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Challenges in today’s education

Big books with plenty of derivations help with the analysis of circuits, but make

difficult for students to digest properly the concepts;

Too compact, we endup with a cook book; hard to understand the most relevant

concepts;

Analysis with the aim of obtaining DC and AC equations do not necessarily help

students to understand the fundamentals;

Major device limitations should be emphasized as well;

Design approach: Students must be able to design working circuits, not just analysis;

Proper management of the simulators;

Hands on experience is essential to fully digest the material;

91st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Outline

First part:Revising BJT FundamentalsSmall-signal Model for the BJT: A Linear Approximation.Transistor characterization and design approach.Design examples

CMOS Fundamentals (same topics as in BJTs)

10 minutes break

101st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Outline

Second part:CMOS (Integrated circuits) blocks

Technology, modeling and noise

Current mirrors

Differential pair

OPAMPs

Advanced Amplifiers for ADCsPipeline ADCs

SD Modulators

111st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Outline

Hands-On Experience Sessions: 2:30pm-4:45pm

Undergraduate examples: Please download LTSpice before the session; google LTSpice)Jose Silva-Martinez: Connecting theory with simulations

Tanwei Yan: Use of AD2 as oscilloscope, frequency synthesizer, network analyzer, vector analyzer

Advanced Mixed-Mode Systems: Pipeline ADC as an example Junning Jiang: Macromodels in Cadence (can also be built in LT Spice with

some limitations)

Amr Hassan: Transistor level realization of the first ADC stage, and simulations results and interpretations

121st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Bipolar Junction Transistor Circuits

131st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.2 DC Characteristics of the BJT (Input)

β€’ 𝑰π‘ͺ vs 𝑽𝑩𝑬 plot

𝑖𝐢 = 𝐼𝑆 𝑒𝑉𝐡𝐸𝑉𝑇𝐻 βˆ’ 1

(in active region)

β€’ Forward bias current

β€’ 𝑉𝐡𝐸 = 0.7, for reasonable 𝐼𝐢

β€’ Typical reverse saturation current 𝐼𝑆 < 0.1𝑝𝐴

IC (A)

VBE (V)0.6 0.8

QCQ

VBEQ

0.40.20.0-0.2-0.4

𝐼𝐢 vs 𝑉𝐡𝐸

141st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.2 DC Characteristics of the BJT (Output)

β€’ 𝑰π‘ͺ vs 𝑽π‘ͺ𝑬 plot

β€’ 𝑉𝐡𝐸 is fixed for each sweep

β€’ Two region of operation

β€’ 𝑉𝐢𝐸 β‰₯ 300π‘šπ‘‰ β†’ Active region

β€’ 𝑉𝐢𝐸 < 300π‘šπ‘‰ β†’ Saturation region

β€’ Active region / Linear region

β€’ 𝑖𝐢 = 𝐼𝑆 𝑒𝑉𝐡𝐸𝑉𝑇𝐻 βˆ’ 1

β€’ Saturation region

β€’ 𝑖𝑐 = Depends on 𝑉𝐢𝐸 and 𝑉𝐡𝐸

C

VBE1

VCE

VBE4

VBE2

VBE3

VBE0

𝐼𝐢 vs 𝑉𝐢𝐸

β€’ Cut-off regionβ€’ 𝑉𝐡𝐸 < 0.5𝑉‒ 𝐼𝐢 , 𝐼𝐸 and 𝐼𝐡 are nearly zero

Saturation region

Active/Linear region

151st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.3 Small-signal Model for the BJT

RC

vbe

+

-

vCE

+

-

iC

How to analyze this circuit?

VBE

𝑉𝐡𝐸 + 𝑣𝑏𝑒 Q

VBE + vbe

ICQ + ic

Tim

e

Time

iC (A)

VBE (V)0.6 0.80.40.20.0

β€’ Base-emitter voltage is mapped into collector-emitter current

β€’ Larger 𝑉𝐡𝐸 implies larger 𝐼𝐢𝑄

β€’ Larger input signal 𝑣𝑏𝑒 generates larger collector/emitter current

𝑖𝐢 = 𝐼𝑆 𝑒𝑉𝐡𝐸+𝑣𝑏𝑒

π‘‰π‘‘β„Ž βˆ’ 1 β‰… πΌπ‘†π‘’π‘‰π΅πΈπ‘‰π‘‘β„Ž 𝑒

π‘£π‘π‘’π‘‰π‘‘β„Ž = 𝐼𝐢𝑄 β‹… 𝑒

π‘£π‘π‘’π‘‰π‘‘β„Ž

𝑖𝐢 = 𝐼𝐢𝑄 + 𝐼𝐢𝑄

𝑣𝑏𝑒

π‘‰π‘‘β„Ž+

𝐼𝐢𝑄

2

𝑣𝑏𝑒

π‘‰π‘‘β„Ž

2

+𝐼𝐢𝑄

6

𝑣𝑏𝑒

π‘‰π‘‘β„Ž

3

+. . . .

161st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

BJT’s Large-signal Model

VBE

RC

vbe

+

-

vCE

+

-

iC

𝑉𝐡𝐸 + 𝑣𝑏𝑒

β€’ 𝑖𝐢 = 𝐼𝐢𝑄 + 𝐼𝐢𝑄𝑣𝑏𝑒

π‘‰π‘‘β„Ž+

𝐼𝐢𝑄

2

𝑣𝑏𝑒

π‘‰π‘‘β„Ž

2+

𝐼𝐢𝑄

6

𝑣𝑏𝑒

π‘‰π‘‘β„Ž

3+. . . .

β€’ If the AC input signal is 𝑣𝑏𝑒 = π‘‰π‘π‘˜sin(πœ”0𝑑), then

β€’ 𝑖𝑐 = 𝐼𝐢𝑄 +𝐼𝐢𝑄

4

π‘‰π‘π‘˜

π‘‰π‘‘β„Ž

2+

𝐼𝐢𝑄

π‘‰π‘‘β„Žβˆ’

𝐼𝐢𝑄

8

π‘‰π‘π‘˜

π‘‰π‘‘β„Ž

2π‘‰π‘π‘˜ sin πœ”0𝑑 βˆ’

𝐼𝐢𝑄

4π‘‰π‘‘β„Ž

π‘‰π‘π‘˜

π‘‰π‘‘β„Žπ‘‰π‘π‘˜ sin 2πœ”0𝑑 +

𝐼𝐢𝑄

24π‘‰π‘‘β„Ž

π‘‰π‘π‘˜

π‘‰π‘‘β„Ž

2π‘‰π‘π‘˜sin(3πœ”0𝑑) Quasi linear

term

2nd Order term 3rd Order term

2nd , 3rd, … Harmonics cause distortion in circuits

171st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.3 Small-signal Model for the BJT

β€’ If we assume π‘‰π‘π‘˜ < 0.4π‘‰π‘‘β„Ž (small signal)

β€’ 𝑖𝐢 = 𝐼𝐢𝑄 +𝐼𝐢𝑄

π‘‰π‘‘β„Žπ‘£π‘π‘’ ( Linear approximation)

β€’ AC current linearly dependent on AC voltage

β€’ Slope of 𝐼𝐢 vs 𝑉𝐡𝐸 is Transconductance

π‘”π‘š = πœ•π‘–πΆ

πœ•π‘£π΅πΈ 𝑄=

𝐼𝐢𝑄

π‘‰π‘‘β„Ž

This model does not capture amplifier’s non-linearities

Since the resulting circuit is linear, you can use any amplitude

Q

VBEQ

ICQ

iC (A)

