Fundamentals of Switching Phenomenon

  • Upload
    kopi143

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

  • 7/29/2019 Fundamentals of Switching Phenomenon

    1/39

  • 7/29/2019 Fundamentals of Switching Phenomenon

    2/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page2of39

    2.1 INTRODUCTION

    Thefollowingphenomenacanbeobservedduringswitchingandthefaultclearingprocessinacircuitbreaker:

    1. Asthefaultoccurs,thecurrentincreasestoahighvalueduringthefirsthalfcycleofthewaveandthereafterthe

    amplitude

    of

    the

    wave

    goes

    on

    reducing

    as

    the

    waveform

    passes

    through

    the

    sub

    transient,

    transient

    and

    steadystates.Thewaveformofthecurrentisasymmetricalaboutthenormalzeroaxis.

    2. Thevoltageacrossthecircuitbreakerpoleafterthefinalarcextinction(calledthetransientrecoveryvoltage(TRV))hasarelativelyhighamplitudeandrateofrise.Thevoltagehasahighfrequencytransientcomponent

    superimposedonapowerfrequencycomponent.

    3. Overvoltagescanbegeneratedwhileclosingcircuitbreakeroncapacitorbanksorloadedtransmissionlines.Theseareminimizedbypreclosingresistorsandsurgesuppressors.

    Inthischaptertheabovementionedphenomenahavebeenstudiedwithreferencetothebehaviorofcircuitbreaker.

    Forthepurposeofanalysis,simpleRLCnetworkshavebeenconsidered.Thegeneratorhasbeenrepresentedbyan

    e.m.f.source.Theequationsofvoltageandcurrenthavebeensolvedbysimplerulesofdifferentialcalculus.

    2.2 NETWORK PARAMETERS: R, L, C

    Anelectricalnetworkcomprisesthefollowingnetworkparameters

    Inductance(L) Capacitance(C) Resistance(R)

    Theresistancecanbeneglectedasafirstapproximation.

    i. InductanceInductanceisdefined

    henerydi

    dL

    = (1)

    where L =inductanceofcircuit,Henry.

    =fluxlinkageduetocurrenti,Weberturns

    I =currentinthecircuit,Amp.

    Theelectromotiveforce(e.m.f.)inducedinaninductorisgivenby,

    voltsdt

    diL

    dt

    di

    di

    d

    dt

    de ===

    (2)

    Energyininductance(LHenry)attheinstantwhenthecurrentinitisi(A)isgivenby,

    Joules2

    1 2LiWin= (1Joule=1Wasecond) (3)

    Inaninductivecircuitcurrentcannotchangeinstantaneously. Hencewhenthee.m.fisappliedatt=0,thecurrentis

    zeroatthe

    instant

    ofclosing

    the

    switch.

    Also

    we

    know

    that

    the

    current

    lags

    behind

    applied

    voltage

    by90

    inthe

    inductance.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    3/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page3of39

    Consideringsinusoidalvoltageappliedtoan inductance,thecurrentlagsby90,therefore,thevoltageofthecircuit

    hasmaximuminstantaneousvalueatthecurrentzero.

    While

    interrupting

    the

    current

    flowing

    through

    an

    inductive

    circuit

    such

    as

    a

    transformer

    on

    no

    load,

    a

    transformer

    loaded by an inductor, etc. the circuitbreaker should interrupt the arc at natural current zero of the alternating

    currentwave.Ifthearcextinctiontakesplaceatthenaturalcurrentzero,theenergyintheinductance(1/2Li2)iszero.

    However,ifthearcissuddenlyinterruptedbeforethenaturalcurrentzero,attheinstantaneousvalueofcurrent,sayi

    amperes,theenergy1/2Li2issuddenlyinterruptedbythechoppingofcurrenttoanartificialzerovalue.Duetosucha

    phenomenontheinterruptingoflowmagnetizingcurrentsoftransformers,reactorsneedaparticularattention.The

    circuitbreakershouldbecapableofinterruptingsuchcurrentswithoutgettingdamagedorwithoutgivingrisetoover

    voltageabovethepermissiblelimits.

    ii. CapacitanceThewellknowndefinitionofthecapacitorisTwoormoreconductorsseparatedbydielectric(insulating)medium.

    ThecapacitanceCisgivenby

    faradsdv

    dqC = (4)

    where C =capacitance,Farads

    q =charge,Coulombs

    v =voltage,Volts.

    Fromtheabovedefinition, it isunderstandablethattransmission lines,bushing,circuitbreakersetc.have inherent

    capacitancebetweenphaseandbetweenphaseandground.Insomecasesthecapacitancemaybenegligible.Inh.v.

    circuit it becomes important and may not be negligible. In circuitbreaking phenomenon, capacitance plays an

    importantrole.Thevoltageacrosscapacitorisgivenby

    voltsC

    dqdv=

    == volts11

    idtC

    dqC

    v

    Energyinacapacitorisintheformofelectricfieldandisgivenby

    Joules2

    1 2CvWC= (5)

    where CisinFarads,visinVolts,qisthechargeinCoulombs.

    There exists a distributed capacitance between conductors and between conductor and ground in case of

    transmission lines.Theflowofalternatingcurrent inthetransmission line isassociatedwithalternatechargingand

    dischargingofthiscapacitance.Thecurrentstakenbythecapacitanceforchargingarecalledchargingcurrents.The

    chargingcurrentflow intransmission line,even ifthereceivingendisopencircuited.Thevoltageacrossacapacitor

    cannotchangeinstantaneously.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    4/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page4of39

    Whileclosingacircuitbreakeronapredominantlycapacitivecircuitlikeacapacitorbank,thecurrentflowing inthe

    capacitanceisgivenby

    dt

    dvCi

    =

    where i =instantaneousvalueofcurrent,Amperes

    C =capacitance,Farads

    dvldt =rateofchangeofvoltage,Volts/sec.

    The current inrushduring the closingof capacitive circuit canoccurduringprearcingbetween the circuitbreaker

    contacts.Thefollowingdutiescanproduceseverestressesonthecircuitbreaker:

    Parallelingoftwocapacitorbanks Closingandopeningcapacitorbanks Closingandopeningunloadedtransmissionlinesonnoload

    2.3 VOLTAGE EQUATION OF AN RLC SERIES CIRCUIT

    ThevoltageequationofanRLCseriescircuitisgivenby

    volts1++= idt

    CRi

    dt

    diLe (6)

    e =impressedvoltage

    Ldt

    di =voltageacrossinductor

    Ri =voltageacrossresistor

    idtC

    1 =voltagecrosscapacitor.

    Foranalternatinge.m.f,theinducedvoltageeisgivenby

    ( )+= tEemsin

    where,Em=2Ermsand=2f.Angle dependsonmagnitudeofeatt=0.Ifeiszeroati=0,then =0andife=Em

    ati=0then= /2.

    2.4 SUDDEN SHORT CIRCUIT OF RL SERIES CIRCUIT

    Letussee,whathappens,whenswitchSinthecircuitshowninFig2.1issuddenlyclosed.

    Figure2.1 RLseriescircuitunderstudy

  • 7/29/2019 Fundamentals of Switching Phenomenon

    5/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page5of39

    Writinganequationforcurrentionthebasisdescribedinsecton2.3,

    ( ) +==+ tEeRidt

    diL

    msin (8)

    Weshallsolvethisequationtoobtainanexpressionforcurrenti.Eq.(8)isanonhomogeneousdifferentialequation

    offirstorder.TheEmcompletesolutionisthesumofacomplementarysolution(ic)andaparticularsolution(ip)i.e.

    i=ic+ip (9)

    ComplementarySolution,(ic)

    TheauxiliaryequationisobtainedbypungtherighthandsideofEq.(8)equaltozero,i.e.

    0=+ Ridt

    diL

    Rearrangingtheterms,

    0=+ dtL

    R

    i

    di

    Integrating,

    KtL

    Ri

    KtL

    Ri

    +=

    =+

    ln

    ln

    whereKisaconstantofintegrationgivenbyK=lnA,whereAissomeotherconstant.Hence

    ( )( ) Aei tLR lnlnln +=

    ( )tLReAi = (10)

    This iscomplementarysolutionofcurrent i. It isanexponentiallydecayingcomponentcalledD.C.Component.The

    magnitudeofconstantAdependsoninitialconditions.Amaybezero,positiveornegativedependinguponmagnitude

    ofeatt=0.

    ParticularSolution,(ip)

    Takeatrialsolution

    ( ) ( ) +++= tDtCi sincos (11)

    SuchatrialsolutonistakenbecausetheR.H.S.ofEq.(8)isoftheform ( )+tEmsin .Obtain

    dt

    diofEq.(11)

    andsubsttuteinEq.(8).Equatethecoefficientsofliketermsfrombothsidestoget

  • 7/29/2019 Fundamentals of Switching Phenomenon

    6/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page6of39

    222 LR

    LEC

    m+

    = (12)

    222 LR

    RED m += (13)

    SubstitutingthesevaluesofCandDinEq.(11)weget

    ( ) ( )

    ++

    +++

    = tELR

    RtE

    LR

    Li

    mmsincos

    222222 (14)

    Let betheangleofimpedancetriangle

    R

    L 1tan=

    222222cos;sin

    LR

    R

    LR

    L

    +=

    +=

    Substitutingsin andcos inEq.(14),

    ( ) ( )

    ++

    +++

    = t

    LR

    Et

    LR

    Ei mm sincoscossin

    222222 (15)

    ( ) ++= tLR

    E

    im

    sin222 (16)

    Eq.(16)isthepartcularsolutonofEq.(8).ItissinusoidcalledA.C.Component.