VBE (V)0.6 0.80.40.20.0

QBE

Cm

v

ig

181st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.3 Small-signal Model for the BJT

β€’ Modelling BJT

β€’ 𝑖𝑐 is modelled as CCCS with π‘”π‘š =𝐼𝐢𝑄

π‘‰π‘‘β„Ž

β€’ Forward biased diode across Emitter and Collector

β€’ Diode can be modelled as resistor π‘Ÿπœ‹ and voltage source 0.7𝑉 series

β€’ π‘”πœ‹ =1

π‘Ÿπœ‹=

πœ•π‘–π΅

πœ•π‘£π΅πΈ 𝑄=

𝐼𝐡𝑄

π‘‰π‘‘β„Ž

E

IC+gmvbeiB

B

C

iE

iC

Q

VBEQ

ICQ

iC (A)

VBE (V)0.6 0.80.40.20.0

QBE

Cm

v

ig

E

IC+gmvbeiB

B

C

ie

ic

r

+

0.7V

-

191st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.4.4 𝝅 and T model for BJT

E

r

gmvbeib

C

rce

ie

ic

re

ie

ieib

C

rce

ic

πœ‹ – hybrid model for BJT 𝑇 – model for BJT

β€’ π‘Ÿπ‘π‘’ is the finite output resistance of BJT

β€’ Choose model with makes solving circuit easier

β€’ π‘Ÿπ‘π‘’ =𝐼𝐢𝑄

π‘‰π‘’π‘Žπ‘Ÿπ‘™π‘¦

β€’ π‘”πœ‹ =1

π‘Ÿπœ‹=

πœ•π‘–π΅

πœ•π‘£π΅πΈ 𝑄=

𝐼𝐡𝑄

π‘‰π‘‘β„Ž

β€’ π‘Ÿπ‘π‘’ =𝐼𝐢𝑄

π‘‰π‘’π‘Žπ‘Ÿπ‘™π‘¦

β€’ 𝑔𝑒 =1

π‘Ÿπ‘’=

πœ•π‘–πΈ

πœ•π‘£π΅πΈ 𝑄=

𝐼𝐸𝑄

π‘‰π‘‘β„Ž

Hence

π‘Ÿπ‘’ =π‘‰π‘‘β„Ž

𝐼𝐸𝑄=

π‘‰π‘‘β„Ž

1 + 𝛽 𝐼𝐡𝑄=

π‘Ÿπœ‹1 + 𝛽

201st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.4.1 DC analysis

β€’ What is maximum tolerable value of 𝑣𝑏𝑒 ?

β€’ BJT should be in active region always

β€’ Lowest possible value of 𝑉𝐢 = 𝑉𝐡-0.4V

iC

VCE

Q

VCEQ

ICQ VBEQ

VCC

VCC/RC

0.3V

linear range

vbe-peak

vce-peak

RC

vbe

+

-

vCE

+

-

iC

VBE

𝑉𝐡𝐸 + 𝑣𝑏𝑒

Input signal swing

Output signal swing

211st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.4.5 Practical limitations

β€’ 𝑉𝐢𝐸 > 300π‘šπ‘‰ needed to maintain linear mode of operation

β€’ Non-ideal effects limit max. current densityβ€’ Maximum achievable 𝛽 is limited

β€’ Temperature sensitivity of parametersβ€’ π‘Ÿπœ‹, π‘”π‘š, and 𝛽 are sensitive to temperature

β€’ Very large 𝑉𝐢𝐸 cause large 𝐼𝑐. β€’ P-N junction breakdown

β€’ Current gain (𝛽) reduces with frequencyβ€’ poles due to internal resistance and capacitance

IC(mA)0.01

27ΒΊ

0.1 1.0 10 100

250

200

150

110ΒΊ

-50ΒΊ

350

300

VCE

VBE1

VBE2

VBE3

VBE4

VBE5

221st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.5.1 Common emitter amplifier

VCC

RC

vbe

voiC

CC

RL

VBEQ+

- E

r

gmvbeib

B

RC

ie

C

vbe

vo

CC

RL

VCEQ

+

-

Small signal equivalent

Input Output

β€’ AC solution

β€’ Use KCL & KVL on above circuit

β€’ π‘£π‘œ = βˆ’π‘”π‘šπ‘…πΆπ‘ π‘…πΏπΆπΆ

1+𝑠(𝑅𝐢+𝑅𝐿) 𝐢𝐢𝑣𝑏𝑒

β€’ DC solution

β€’ 𝐼𝐢𝑄 = 𝐼𝑆𝑒

𝑉𝐡𝐸𝑄

π‘‰π‘‘β„Ž

β€’ 𝑉𝐢𝐢 = 𝑉𝐢𝐸𝑄 + 𝐼𝐢𝑄𝑅𝐢

231st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.5.1 Common emitter amplifier

π‘£π‘œ = βˆ’π‘…πΆπ‘…πΏ

𝑅𝐢 + π‘…πΏπ‘”π‘šπ‘£π‘π‘’ = βˆ’

𝑅𝐢𝑅𝐿

𝑅𝐢 + 𝑅𝐿𝑖𝑐

β€’ Gain higher with static loading

β€’ Gain reduction due to loading should be taken into account during design

iC

VCE

QICQ

VCC

VCC/RC

0.3V

static load

line (1/RC)

VCEQ

VBEQ

iC

VCE

QICQ

VCC

VCC/RC

0.3V VCEQ

static load

line (1/RC)dynamic load

line (1/[RC||RL])

VBEQ

241st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.5.2 Common-emitter amplifier with resistive biasing.

β€’ 𝑉𝐡𝐡 =𝑅𝐡

𝑅1𝑉𝐢𝐢 = 𝐼𝐡𝑄𝑅𝐡 + 0.7𝑉

β€’ 𝑉𝐢𝐢 = 𝑉𝐢𝐸𝑄 + 𝐼𝐢𝑄𝑅𝐢

Here 𝐼𝐡𝑄 =𝐼𝐢𝑄

𝛽

Two equations, Four variables

𝑅1, 𝑅2, 𝑅𝑐 and 𝐼𝐢𝑄

VCC

RCICQ

RB

VB

+

-CC

B VR

R

1

+

-

VCEQ

IBQ

DC equivalent circuitβ€’ 𝑉𝐡𝐡 =

𝑅𝐡

𝑅1𝑉𝐢𝐢 = 𝐼𝐡𝑄𝑅𝐡 + 0.7𝑉

𝐼𝐡𝑄 =

𝑅𝐡𝑅1

𝑉𝐢𝐢 βˆ’ 0.7

𝑅𝐡

𝐼𝐢𝑄 =

𝑅𝐡𝑅1

𝑉𝐢𝐢 βˆ’ 0.7

𝛽 𝑅𝐡

β€’ 𝐼𝐢𝑄 varies a lot, mainly due to 𝛽 variability.

251st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.5.2 Common-emitter amplifier with resistive biasing.

β€’ 𝑣be πœ”>πœ”π‘=

π‘Ÿπœ‹

π‘Ÿπœ‹+𝑅𝐡

𝑅𝐡

π‘Ÿπœ‹||𝑅𝐡𝑣𝑖 β‰ˆ 𝑣𝑖 ,

πœ”π‘ =1

π‘Ÿπœ‹||𝑅𝐡 πΆπ΅β‰ˆ

1

π‘Ÿπœ‹πΆπ΅

β€’ Following earlier circuit analysis

β€’ Has two poles. Each due to blocking capacitors 𝐢𝐡 and 𝐢𝐢

β€’ If πœ” ≫ πœ”π‘ƒ1 and πœ” ≫ πœ”π‘ƒ2 then

RC

vo

RB +

vbe

-

CB

CC

RL

i

BB

BBv

CsR1

CsR

E

rgmvbe

ie

CB

iL

AC equivalent circuit

π‘£π‘œ = βˆ’π‘ π‘…πΏπΆπΆ

1 + 𝑠 𝑅𝐢 + 𝑅𝐿 πΆπΆπ‘”π‘šπ‘…πΆ 𝑣𝑏𝑒 = βˆ’

𝑠𝑅𝐿𝐢𝐢

1 + 𝑠 𝑅𝐢 + 𝑅𝐿 𝐢𝐢

𝑠𝑅𝐡𝐢𝐡

1 + 𝑠 π‘Ÿπœ‹||𝑅𝐡 𝐢𝐡

π‘Ÿπœ‹π‘Ÿπœ‹ + 𝑅𝐡

π‘”π‘šπ‘…πΆ 𝑣𝑖

πœ”π‘ƒβˆ’π‘–π‘›π‘π‘’π‘‘ = πœ”π‘ƒ1 = βˆ’1

π‘Ÿπœ‹||𝑅𝐡 𝐢𝐡and πœ”π‘ƒβˆ’π‘œπ‘’π‘‘π‘π‘’π‘‘ = πœ”π‘ƒ2 = βˆ’

1

𝑅𝐢+𝑅𝐿 𝐢𝐢

π‘£π‘œ

π‘£π‘–β‰ˆ βˆ’π‘”π‘š

𝑅𝐢𝑅𝐿

𝑅𝐢 + 𝑅𝐿= βˆ’π‘”π‘š 𝑅𝐢||𝑅𝐿

261st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.6.1 Common-emitter amplifier

β€’ Aim β†’ Design Common Emitter amplifier with a high-frequency gain = 34 dB.

β€’ Q2N222 BJT used for this design

β€’ In general 𝛽𝐴𝐢 β‰ˆ 200 and 𝛽𝐷𝐢 β‰ˆ 200

β€’ DC Transistor Characterizationβ€’ Use this configuration to plot 𝑉𝐡𝐸 vs 𝐼𝑐‒ Use 𝑉𝐢𝐸 = 1𝑉, Since 𝑉𝐢𝐸 > 0.3𝑉 β†’

Linear region on

271st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.6.1 Common-emitter amplifierMeasure 𝐠𝐦

β€’ π‘”π‘š =πœ•πΌπ‘

πœ•π‘‰π΅πΈ

β€’ Slope of curve

β€’ Compare this value

with π‘”π‘š =𝐼𝐢𝑄

π‘‰π‘‘β„Ž

β€’ How to find out 𝑅𝐢?

Slope = gm @ IC=1.2mA

281st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.6.1 Common-emitter amplifier

Measure 𝑹𝒄

β€’ Plot 𝐼𝑐 vs 𝑉𝐢𝐸 for 𝑉𝐡𝐸𝑄 =0.65𝑉

β€’ Slope=1

R𝐢=

πœ•πΌπΆ

πœ•π‘‰πΆπΈ;

Zoomed in version of above plot

𝐼𝐢 vs 𝑉𝐢𝐸

Slope = 1

𝑅𝑐

291st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.6.1 Common-emitter amplifier

Measure 𝒓𝝅

β€’ Plot 𝐼𝐡 vs 𝑉𝐡𝐸at 𝑉𝐢𝐸 = 1𝑉

β€’ Slope =1

π‘Ÿπœ‹= π‘”πœ‹

β€’ π‘”πœ‹ =πœ•πΌπ΅

πœ•π‘‰π΅πΈSlope = g @ IB=5mA

301st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Common emitter Circuit with source degeneration

β€’ Previous design issueβ€’ Difficult to control operating point (𝐼𝑐)

β€’ 𝑅𝐸1 and 𝑅𝐸2 are added at emitter

β€’ 𝐢𝐸 to regain some of lost gain

β€’ Advantages:β€’ Circuit less sensitive to temperatureβ€’ More control over 𝐼𝑐 and gainβ€’ Higher input impedance

β€’Drawbacks:β€’ Reduced small signal gain

β€’

VCC

RC

vi

vC

RB1

RB2

vB

RE1

RE2 CE

CBRS

RL

vo

CL

311st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

DC analysis

π‘ͺ𝑩 and π‘ͺ𝑳 are treated as open

𝑉𝐡𝐡 =𝑅𝐡

𝑅𝐡1𝑉𝐢𝐢 = 𝐼𝐡𝑄𝑅𝐡 + 0.7𝑉 + 𝐼𝐸𝑄 𝑅𝐸1 + 𝑅𝐸2

= 0.7𝑉 + 𝐼𝐢𝑄

𝑅𝐡

𝛽+

1

𝛼𝑅𝐸1 + 𝑅𝐸2

𝑅𝐡 = 𝑅𝐡1||𝑅𝐡2

𝑉𝐢𝐢 = 𝑉𝐢𝐸𝑄 + 𝐼𝐢𝑄𝑅𝐢 + 𝐼𝐸𝑄 𝑅𝐸1 + 𝑅𝐸2

= 𝑉𝐢𝐸𝑄 + 𝐼𝐢𝑄 𝑅𝐢 +𝑅𝐸1 + 𝑅𝐸2

𝛼

VCC

RC

vi

vC

RB1

RB2

vB

RE1

RE2 CE

CBRS

RL

vo

CL

VCC

RCRB1

RB2

vB

RE1+RE2

VCEQ

ICQ

IEQ

+

-

Amplifier

DC equivalent circuit

𝐢𝐡 and 𝐢𝐿 are treated as open

321st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

DC analysis

𝑉𝐡𝐡 =𝑅𝐡

𝑅𝐡1𝑉𝐢𝐢 = 𝐼𝐡𝑄𝑅𝐡 + 0.7𝑉 + 𝐼𝐸𝑄 𝑅𝐸1 + 𝑅𝐸2

= 0.7𝑉 + 𝐼𝐢𝑄𝑅𝐡

𝛽+

1

𝛼𝑅𝐸1 + 𝑅𝐸2 -- (1)

𝐼𝐢𝑄 =𝑉𝐡𝐡 βˆ’ 0.7

𝑅𝐡𝛽

+1𝛼

𝑅𝐸1 + 𝑅𝐸2

𝑉𝐢𝐢 = 𝑉𝐢𝐸𝑄 + 𝐼𝐢𝑄𝑅𝐢 + 𝐼𝐸𝑄 𝑅𝐸1 + 𝑅𝐸2

𝑉𝐢𝐸𝑄 = 𝑉𝐢𝐢 + 𝐼𝐢𝑄 𝑅𝐢 +𝑅𝐸1 + 𝑅𝐸2

𝛼

VCC

RC

vi

vC

RB1

RB2

vB

RE1

RE2 CE

CBRS

RL

vo

CL

VCC

RCRB1

RB2

vB

RE1+RE2

VCEQ

ICQ

IEQ

+

-

DC equivalent circuit

𝐢𝐡 and 𝐢𝐿 are treated as open

331st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

AC analysis

β€’ 𝐢𝐡 and 𝐢𝐿 are treated as short

β€’ Also we assume 𝑅𝑠 β‰ͺ 𝑍𝑖

𝑧𝑏 =𝑣𝑖

𝑖𝑏=

𝑣𝑖

𝑖𝑒/(1 + 𝛽)= 1 + 𝛽 π‘Ÿπ‘’ + 𝑅𝐸1

𝑧𝑏 = π‘Ÿπœ‹ + 1 + 𝛽 𝑅𝐸1

β€’ Input impedance increased

- Good for design vi

RE1

reie

iezb RC||RL

vo

RB

ib

zi

VCC

RC

vi

vC

RB1

RB2

vB

RE1

RE2 CE

CBRS

RL

vo

CL

Amplifier

DC equivalent circuit

341st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

AC analysis

π‘£π‘œ = βˆ’π›Όπ‘–π‘’ 𝑅𝐢 𝑅𝐿 Where

𝑖𝑒 =𝑣𝑖

π‘Ÿπ‘’ + 𝑅𝐸1=

𝑣𝑖𝛼

π‘”π‘š+ 𝑅𝐸1

=π‘”π‘š

𝛼 + π‘”π‘šπ‘…πΈ1𝑣𝑖

β€’ 𝐴𝑉 =𝑣0

𝑣𝑖= βˆ’