    CompleteSolution,(i)

    i=ip+ic

    FromEqs.(10)and(16),weget

    ( ) ( )

    ++

    += tLR

    EAei mtLR sin

    222 (17)

    ThisisacompletesolutonofEq.(8).LetusputtheinitalconditontoevaluateA.Att=0;i=0;becausethe

    currentininductivecircuitdoesnotchangeinstantaneously.

    AssumingRtobetoosmallascomparedwithL;

    o90tanand 1222 ==+ R

    LLLR

  • 7/29/2019 Fundamentals of Switching Phenomenon

    7/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page7of39

    CaseI.Switchclosedate=0.

    Hencee=0att=0,therefore, =0.

    Also

    i

    =

    0

    at

    t

    =

    0,

    and

    from

    Eq.

    (17)

    ( )o90sin0222

    +

    +=LR

    EA m

    L

    EA m

    =

    ThisismaximumvalueofA,hencethed.c.componentismaximumwhenswitchisclosedatvoltagezero.Thiscaseis

    calledDoublingEffectbecausepeakvalueisthen2Em/L,atthepeakofthefirstcurrentloop.Thereisaslightdropin

    the instantaneous valueof the current from t= 0 to t=/2. Therefore, thepeak value canbe considered tobe

    approximately1.8Em/Linsteadof2Em/L.

    CaseII.Switchclosedate=Em

    Hencee=Ematt=0,therefore =/2.

    Alsoi=0att=0,andweget

    ++=

    22sin0

    222

    LR

    EA m

    0=A

    HenceA is zero, if switch is closedwhene=Em, thereby thed.c. component isalso zero. Fromcases Iand IIwe

    observethatthemagnitudeof initialvalueofd.c.component( )tLReA dependsuponthemomentofclosureof

    switch,orvoltageattheinstantofoccurrenceofshortcircuit.

    Letusnowinterprettheresultsofthesolution.WhenanRLseriescircuitisclosedwithanalternatingvoltagesource,

    theresultingcurrentconsistsoftwocomponents,ad.c.componentandana.c.component.Thea.c.component is

    superimposedonthed.c.component.Themagnitudeofd.c.componentdependsuponthevoltageattheinstantof

    closingtheswitch.Whentheswitchisclosedatvoltagezero,thed.c.componentismaximum(Fig.2.2).Iftheswitchis

    closedatvoltagemaximum,d.c.component iszeroandthewaveform issymmetricalaboutthenormalzeroaxisas

    showninFig.2.3.

    Example 1: A.C. Transient RL circuit.A50Hzsinusoidalvoltageofamplitude400Voltsisappliedtoaseriescircuitof

    resistance10Ohmand inductanceof0.1H.Findanexpressionfor thevalueof thecurrentatany instantafer the

    voltageisapplied.

    a) Find thevalueofd.c.componentofcurrentuponclosing theswitch if instantaneousvalueofvoltage is50Voltsatthattime

    b)What valueof instantaneousvoltagewillproduceamaximumd.c. componentof currentupon closing theswitch?

  • 7/29/2019 Fundamentals of Switching Phenomenon

    8/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page8of39

    c) What is the instantaneous value of voltagewhichwill result in the absence of any d.c. component uponclosingtheswitch?

    d) Iftheswitch isclosedwhen instantaneousvoltage iszero,findthe instantaneouscurrent0.5,1.5,5.5cycleslater

    Figure2.2 Changeofcurrentwith tmeinRLseriescircuituponswitchingatvoltagezero

    Figure2.3 Changeofcurrentwith tmeinRLseriescircuituponswitchingatmaximumvoltage

    Solution:

    Given:R=l0ohms,L=0.1henery,f=50Hz,and =2f=314

    ( ) ( ) =+=+ 331.031410 222222 LR

    radians26.133.7210

    4.31tanAngle 1 === o

    VErms 400= VEE

    rmsm7.56540022 ===

    ( ) ( ) tttLR eee 1001.010 == SubsttutnginEq.(17),

    ( )

    ( ) AtAe

    AtAei

    t

    t

    26.1314sin14.17

    26.1314sin33

    7.565

    100

    100

    ++=

    ++=

    (i)

    a) Switchclosedatt=0,whene=50V,therefore

  • 7/29/2019 Fundamentals of Switching Phenomenon

    9/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page9of39

    ( )+== 0sin7.56550e

    radian0885.007.57.565

    50sin 1 === o

    Sincei=0att=0,thereforefromEq.(i)

    ( )26.10885.0sin14.170 += A

    ( ) 79.1526.10885.0sin14.17 ==A

    D.C.componentatt=0isgivenby( ) AeAe 79.1578.15 00100 ==

    b) Themaximum d.c. componentwill be produced if instantaneous value of applied voltage is zero at theinstantofclosingtheswitch.

    c) Thed.c.componentwillvanish ife=Em, i.e.2400=565.7V(instantaneous)atthe instantofclosingtheswitch.

    d) Iftheswitch isclosedatzero instantaneousvoltage,theangle iszeroandAwillbe16.32.Thecurrentequationwillthenbe

    ( ) Atei t 26.1314sin14.1732.16 100 += (ii)0.5 cycles=0.50.02=0.01second

    1.5 cycles=0.03second

    5.5 cycles=0.11second

    SubstituteinEq.(ii),

    2.5 SUBTRANSIENT, TRANSIENT AND STEADY STATE

    Theanalysisofsuddenshortcircuit,ofanRLseriescircuit (secton2.4)willnowbeapplied to threephaseshort

    circuitofanalternator.Theprincipleofoperationofasynchronousgenerator isbasedonarotatingmagneticfield

    which generates a voltage in an armaturewinding having resistance and reactance. The current flowing when a

    generatorisshortcircuitedissimilartothatgiveninFigs2.2and2.3whichisflowingwhenanalternatingvoltageis

    suddenlyappliedtoaresistanceandaninductanceinseries.However,thecurrentflowinginasynchronousmachine

    immediatelyaftertheoccurrenceofafault,thatflowingafewcycleslater,andthesustained,orsteadystate,valueof

    the faultcurrentdiffer considerablybecauseof the effectof the armature currenton the flux thatgenerates the

    voltage inthemachine. Inthealternator,thewaveform ismodifiedbyarmaturereaction.Anoscillogramofthree

    phasecurrentsisshowninFig.2.4.Sincethevoltagesgeneratedinthephasesofathreephasemachinearedisplaced

    120electricaldegreesfromeachother,theshortcircuitoccursatdifferentpointsonthevoltagewaveofeachphase.

    Forthisreasontheunidirectional ordctransientcomponentofcurrentisdifferentineachphase.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    10/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page10of39

    Phase B

    Time

    Figure2.4 Waveformsofshortcircuitcurrentsinthethreephasesofanalternator.

    Ifthedccomponentofcurrentiseliminatedfromthecurrentofeachphase,theresultingplotofeachphasecurrent

    versus tmeisthatshowninFig.2.5.ComparisonofFigs.2.3and2.5showsthedifferencebetweenapplyingavoltage

    totheordinaryRLcircuitandapplyingashortcircuittoasynchronousmachine.Thereisnodccomponentineitherof

    thesefigures.Inasynchronousmachinethefluxacrosstheairgapofthemachine ismuch largeratthe instantthe

    short circuitoccurs than it isa few cycles later.The reductionof flux is causedby themmfof the current in the

    armature. Such effect is called armature reaction.When a short circuit occurs at the terminals of a synchronous

    machine, time is required for the reduction in fluxacross theairgap.As the fluxdiminishes, thearmaturecurrent

    decreases because the voltage generated by the airgap flux determines the currentwhichwill flow through the

    resistanceandleakagereactanceofthearmaturewinding.

    Figure2.5 Currentasafunctonoftmeforasynchronousgeneratorshortcircuitedwhilerunningatnoload.Theunidirectional transientcomponentofcurrenthasbeeneliminatedinredrawingtheoscillogram.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    11/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page11of39

    2.6 SHORTCIRCUIT CURRENTS AND THE REACTANCES OF SYNCHRONOUS MACHINES

    CertaintermsthatarevaluableinthecalculationofshortcircuitcurrentinapowersystemcanbedefinedfromFig.

    2.5.Thereactancesweshalldiscussaredirectaxisreactances.Thedirectaxisreactance isthatusedforcomputing

    voltage

    drops

    caused

    by

    that

    component

    of

    the

    armature

    current

    which

    is

    in

    quadrature

    (90

    o

    out

    of

    phase)

    with

    the

    voltagegeneratedatnoload.Sincetheresistanceinafaultedcircuitissmallcomparedwiththeinductivereactance,

    currentduringafaultisalwayslaggingbyalargeangle,andthesocalleddirectaxisreactanceisrequired.

    Inthediscussiontofollow,itshouldberememberedthatthecurrentshownintheoscillogramofFig.2.5isthatwhich

    flowsinanalternatoroperatingatnoloadbeforethefaultoccurs.

    InFig.2.5 thedistanceoa is themaximumvalueof thesustainedshortcircuitcurrent.Thisvalueofcurrent times

    0.707isthermsvalue I ofthesustained,orsteadystate,shortcircuitcurrent.Thenoloadvoltageofthealternator

    gE dividedbythesteadystatecurrent I iscalledthesynchronousreactanceofthegeneratororthedirectaxis

    synchronousreactanceXdsincethepowerfactorislowduringtheshortcircuit.Thecomparativelysmallresistanceof

    thearmatureisneglected.