π›Όπ‘”π‘š 𝑅𝐢 𝑅𝐿

𝛼+π‘”π‘šπ‘…πΈ1

β‰… βˆ’πœΆ 𝑹π‘ͺ 𝑹𝑳

π‘Ήπ‘¬πŸif 𝛼 β‰ͺ π‘”π‘šπ‘…πΈ1

β€’ Gain reduced due to π‘”π‘šπ‘…πΈ1

β€’ Voltage gain is well controlled

β€’ Larger 𝑅𝑖𝑛 lower πΊπ‘Žπ‘–π‘›

vi

RE1

reie

iezb RC||RL

vo

RB

ib

zi

VCC

RC

vi

vC

RB1

RB2

vB

RE1

RE2 CE

CBRS

RL

vo

CL

Amplifier

AC equivalent circuit

351st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Design employing a Graphical approach

Design Constrains

β€’ Expected maximum amplitude Vomax of the output signal (often called the β€œmaximum output swing”)

β€’ Required voltage gain AV

β€’ Input and load impedance requirements

β€’ Restricted supply voltage VCC

VCC

RC

vC

RB1

RB2

vBCB

RL

vo

CL

vi

361st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Common-Emitter: Design approach

β€’ For DC operating pointβ€’ 𝑉𝐢𝐢 = 𝑉𝐢𝐸𝑄 + 𝐼𝐢𝑄𝑅𝐢

β€’ 𝑉𝐢𝐸𝑄 should be large enough to support ACβ€’ π‘‰πΆπΈπ‘šπ‘–π‘› = 𝑉𝐢𝐸𝑄 βˆ’ π‘‰π‘œπ‘π‘˜ > ~300π‘šπ‘‰

β€’ We choose π‘‰πΆπΈπ‘šπ‘–π‘› = 500π‘šπ‘‰

β€’ 𝐼𝐢𝑄 <π‘‰πΆπΆβˆ’π‘‰πΆπΈπ‘šπ‘–π‘›

𝑅𝐢=

π‘‰πΆπΆβˆ’π‘‰π‘œπ‘π‘˜βˆ’0.5

𝑅𝐢-- (1)

β€’ 𝑉𝐢𝐸𝑄 shouldn’t be close to 𝑉𝐢𝐢

β€’ 𝐼𝐢𝑄 >π‘‰π‘œπ‘π‘˜

𝑅𝐢-- (2)

VCC

vbe

RC

vo

VCE

CC

RL

+

-

ICQRC

+

-

+

-VBB

Vomax

Vomax

VCC

ICQRC

VCEmin

VCEQ-VCEmin

VCEQ

371st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.10.1 Common-Emitter: Design approach

β€’ Gain of amplifier gives constrain

β€’ 𝐴𝑉 =π‘£π‘œ

𝑣𝑏𝑒= π‘”π‘š 𝑅𝐢 𝑅𝐿 =

𝐼𝐢𝑄 𝑅𝐢 𝑅𝐿

π‘‰π‘‘β„Ž

β€’ 𝐼𝐢𝑄 = 𝐴𝑉 β‹… π‘‰π‘‘β„Žπ‘…πΆ+𝑅𝐿

𝑅𝐢𝑅𝐿-- (3)

β€’ What is the range of values of 𝑅𝐢that satisfy all constrains?

β€’ We can plot equations to find the solution

VCC

vbe

RC

vo

VCE

CC

RL

+

-

ICQRC

+

-

+

-VBB

Vomax

Vomax

VCC

ICQRC

VCEmin

VCEQ-VCEmin

VCEQ

381st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.10.1 Common-Emitter: Design approach

β€’ Using VCC = 5V, Vomax = 1 V, Vth = 26 mV, RL = 10KΞ©

Eq. (1)

Av=-100

=-40

=-20

=-10Eq. (2)

Eq. (3) Av=-20

Acceptable current

Acceptable resistance

1E+3 1E+4 1E+5

Rc (Ohms)

0.01

0.10

1.00

10.00

I c( m

A)

After finding 𝐼𝑐, 𝑅𝐡 can be solved using

𝑅𝐡

𝑅1𝑉𝐢𝐢 = 𝐼𝐡𝑅𝐡 + 0.7𝑉

And

𝑍𝑖𝑛 = π‘Ÿπœ‹ 𝑅𝐡 =π‘Ÿπœ‹π‘…π΅

π‘Ÿπœ‹ + 𝑅𝐡=

π‘Ÿπœ‹

1 +π‘Ÿπœ‹π‘…π΅

391st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.10.2 Example

β€’ Design of a common-emitter amplifier with larger input impedance but limited voltage gain

β€’ We assume 𝑅𝐡 ≫ 𝛽𝑅𝐸 ≫ π‘Ÿπœ‹

β€’ 𝑍𝑖 = π‘Ÿπ‘’ + 𝑅𝐸 1 + 𝛽 𝑅𝐡 β‰… 1 + 𝛽 π›Όπ‘‰π‘‘β„Ž

𝐼𝐢𝑄+ 𝑅𝐸

β€’ 𝑅𝐸 =𝑍𝑖

1+π›½βˆ’ 𝛼

π‘‰π‘‘β„Ž

𝐼𝐢𝑄

β€’ Bias current

β€’ 𝐼𝐢𝑄 <π‘‰πΆπΆβˆ’π‘‰πΆπΈπ‘šπ‘–π‘›

𝑅𝐢+𝑅𝐸𝛼

β‰€π‘‰πΆπΆβˆ’π‘‰π‘π‘π‘˜βˆ’π‘‰π‘’π‘π‘˜βˆ’0.5𝑉

𝑅𝐢+𝑅𝐸𝛼

β‰…π‘‰πΆπΆβˆ’π‘‰π‘π‘π‘˜ 1+

1

π΄π‘‰βˆ’0.5𝑉

𝑅𝐢+𝑍𝑖𝛽

VCC

RC

vi

R1

R2

vb

RE

CBRS

RL

vo

CL

401st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.10.2 Example

β€’ Bias current upper limit is

β€’ 𝐼𝐢𝑄 >π‘‰π‘œπ‘π‘˜

𝑅𝐢

β€’ Gain is given by

β€’π‘£π‘œ

𝑣𝑏= 𝛼

𝑅𝐢 𝑅𝐿

π‘Ÿπ‘’+𝑅𝐸= 𝛼

𝑅𝐢 π‘…πΏπ‘‰π‘‘β„ŽπΌπΆπ‘„

+𝑅𝐸

β€’ When source resistance is included

β€’π‘£π‘œ

𝑣𝑖=

π‘£π‘œ

𝑣𝑏

𝑣𝑏

𝑣𝑖=

𝑍𝑖

𝑍𝑖+𝑅𝑆𝛼

𝑅𝐢 𝑅𝐿

π‘Ÿπ‘’+𝑅𝐸≅ 𝛼

𝑅𝐢 𝑅𝐿

π‘Ÿπ‘’+𝑅𝐸+𝑅𝑆

1+𝛽

- (5)

β€’ Harmonics are generated from π‘’π‘£π‘π‘’π‘‰π‘‘β„Ž = 1 +

𝑣𝑏𝑒

π‘‰π‘‘β„Ž+

1

2

𝑣𝑏𝑒

π‘‰π‘‘β„Ž

2+

1

6

𝑣𝑏𝑒

π‘‰π‘‘β„Ž

3+. .