    If the envelopeof the currentwave is extendedback to zero timeand the first few cycleswhere thedecrement

    appearstobeveryrapidareneglected,theinterceptisthedistanceob.Thermsvalueofthecurrentrepresentedby

    this intercept,or0.707 tmesob inamperes, isknownasthetransientcurrent'I .Anewmachinereactancemay

    nowbedefined.Itiscalledthetransientreactance,orinthisparticularcasethedirectaxistransientreactance'

    dX

    andisequalto'IE

    g foranalternatoroperatingatnoloadbeforethefault.Iftherapiddecrementofthefirst

    few cycles is neglected, the point of intersection that the current envelope makes with the zero axis can be

    determined more accurately by plotting on semilogarithmic paper the excess of the current envelope over the

    sustainedvaluerepresentedbyoa,asshowninFig.2.6.Thestraightlineportionofthiscurveisextendedtothezero

    timeaxis,and the intercept isadded to themaximum instantaneousvalueof the sustained current toobtain the

    maximuminstantaneousvalueoftransientcurrentcorrespondingtoobinFig.2.5.

    Figure2.6

    Excess

    ofthe

    current

    envelope

    ofFig.

    2.5

    over

    the

    sustained

    maximum

    current,

    plotted

    on

    semilogarithmicscales.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    12/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page12of39

    Thermsvalueofthecurrentdeterminedbythe interceptofthecurrentenvelopewithzerotime iscalledthesub

    transient current"I . InFig.2.5 the subtransientcurrent is0.707 tmes theordinateoc.Subtransientcurrent is

    oftencalledthe initialsymmetricalrmscurrent,which ismoredescriptivebecause itconveysthe ideaofneglecting

    thedccomponentandtakingthermsvalueoftheaccomponentofcurrentimmediatelyaftertheoccurrenceofthe

    fault.Directaxissubtransientreactance"

    dX foranalternatoroperatingatnoloadbeforetheoccurrenceofathree

    phasefaultatitsterminalsis"IE

    g.

    The current and reactancesdiscussedabovearedefinedby the followingequations,whichapply toanalternator

    operatingatnoloadbeforetheoccurrenceofathreephasefaultatitsterminals:

    d

    g

    X

    EoaI ==

    2 (18)

    '

    '

    2d

    X

    EobI

    g== (19)

    "

    "

    2d

    X

    EocI

    g== (20)

    where

    I =steadystatecurrent,rmsvalue

    'I =transientcurrent,rmsvalueexcludingdccomponent

    "I =subtransientcurrent,rmsvalueexcludingdccomponent

    dX =directaxissynchronousreactance

    '

    dX =directaxistransientreactance

    "

    dX =directaxissubtransientreactance

    gE =rmsvoltagefromoneterminaltoneutralatnoload

    oa,ob,oc =interceptshowninFig.2.5.

    Equatons(18)to(20)indicatethemethodofdeterminingfaultcurrentinageneratorwhenitsreactancesareknown.

    Ifthegenerator isunloadedwhenthefaultoccurs,themachine isrepresentedbythenoloadvoltagetoneutral in

    serieswiththeproperreactance.

    The resistance is taken intoaccount ifgreateraccuracy isdesired. If there is impedanceexternal to thegenerator

    betweenitsterminalsandtheshortcircuit,theexternalimpedancemustbeincludedinthecircuit.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    13/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page13of39

    Althoughmachinereactancesarenottrueconstantsofthemachineanddependonthedegreeofsaturationofthe

    magneticcircuit,theirvaluesusuallyliewithincertainlimitsandcanbepredictedforvarioustypesofmachines.Table

    2.1givestypicalvaluesofmachinereactancesthatareneededinmakingfaultcalculationsandinstabilitystudies.In

    general,

    sub

    transient

    reactances

    of

    generators

    and

    motors

    are

    used

    to

    determine

    the

    initial

    current

    flowing

    on

    the

    occurrenceofashortcircuit.Fordeterminingthe interruptingcapacityofcircuitbreakers,exceptthosewhichopen

    instantaneously, subtransient reactance is used for generators and transient reactance is used for synchronous

    motors. In stability studies where the problem is to determine whether a fault will cause a machine to lose

    synchronismwith the restof the system if the fault is removedaftera certain time interval, transient reactances

    apply.

    Table2.1 Typicalreactancesofthreephasesynchronousmachines

    Turbinegenerators

    salientpolegenerators2pole 4pole

    Conventional

    cooled

    Conductor

    cooled

    Conventional

    cooled

    Conductor

    cooled

    With

    dampers

    Without

    dampers

    dX 1.76

    1.71.82

    1.95

    1.722.17

    1.38

    1.211.55

    1.87

    1.62.13

    1

    0.61.5

    1

    0.61.5

    qX 1.66

    1.631.69

    1.93

    1.712.14

    1.35

    1.171.52

    1.82

    1.562.07

    0.6

    0.40.8

    0.6

    0.40.8

    '