VCC

RC

vi

R1

R2

vb

RE

CBRS

RL

vo

CL

411st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.10.2 Example

β€’ We limit π‘£π‘π‘’βˆ’π‘π‘˜

π‘‰π‘‘β„Ž< 1/4 to limit harmonics

β€’π‘£π‘π‘’βˆ’π‘π‘˜

π‘£π‘–βˆ’π‘π‘˜=

𝑍𝑖

𝑍𝑖+𝑅𝑆

π‘Ÿπ‘’

π‘Ÿπ‘’+𝑅𝐸=

π‘Ÿπ‘’

π‘Ÿπ‘’+𝑅𝐸+𝑅𝑆

1+𝛽

β€’π‘£π‘œβˆ’π‘π‘˜

π‘£π‘–βˆ’π‘π‘˜β‰… 𝛼

𝑅𝐢 𝑅𝐿

π‘Ÿπ‘’

π‘£π‘π‘’βˆ’π‘π‘˜

π‘£π‘–βˆ’π‘π‘˜=

𝐼𝐢𝑄 𝑅𝐢 𝑅𝐿

π‘‰π‘‘β„Ž

π‘£π‘π‘’βˆ’π‘π‘˜

π‘£π‘–βˆ’π‘π‘˜

β€’ Equation rearranges to 𝐼𝐢𝑄 β‰…π‘‰π‘‘β„Ž

𝑅𝐢 𝑅𝐿

π‘£π‘–βˆ’π‘π‘˜

π‘£π‘π‘’βˆ’π‘π‘˜π΄π‘£ -

β€’ Then

β€’ 𝐼𝐢𝑄 β‰…π›½π‘‰π‘‘β„Ž

𝑍𝑖

π‘£π‘–βˆ’π‘π‘˜

π‘£π‘π‘’βˆ’π‘π‘˜βˆ’ 1

VCC

RC

vi

R1

R2

vb

RE

CBRS

RL

vo

CL

421st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

5.10.2 Example

β€’ Plot made for β€’ 𝛽 = 200, Zi 150 k,

RL = 10 k, Vomax = 1 Vpk, and VCC = 5V

β€’ There is no solution exist for 𝑉𝑐𝑐 = 10𝑉 and 𝐴𝑉 = 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2000 4000 6000 8000 10000 12000

Col

lect

or c

urre

nt (m

A)

Collector resistance RC

Equation 5.66; VCC=10

Equation 5.66; VCC=5

Equation 5.72b; |AV|=10

Equation 5.72b; |AV|=5

Equation 5.73; Zi=150kΞ©Acceptable solution

Equation (3); Vcc=10V

Equation (7); |𝐴𝑉|=10Equation (7); |𝐴𝑉|=5

Equation (8); 𝑍𝑖 = 150π‘˜Ξ© Equation (3); Vcc=5V

𝐼𝐢𝑄

π›Όπ‘‰π‘‘β„Ž

431st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

30 dB gain amplifier driving a load of 10kΞ©Relative small input impedance ( r)Robust?Tolerant to temperature and beta variations?

441st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

30 dB gain amplifier driving a load of 10kΞ©

Voltage at collector terminal DC level is around 3.12V Gain 40*1.88 *10/22= 34dB

Voltage at the load impedance

451st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Temperature variations: -500, 270 and 1000

461st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Source Degeneration benefits: More stable operating point Better linearity More stable frequency response More accurate voltage gain Higher input impedance

Source Degeneration drawbacks: Reduced voltage gain

R6 and R5 make the operating point more stable and less sensitive to both T and variations

R6 stabilize the voltage and increase amplifier’s input impedance

Temperature variations: -500, 270 and 1000

Source degenerated amplifier: Temperature sensitivity

471st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Source Degeneration benefits: More stable operating point. The DC voltage at the collector varies from 2.6V till 3.3V; Reduced voltage gain: Voltage gain reduces, and determined by overall load resistance and overall emitter

resistance ~ 14dB; Voltage gain is little sensitive to PVT (process-voltage-temperature) variations; Input impedance >> r

481st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Without Source Degeneration With Source Degeneration

491st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Without Source Degeneration With Source Degeneration

501st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Summary

β€’ DC and AC Analysis of BJT based circuits

β€’ Different Amplifier configuration analysisβ€’ Common-Emitter, Common – Base and Common Collector

β€’ Design procedure based on circuit constrains

β€’ Cascade of amplifiers and their analysis

511st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Field-effect MOS transistors

521st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Outline

β€’ CMOS Transistors Fundamentals.

β€’ MOS Transistor Operating in the Saturation Region.

β€’ Common-Source Amplifier.

β€’ Common-Source Amplifier with Source Degeneration.

β€’ Common-gate Amplifier.

β€’ Common-Drain Amplifier.

β€’ Design Considerations and Examples.

531st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.1 CMOS Transistors Fundamentals.

β€’ CMOS transistors β†’ 4 terminal devicesβ€’ Source(S), Drain(D), Gate(G), Bulk(B)

β€’ N-MOS Transistorβ€’ Source & Drain β†’ N-type doping

β€’ Bulk (Substrate) β†’ P-type doping

β€’ Gate β†’ Metal terminal, Separated with Gate Oxide (Insulator material. Eg: SiO2)

β€’ Bulk β†’ B-S and B-D p-n junction reverse biasedβ€’ Bulk β†’ Lowest potential in device

B S G D

iD

Thin SiOx

N+

N+

N+

P-type Substrate

Metal Channel Thick

Oxide

G DSB

L

W

vG

VD

VS

VB

iD

N-MOS Cross section view

N-MOS Top view

N-MOS Symbol

541st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.3 MOS Transistor Operating in the Saturation Region

β€’ Transistor in saturation region β€’ 𝑉𝐺𝑆 > 𝑉𝑇 and 𝑉𝐷𝑆 > 𝑉𝐷𝑆𝐴𝑇

β€’ Drain current equation

β€’ 𝐼DS =𝐾𝑛

2

π‘Š

𝐿𝑉𝐺𝑆 βˆ’ 𝑉𝑇

2 1 + πœ†π‘‰π·π‘†

β€’ Here πœ† β‰…1

πΏπ‘‰π‘’π‘Žπ‘Ÿπ‘™π‘¦

β€’ Also written as 𝐼DS =𝛽

21 + πœ†π‘‰π·π‘† 𝑉𝐷𝑆𝐴𝑇

2

D

VGS

VDS

lID

Triode region

Saturation region

VDS=VDSAT

vg

vd

vs

vb

ids

551st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.2.1 AC model in triode region

β€’ Partial derivative of drain current equation gives

𝑖DS β‰… 𝐼DS + 𝛽𝑛

πœ•π‘–π‘‘

πœ•π‘£π‘”π‘  𝑄

𝑣𝑔𝑠 +πœ•π‘–π‘‘

πœ•π‘£π‘‘π‘  𝑄𝑣𝑑𝑠 +

1

2

πœ•2𝑖𝑑

πœ•π‘£π‘”π‘ 2

𝑄

𝑣𝑔𝑠2 + 2

πœ•2𝑖𝑑

πœ•π‘£π‘”π‘ πœ•π‘£π‘‘π‘  𝑄

𝑣𝑔𝑠𝑣𝑑𝑠 +πœ•2𝑖𝑑

πœ•π‘£π‘‘π‘ 2

𝑄𝑣𝑑𝑠

2 +

1

6

πœ•3𝑖𝑑

πœ•π‘£π‘”π‘ 3

𝑄

𝑣𝑔𝑠3 + 3

πœ•3𝑖𝑑

πœ•π‘£π‘”π‘ 2πœ•π‘£π‘‘π‘  𝑄

𝑣𝑔𝑠2𝑣𝑑𝑠 + 3

πœ•3𝑖𝑑

πœ•π‘£π‘”π‘ πœ•π‘£π‘‘π‘ 2

𝑄

𝑣𝑔𝑠𝑣𝑑𝑠2 +

πœ•3𝑖𝑑

πœ•π‘£π‘‘π‘ 2

𝑄𝑣𝑑𝑠

3 +. . .

Where 𝛽𝑛 = πΎπ‘›π‘Š

𝐿

Small signal current 𝑖ds = 𝛽𝑉𝐷𝑆 𝑣𝑔𝑠 + 𝛽 𝑉𝐷𝑆𝐴𝑇 βˆ’ 𝑉𝐷𝑆 𝑣𝑑𝑠 = π‘”π‘šπ‘£π‘”π‘  + 𝑔𝑑𝑠

561st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.3.1 Small – Signal Model

β€’ Transconductance

π‘”π‘š = πœ•π‘–π‘‘πœ•π‘£π‘”π‘ 

𝑄

= 𝛽𝑉𝐷𝑆𝐴𝑇 1 + πœ†π‘‰π·π‘†

β€’ if πœ†π‘‰π·π‘†π΄π‘‡ β‰ͺ 1 then we can use π‘”π‘š β‰… 𝛽𝑉𝐷𝑆𝐴𝑇

β€’ Drain – Source conductance (output impedance)

𝑔𝑑𝑠 = πœ•π‘–π‘‘πœ•π‘£π‘‘π‘  𝑄

=𝛽

2𝑉𝐷𝑆𝐴𝑇

2 β‹… πœ† β‰… 𝐼𝐷𝑆 β‹… πœ†

β€’ Gate-Source capacitance

𝐢𝑔𝑠 β‰… π‘ŠπΏπœ–π‘œπ‘₯

π‘‘π‘œπ‘₯

vs

vdids

gmvgs

+

vgs

-

vg

gdsCgs

ig=0

1

vs

vd

gmvgs

+

vgs

-

gds

gm

ig=0

Cgs

vg

1

1

πœ‹ - model

𝑇 - model

571st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.3.2 Harmonic Distortion

β€’ Earlier discussed equation should be used to calculate harmonic terms

𝐻𝐷2 =1

1 βˆ’πœ†π‘‰π·π‘†π΄π‘‡

8 1 + πœ†π‘‰π·π‘†

𝑣𝑑𝑠𝑣𝑔𝑠

β‹…π‘‰π‘”π‘ βˆ’π‘π‘˜

4𝑉𝐷𝑆𝐴𝑇

β€’ Note that HD2 for BJT was 1

4

π‘‰π‘π‘˜

π‘‰π‘‘β„Ž, where π‘‰π‘‘β„Ž = 25π‘šπ‘‰

β€’ BJT has higher HD2 than MOSFET

𝐻𝐷3 =π΄π‘‰πœ†π‘‰π·π‘†π΄π‘‡

12 1 + πœ†π‘‰π·π‘† +π΄π‘‰πœ†π‘‰π·π‘†π΄π‘‡

2

π‘£π‘”π‘ βˆ’π‘π‘˜

𝑉𝐷𝑆𝐴𝑇

2

581st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.4 Common-Source Amplifier

β€’ Like Common-Emitter amplifier in BJT: Use of superposition: DC first then AC analysis

β€’ Input β†’ Between Gate & Source

β€’ Output β†’ Between Drain & Source

β€’ 𝐢1 and 𝐢2 are coupling capacitors

β€’ 𝑅𝐺1 and 𝑅𝐺2 set DC voltage at Gate

C1 C2

RG1

RG2

RD

RL+

vi

-

vo

VDD

vg

vd

591st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.4.1 DC analysis: Notice that IG=0

β€’ Solve these equations to find VG, IDS and VDS

𝑉𝐺 = 𝑉𝐺𝑆 =𝑅𝐺2

𝑅𝐺1+𝑅𝐺2𝑉𝐷𝐷

𝐼DS =𝛽

2𝑉𝐺𝑆 βˆ’ 𝑉𝑇

2

𝑉DS = 𝑉𝐷𝐷 βˆ’ 𝐼DS𝑅𝐷

IG=0

IDS

VGSVT

2

2TGSDS VVI

GV

Q

IDS

RG

RD

VDD

VG

+

-

VGS+

-

VD

IDS

601st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.4.2 AC analysis: routine techniques

π‘£π‘œ

𝑣𝑖= βˆ’

𝑠𝑅𝐺𝐢1

1 + 𝑠𝑅𝐺(𝐢1 + 𝐢𝑔𝑠)

𝑠 𝑅𝐷||π‘Ÿπ‘‘π‘  𝐢2

1 + 𝑠 𝑅𝐷||π‘Ÿπ‘‘π‘  + 𝑅𝐿 𝐢2

π‘”π‘šπ‘…πΏ

Further simplifies to

π‘£π‘œ

𝑣𝑖= βˆ’

π‘ πœ”π‘1

1 +𝑠

πœ”π‘ƒ1

π‘ πœ”π‘2

1 +𝑠

πœ”π‘ƒ1

π‘”π‘šπ‘…πΏ

C1

C2

RG=

RG1||RG2

RL

+

vi

-

vo

vd

vs

gmvgs

+

-vgs

rs=

1/gm

i=0

Cgs

Zi

vg

rds||RD

Here πœ”π‘1 =1

𝑅𝐺𝐢1; πœ”π‘2 =

1

𝑅𝐷||π‘Ÿπ‘‘π‘  𝐢2

πœ”π‘ƒ1 =1

𝑅𝐺 𝐢1+𝐢𝑔𝑠; πœ”π‘2 =

1

𝑅𝐷||π‘Ÿπ‘‘π‘  𝐢2

AC Small signal equivalent circuit

611st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.4.2 AC analysis: conventional analysis

β€’ If 𝐢1 ≫ 𝐢𝑔𝑠 and πœ” β‰«πœ”π‘ƒ1, πœ”π‘ƒ2 then

π‘£π‘œ

𝑣𝑖= βˆ’π‘”π‘š β‹… 𝑅𝐷||π‘Ÿπ‘‘π‘ ||𝑅𝐿

β€’ If 𝐢1 and 𝐢𝑔𝑠 are comparable and πœ” β‰«πœ”π‘ƒ1, πœ”π‘ƒ2 then

𝑣𝑔𝑠

π‘£π‘–β‰ˆ

𝐢1

𝐢1 + 𝐢𝑔𝑠

π‘£π‘œ

𝑣𝑖= βˆ’π‘”π‘š β‹… 𝑅𝐷 π‘Ÿπ‘‘π‘  𝑅𝐿

𝐢1

𝐢1+𝐢𝑔𝑠

(log)

40 dB/decade

P1 P2

20 dB/decade

mLdsD

gs

gR||r||RCC

Clog

1

11020

dBi

o

v

v

621st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.4.3 Practical Design Considerations