    dX 0.21

    0.180.23

    0.33

    0.2640.387

    0.26

    0.250.27

    0.41

    0.350.467

    0.32

    0.250.5

    0.32

    0.250.5

    "dX 0.13

    0.110.14

    0.28

    0.230.323

    0.19

    0.1840.197

    0.29

    0.2690.32

    0.2

    0.130.32

    0.3

    0.20.5

    2X = "

    dX = "

    dX = "

    dX = "

    dX 0.2

    0.130.32

    0.4

    0.30.45

    0X variesfrom0.1to0.7of "

    dX

    Valuesareperunit.Foreachreactancearangeofvaluesislistedbelowthetypicalvalue

    Inconclusion,astheshortcircuitoccurs,theshortcircuitcurrentattainshighvalue.Thecircuitbreakercontactsstart

    separatingaftertheoperationoftheprotectiverelay.Thecontactsofthecircuitbreakerseparateduring 'transient

    state.'The r.m.s.valueof thecurrentat the instantof thecontactseparation iscalled thebreakingcurrentof the

    circuitbreakerandisexpressedinkA.

    Ifacircuitbreakerclosesonexisting fault,thecurrentwould increasetoahighvalueduringthe first,halfcycleas

    shownisFigs.2.2and2.3.

    Thehighestpeakvalueofthecurrent isreachedduringthepeakofthe firstcurrent loop.Thispeakvalue iscalled

    'making current'of thecircuitbreakerand isexpressed inkA.Though the shortcircuitcurrentvariescontinuously

    duringthesubtransientandtransientstates,therepresentativevaluescanbecalculated fromequatons18to20.

    Thesubtransient,transientandsteadystatereactancescanbedeterminedexperimentallybyconductingshortcircuit

    test.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    14/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page14of39

    ItisclearfromEqs.(18)to(20)thatwhilecalculatngsubtransient,transientandsteadystatecurrents;therespective

    reactancesshouldbeconsidered.ShortCircuitCalculationsandtheSelectionofCircuitBreakers

    2.7 FAULT CALCULATIONS2.7.1 SYSTEM CONFIGURATION

    Powersystemsoperateatvoltageswherekilovolt(kV)isthemostconvenientunitforexpressingvoltage.Also,these

    systems transmit large amountofpower, so that kilovoltampere (kVA)andmegavoltampere (MVA) areused to

    expressthetotal(generalorapparent)threephasepower.Thesequantities,togetherwithkilovars,amperes,ohms,

    flux,andsoon,areusuallyexpressedasaperunitorpercentofareferenceorbasevalue.Theperunitandpercent

    nomenclatures arewidely used because they simplify specification and computations, especially where different

    voltagelevelsandequipmentsizesareinvolved.

    Thisdiscussionisforthreephaseelectricsystemswhichareassumedtobebalancedorsymmetricaluptoapointor

    area of unbalance. Thismeans that the source voltages are equal inmagnitude and are 120o displaced in phase

    relations,andthattheimpedancesofthethreephasecircuitsareofequalmagnitudeandphaseangle.Fromthisasa

    beginning, various shunt and series unbalances can be analyzed, principally by the method of symmetrical

    components.

    2.7.2 Per Unit and Percent Values

    Percentis100

    tmes

    per

    unit,

    both

    are

    used

    asama

    erofconvenience

    orpersonal

    choice

    and

    itisimportant

    to

    designateeitherpercent(%)orperunit(pu).

    Theperunitvalueofanyquantityistheratioofthatquantitytoitsvalue,theratioexpressedasanondimensional

    decimalnumber.Thusactualquantities,suchasvoltage(V),current(I),power(P),reactivepower(Q),voltamperes

    (VA),resistance(R),reactance(X),andimpedance(Z),canbeexpressedinperunitorpercentasfollows:

    quantityofvaluebase

    quantityactualunitperinQuantity = (21)

    Quanttyinpercent=(quanttyinperunit)x100 (22)

    where actualquantity is the scalaror complex valuesof aquantity expressed in itsproperunits, such as volts,

    amperes,ohms,orwatts.basevalueofquantityreferstoanarbitraryorconvenientreferenceofthesamequantity

    chosenanddesignatedasthebase.Thusperunitandpercentaredimensionlessratioswhichmaybeeitherscalaror

    complexnumbers.

    Asanexampleforachosenbaseof115kV,voltagesof92,115and161kVbecome0.80,1.00,and1.40puor80%,

    100%,and140%,respectvely.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    15/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page15of39

    2.7.2.1 Base Quanttes

    The base quantities are scalar quantities, so that phasor notation is not required for the base equations. Thus

    equationsforthebasevaluescanbeexpressedwiththesubscriptBtoindicateabasequantityasfollows:

    BBB IkVkVApowerbaseFor 3: = (23)

    B

    BB

    kV

    KVAIcurrentbaseFor

    3: = (24)

    B

    BB

    kVA

    xKVZimpedancebaseFor

    1000:

    2

    (25)

    andsince MVA=1000kVA (26)

    thebaseimpedancecanalsobeexpressedas

    B

    BB

    MVAkVZ

    2

    = (27)

    Inthreephaseelectricpowersystemsthecommonpracticeistousethestandardornominalsystemvoltageasthe

    voltagebase,andaconvenientMVAorkVAquanttyasthepowerbase.100MVA isawidelyusedpowerbase.The

    systemvoltagecommonlyspecifiedisthevoltagebetweenthethreephases(i.e.,thelinetolinevoltage).Thisisthe

    voltage used as a base in Eqs. (23) through (27). As a shortcut and for convenience, the linetoline subscript

    designation(ll) isomitted.Withthispractice it isalwaysunderstoodthatthevoltage isthe linetolinevalueunless

    indicatedotherwise.Themajorexception is inthemethodofsymmetricalcomponents,where linetoneutralphase

    voltage isused.Thisshouldalwaysbespecifiedcarefully,but there issometimesa tendencytooverlookthisstep.

    Similarly,currentisalwaysthephaseorlinetoneutralcurrentunlessotherwisespecified.

    Power is alwaysunderstood tobe threephasepowerunless otherwise indicated.General power, also known as

    complexorapparentpower, isdesignatedbyMVAorkVA,as indicatedabove.Threephasepower isdesignatedby

    MVorkV.ThreephasereactivepowerisdesignedbyMVArorkVAr.

    2.7.2.2 Per Unit and Percent Impedance Relationships

    Perunitimpedanceisspecifiedinohms(Z)fromEq.(21)bysubsttutngEq.(27):22 100 B

    B

    B

    B

    Bpu

    kV

    ZkVAor

    Vk

    ZMVA

    Z

    ZZ == (28)

    or,inpercentnotation,

    22 10

    100%

    B

    B

    B

    B

    Vk

    ZkVAor

    Vk

    ZMVAZ = (29)

    wheretheohmvaluesaredesiredfromunit,percentvalues,theequationsare

    B

    puB

    B

    puB

    kVA

    ZVk

    orMVA

    ZVk

    Z

    22 1000

    = (30)

  • 7/29/2019 Fundamentals of Switching Phenomenon

    16/39

  • 7/29/2019 Fundamentals of Switching Phenomenon

    17/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page17of39

    wheretheturnsareproportionaltothevoltages.

    The

    per

    unit

    impedances

    are,

    from

    Eq.

    (21),

    (33),

    and

    (34),

    yB

    y

    x

    y

    y

    x

    xB

    x

    xZ

    ohmsZ

    N

    N

    N

    N

    Z

    ohmsZpuZ

    22

    ==

    puZZ

    ohmsZy

    yB

    y == (36)

    Thustheperunitimpedanceisthesameoneithersideofthebank.

    TransformerBankExample

    Consideratransformerbankrated50MVAwith34.5kVand161kVwindingsconnectedtoa34.5and161kVpower

    system.Thebankreactanceis10%.Nowwhenlookingatthebankfromthe34.5kVsystem,itsreactanceis

    10%ona50MVA34.5kVbase (37)

    Andwhenlookingatthebankfromthe161kVsystemitsreactanceis

    10%ona50MVA161kVbase (38)

    Thisequalimpedanceinpercentorperunitoneithersideofthebankisindependentofthebankconnections:wye

    delta,deltawye,wyewye,ordeltadelta.

    Thismeansthattheperunit(percent)impedancevaluesthroughoutanetworkcanbecombinedindependentlyofthe

    voltagelevelsaslongasalltheimpedancesareonacommonMVA(kVA)baseandthetransformerwindingsratings

    arecompatiblewiththesystemvoltages.Thisisagreatconvenience.

    The actual transformer impedances in ohms are quite different on the two sides of a transformerwith different

    voltagelevels.Thiscanbeillustratedfortheexample.ApplyingEq.(33),wehave

    kVatjX 5.3438.250100

    105.34 2=

    = (38)

    kVat16184.5150100

    101612=

    = (39)

    ThiscanbecheckedbyEq.(35),wherefortheexamplexisthe34.5kVwindingside,andyisthe161kVwindingside.

    Then,

    38.284.5116

    5.3438.2

    2

    2

    == (40)

  • 7/29/2019 Fundamentals of Switching Phenomenon

    18/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page18of39

    2.7.2.4 Changing Per Unit (Percent) Quanttes to Different Bases

    Normally,theperunitorpercentimpedancesofequipmentisspecifiedontheequipmentbase,whichgenerallywill

    bedifferentfromthepowersystembase..sinceallimpedancesinthesystemmustbeexpressedonthesamebasefor

    per

    unit

    or

    percent

    calculations,

    it

    is

    necessary

    to

    convert

    all

    values

    to

    the

    common

    base

    selected.