β€’ Transistor should remain in Saturation region at all time instances

β€’ For negative peak of output

𝑉𝐷𝑆 = 𝑉𝐷𝐷 βˆ’ 𝐼𝐷𝑆𝑅𝐷 > 𝑉𝐷𝑆𝐴𝑇 + π‘£π‘œβˆ’π‘π‘˜

β€’ For positive peak of output

𝑉𝐷𝑆 = 𝑉𝐷𝐷 βˆ’ 𝐼𝐷𝑆𝑅𝐷 < 𝑉𝐷𝐷 βˆ’ π‘£π‘œβˆ’π‘π‘˜

β€’ Combining two inequalities we get 𝑉𝐷𝐷 βˆ’ 𝑉𝐷𝑆𝐴𝑇 βˆ’ π‘£π‘œβˆ’π‘π‘˜

𝑅𝐷> 𝐼𝐷𝑆 >

π‘£π‘œβˆ’π‘π‘˜

𝑅𝐷

Vomax

Vomax

VDD

IDQRD

VDSat

631st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.4.3 Practical Design Considerations

β€’ π‘£π‘–βˆ’π‘π‘˜ < 𝑉𝐷𝑆𝐴𝑇 to avoid clipping at input side

vGS

Q

VT

VDSAT

VGS

iDS

VDD

vDS

VDS=VDSAT

Q1

Q2

vGS1

vGS2

iDS

Static load

line

VDD/RD

Input side

output side

β€’π‘‰π·π·βˆ’π‘‰π·π‘†π΄π‘‡βˆ’π‘£π‘œβˆ’π‘π‘˜

𝑅𝐷> 𝐼𝐷𝑆 >

π‘£π‘œβˆ’π‘π‘˜

𝑅𝐷

to avoid clipping at output side

641st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.4.4 Harmonic Distortion

Using earlier defined relation

𝐻𝐷2 β‰…

𝐢1𝐢1 + 𝐢𝑔𝑠

1 βˆ’πœ†π‘‰π·π‘†π΄π‘‡

8 1 + πœ†π‘‰π·π‘†

𝑣𝑑𝑠𝑣𝑔𝑠

π‘£π‘–βˆ’π‘π‘˜

4𝑉𝐷𝑆𝐴𝑇

With 𝑣𝑑𝑠

𝑣𝑔𝑠≅ π‘”π‘š

π‘Ÿπ‘‘π‘ π‘…πΏ

π‘Ÿπ‘‘π‘ +𝑅𝐿; If we also make the approximation πœ† is very small

𝐻𝐷2 ≅𝐢1

𝐢1+𝐢𝑔𝑠

π‘£π‘–βˆ’π‘π‘˜

4𝑉𝐷𝑆𝐴𝑇=

𝐢1

𝐢1+𝐢𝑔𝑠

π‘–π‘‘βˆ’π‘π‘˜

8𝐼𝐷𝑆

We have π‘–π‘‘βˆ’π‘π‘˜

π‘£π‘‘βˆ’π‘π‘˜= π‘”π‘š =

2𝐼𝐷𝑆

𝑉𝐷𝑆𝐴𝑇

Minimum value of 𝐼𝐷 required can be calculated as

𝐼𝐷𝑆 β‰₯𝐢1

𝐢1 + 𝐢𝑔𝑠

π‘£π‘œβˆ’π‘π‘˜

8 β‹… 𝐻𝐷2 β‹… 𝑅𝐿||𝑅𝐷

651st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.5.1 DC analysis

β€’ For DC Analysisβ€’ 𝑉𝐺 = 𝑉𝐺𝑆 + 𝐼DS𝑅𝑆

β€’ 𝐼DS =𝛽

2𝑉𝐺𝑆 βˆ’ 𝑉𝑇

2 π‘œπ‘Ÿ 𝑉𝐺𝑆 = 𝑉𝑇 +2

𝛽𝐼DS

1/2

C1 C2

RG1

RG2

RD

RL+

vi

-

vo

VDD

vg

vd

RS

RG1

RG2

RD

VDD

VG

VD

RS

RG

RD

VDD

VGRS

+

-

VGS+

-

VD

661st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.5.1 DC analysis

β€’ We have 𝑉𝐺 = 𝑉𝐺𝑆 + 𝐼DS𝑅𝑆

β€’ 𝐼DS =𝛽

2𝑉𝐺𝑆 βˆ’ 𝑉𝑇

2 π‘œπ‘Ÿ 𝑉𝐺𝑆 = 𝑉𝑇 +2

𝛽𝐼DS

1/2

β€’ Combining two equations we get

𝐼DS +1

𝑅𝑆

2

𝛽𝐼DS βˆ’

𝑉𝐺 βˆ’ 𝑉𝑇

𝑅𝑆= 0

β€’ Solving this equations and picking the meaningful solution we get

𝐼DS =1

𝛽𝑅𝑆2 1 + 𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇 βˆ’ 1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇

Operating point

VGSVT

2

2TGSDS VVI

S

GSGDS

R

VVI

S

GDS

R

VI

GV

Q

IDS

RG1

RG2

RD

VDD

VG

VD

RS

RG

RD

VDD

VGRS

+

-

VGS+

-

VD

671st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.5.1 DC analysis

β€’ From 𝐼𝐷𝑆 equations we can calculate

dIDSdV𝑇

=1

π‘…π‘†βˆ’1 +

1

1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇

With 𝑅𝑆 = 0 equation simplifies to dIDSdV𝑇

= βˆ’π›½ 𝑉𝐺 βˆ’ 𝑉𝑇

β€’ If we compare the current variability with 𝑅𝑆 = 0; and when 𝑅𝑆 β‰  0

dIDSdV𝑇 π‘€π‘–π‘‘β„Žπ‘…π‘†β‰ 0

dIDSdV𝑇 π‘€π‘–π‘‘β„Žπ‘…π‘†=0

=

βˆ’1 +1

1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇

𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇

The larger Rs the more stable the current is, then better amplifier

681st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.5.2 AC analysis

β€’ Voltage division at input gives𝑣𝑔

𝑣𝑖𝑛=

𝑠𝑅𝐺𝐢1

1 + 𝑠𝑅𝐺𝐢1

β€’ KCL analysis at drain node gives

𝑣𝑑

𝑣𝑔= βˆ’

𝑅𝐷

π‘Ÿπ‘† + 𝑅𝑆

1 + 𝑠𝑅𝐿𝐢2

1 + 𝑠 𝑅𝐷 + 𝑅𝐿 𝐢2

β€’ Voltage division at output node gives

𝑣0

𝑣𝑑=

𝑠𝑅𝐿𝐢2

1 + 𝑠𝑅𝐿𝐢2

C1

C2

RG=

RG1||RG2

RL+

vi

-

vo

vd

vs

gmvgs

+

-vgs

rs=1/gm

i=0

Zi

vg

RS

RD

idAC small signal equivalent

β€’ Total gain 𝑣0

𝑣𝑖𝑛= βˆ’

𝑅𝐷

π‘Ÿπ‘† + 𝑅𝑆

𝑠𝑅𝐺𝐢1

1 + 𝑠𝑅𝐺𝐢1

𝑠𝑅𝐿𝐢2

1 + 𝑠 𝑅𝐷 + 𝑅𝐿 𝐢2

β€’ At high frequency𝑣0

𝑣𝑖𝑛

β‰… βˆ’π‘…π·||𝑅𝐿

π‘Ÿπ‘† + 𝑅𝑆

691st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.5.3 Nonlinearity analysis

β€’ Taylor series expansion of drain current gives

𝑖𝐷𝑆 =1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇 βˆ’ 1

2

2𝛽𝑅𝑆2 +

1 βˆ’ 1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ π‘‰π‘‡βˆ’

12

𝑅𝑆𝑣𝑖𝑛 +

𝛽

2(1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇 )βˆ’

32𝑣𝑖𝑛

2 βˆ’π›½2𝑅𝑆

21 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇

βˆ’52𝑣𝑖𝑛

3 + β‹―

β€’ Harmonic distortion simplifies to equation

𝐻𝐷2 =1

1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇

𝛽𝑅𝑆

4 1 + 2𝛽𝑅𝑆 𝑉𝐺 βˆ’ 𝑉𝑇1/2

βˆ’ 1𝑣𝑖𝑛

DC Linear term

2nd Order term 3rd Order term

Find expression for HD3 in same way

701st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.8.1 Design Example I

β€’ For positive swing min drain current requirement is calculated

𝐼𝐷𝑆 >π‘£π‘œβˆ’π‘π‘˜

𝑅𝐷

β€’ When 𝐢1 ≫ 𝐢𝑔𝑠 harmonic distortion condition limits minimum drain current as

𝐼𝐷𝑆 β‰₯π‘£π‘œβˆ’π‘π‘˜

8⋅𝐻𝐷2β‹… 𝑅𝐿||𝑅𝐷- (2)

β€’ Amplifier voltage gain sets required drain current as

𝐼𝐷𝑆 =1

2𝛽

π‘£π‘œπ‘£π‘–

𝑅𝐷||𝑅𝐿

2

- (3)

C1 C2

RG1

RG2

RD

RL+

vi

-

vo

VDD

vg

vd

711st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

5.0E+03 1.0E+04 1.5E+04 2.0E+04 2.5E+04

Dra

in C

urr

ent

Drain Resistance

Eq. 3Av=6

Eq. 3Av=4

Eq. 1

Eq. 2

6.8.1 Design Example I

Notice that Gain = 4 has a region of possible solutions

Acceptable 𝑅𝐷 region is 6.5π‘˜Ξ© to 15π‘˜Ξ© 𝐼𝐷 in the region 380πœ‡π΄ -1050πœ‡π΄

Gain = 6 doesn’t have a feasible solution region

721st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.8.1 Design Example I

β€’ Circuit is simulated in LT spice with 𝑅𝐷 = 10π‘˜Ξ© and 𝐼𝐷 = 600πœ‡π΄

Gain vs frequency plot

731st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.8.1 Design Example I

Transient response for 1kHz input and amplitude 60π‘šπ‘‰π‘π‘˜

Signal swing at Drain

Signal swing at Output node

741st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.8.1 Design Example I

Harmonic distortion for a 1kHz input and amplitude 60π‘šπ‘‰π‘π‘˜

β€’ Fundamental amplitude of -15

β€’ -60 dB second-order harmonic distortion component.

β€’ HD2 = -15 - (-60) dB = -55 dB.

β€’ The HD3 is around -95 dB with respect to the fundamental component.

751st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.8.1 Design Example II

β€’ Sensitivity of non source degenerated amplifier to threshold voltage

π›₯𝐼𝐷𝐼𝐷

π›₯𝑉𝑇𝑉𝑇

β‰…

𝑑𝐼𝐷𝐼𝐷

𝑑𝑉𝑇𝑉𝑇

=𝑉𝑇

𝐼𝐷

𝑑𝐼𝐷𝑑𝑉𝑇

= βˆ’2𝑉𝑇

𝑉𝐺𝑆 βˆ’ 𝑉𝑇

β€’ 𝑉𝑇 variations can be as high as Β±20%β€’ Higher drain current variations

β€’π›₯𝐼𝐷

𝐼𝐷≅ βˆ’

2𝑉𝑇

π‘‰πΊπ‘†βˆ’π‘‰π‘‡

π›₯𝑉𝑇

𝑉𝑇

Common-source Amplifier with DC Source Degeneration

C1 C2

RG1

RG2

RD

RL+

vi

-

vo

VDD

vg

vd

RS

761st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.8.1 Design Example II

β€’ Drain current sensitivity for source degenerated current source

π›₯𝐼𝐷𝐼𝐷

π›₯𝑉𝑇𝑉𝑇

β‰…dIDSdV𝑇

𝑉𝑇

𝐼DS= βˆ’

1+2𝛽𝑅𝑆 π‘‰πΊβˆ’π‘‰π‘‡ βˆ’1

1+2𝛽𝑅𝑆 π‘‰πΊβˆ’π‘‰π‘‡

𝑉𝑇

𝑅𝑆𝐼DS

β€’ Higher the 𝑅𝑠 less 𝐼𝐷𝑆 variations with 𝑉𝑇

β€’ But higher voltage drop across 𝑅𝑆

β€’π›₯𝐼𝐷

𝐼𝐷≅

1βˆ’ 1+2𝛽𝑅𝑆 π‘‰πΊπ‘†βˆ’π‘‰π‘‡+𝑅𝑆𝐼DS

1+2𝛽𝑅𝑆 π‘‰πΊπ‘†βˆ’π‘‰π‘‡+𝑅𝑆𝐼DS

𝑉𝑇

𝑅𝑆𝐼DS

π›₯𝑉𝑇

𝑉𝑇

-2.0E+0

-1.8E+0

-1.6E+0

-1.4E+0

-1.2E+0

-1.0E+0

-8.0E-1

-6.0E-1

-4.0E-1

0 1000 2000 3000 4000 5000

Sen

siti

vity

Fu

nct

ion

Source Resistance

771st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

6.8.1 Design Example II

β€’ At the lowest voltage swing at output node

𝑉DS = 𝑉𝐷𝐷 βˆ’ 𝐼DS 𝑅𝑆 + 𝑅𝐷 > π‘£π‘œβˆ’π‘π‘˜ + 𝑉𝐺𝑆 βˆ’ 𝑉𝑇

β€’ If we assume 𝐼𝐷𝑆𝑅𝑠 = 2.5𝑉

𝑉DS = 𝑉𝐷𝐷 βˆ’ 2.5 βˆ’ π‘£π‘œβˆ’π‘π‘˜ > 𝐼DS𝑅𝐷 + 𝑉𝐺𝑆 βˆ’ 𝑉𝑇

β€’ Proceeding as previous example to find sensitivity

𝐼𝐷𝑆 β‰€π‘‰π·π·βˆ’2.5βˆ’π‘£π‘œβˆ’π‘π‘˜

𝑅𝐷+

1

2𝛽𝑅𝐷2 βˆ’

1

2𝛽𝑅𝐷

2

- (4)

Vomax

Vomax

VDD

IDQRD

VDSQ-VDSat

781st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

5.0E+03 1.0E+04 1.5E+04 2.0E+04 2.5E+04

Dra

in C

urr

ent

Drain Resistance

6.8.1 Design Example II

β€’ No solution exists for 𝐴𝑣 = 6 or higher

β€’ Range of resistance = 7π‘˜Ξ© βˆ’ 13π‘˜Ξ©

β€’ Acceptable range of drain current is 400πœ‡π΄ βˆ’ 850πœ‡π΄

Eq. 3Av=6

Eq. 3Av=4

Eq. 4

Eq. 2

791st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Summary

β€’ DC and AC Analysis of MOSFET based circuits

β€’ Different Amplifier configuration analysis

β€’ Common Source Amplifier

β€’ With and without source degeneration

β€’ Design procedure based on circuit constrains

β€’ The design process is multi-dimensional where PVT variations must be considered!

801st African Webinar Series on Fundamentals on Circuits, Systems, and Emerging Technologies

Time for 8 minutes break