    This

    conversion

    can

    bederivedbyexpressingthesameimpedanceinohmsontwodifferentperunitbases.FromEq.(33)foraMVA1,kV1

    base andaMVA2,kV2base,

    21

    11

    kV

    ZMVAZ ppu

    = (41)

    Byrationingthesetwoequationsandsolvingforoneperunitvalue,thegeneralequationforchangingbasesis

    1

    21

    2

    2

    2

    1

    2

    MVA

    kV

    kV

    MVA

    Z

    Z

    pu

    pu = (42)

    22

    21

    1

    212

    kV

    kV

    MVA

    MVAZZ pupu = (43)

    Equaton(43)isthegeneralequatonforchangingfromonebasetoanotherbase.Inmostcasestheturnsratoofthe

    transformer isequivalent to thedifferent systemvoltages,and theequipmentratedvoltagesare the sameas the

    systemvoltages,sothatthevoltage squaredratoisunity.ThenEq.(43)reducesto

    1

    212

    MVAMVAZZ pupu = (44)

    ItisveryimportanttoemphasizethatthevoltagesquarefactorofEq.(43)isusedonlyinthesamevoltageleveland

    where slightly different voltage bases exist. It is never used where the base voltages are proportional to the

    transformerbankturns,suchasgoingfromthehightothelowsideacrossabank.Inotherwords,Eq.(43)hasnothing

    todowithtransferringtheohmicimpedancevaluefromonesideofatransformertotheotherside.

    SeveralexampleswillillustratetheapplicatonsofEq.(43)and(44)inchangingperunitandpercentimpedancesfrom

    onebasetoanother.

    2.7.3 Symmetrical Components

    Any unbalanced current or voltage can be determined from the sequence components from the following

    fundamentalequations:

    oaoa VVVVIIII ++=+== 2121 (45)

    oboab VaVaVVaVIaIIaI +++=++= 2212

    212

    (46)

    oCoc VVaaVVIIaaII ++=++= 22

    122

    1 (47)

    whereIa,Ib,andIcorVa,VbandVcaregeneralunbalancedlinetoneutralphasors.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    19/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page19of39

    Fromthese,equationsdefiningthesequencequantitiesfromathreephaseunbalancedsetcanbedetermined:

    )()( cbaocbao VVVVIIII ++=++=3

    1

    3

    1 (48)

    )()( cbacba VaaVVVIaaIII2

    12

    131

    31 ++=++= (49)

    )()( cbacba aVVaVVaIIaII ++=++=2

    22

    23

    1

    3

    1 (50)

    Theselastthreefundamentalequationsarethebasisfordeterminingifthesequencequantitiesexistinanygivenset

    ofunbalancedthreephasecurrentsorvoltages.Theyareusedforprotectiverelayingoperationfromthesequence

    quantites.Forexample,Fig.2.8showsthephysicalapplicatonofcurrenttransformers(CTs)andvoltagetransformers

    (VTs)tomeasurezerosequenceasrequiredbyEq.(48),andusedingroundfaultrelaying.

    NetworksoperatingfromCTsorVTsareusedtoprovideanoutputproportionaltoI2orV2andarebasedonphysical

    solutonsof(Eq.50).

    2.7.3.1 SEQUENCE INDEPENDENCE

    Forallpracticalpurposeselectricpower systemsarebalancedor symmetrical from thegenerators to thepointof

    singlephaseloadingexceptinanareaofafaultorunbalancesuchasanopenconductor.Inthisessentiallybalanced

    area,thefollowingconditionsexist:

    1. Positivesequence currents flowing in the symmetrical or balanced network produce onlypositivesequencevoltagedrops;nonegativeorzerosequencedrops.

    2. Negativesequencecurrentsflowinginthebalancednetworkproduceonlynegativesequencevoltagedrop;nopositiveorzerosequencevoltagedrops.

    3. Zerosequencecurrentsflowinginthebalancednetworkproduceonlyzerosequencevoltagedrops;nopositive ornegativesequencevoltagedrops.Thisisnottrueforanyunbalancedor

    nonsymmetrical pointorareasuchasanunsymmetricalfault,openphase,andsoon.Inthese:

    4. Positivesequencecurrentflowinginanunbalancedsystemproducespositiveandnegativeandpossiblyzerosequencevoltagedrops.

    5. Negativesequence currents flowing inanunbalanced systemproducespositive,negative,andpossiblyzerosequencevoltagedrops.

    6. Zerosequence current flowing in an unbalanced system produces all three: positive,negative,andzerosequencevoltagedrops.

    This important fundamentalpermits settingup three independentnetworks,one foreachof the three sequences,

    whichcaninterconnected onlyatthepointorareaofunbalance.

    Beforecontinuingwiththesequencenetworks,areviewofthesourcesoffaultcurrentisuseful.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    20/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page20of39

    Figure2.8 Zerosequencecurrentandvoltagenetworksusedforgroundfaultprotection

    2.7.3.2 Sequence Networks

    Theserepresentoneofthethreephasetoneutralorgroundcircuitsofthebalancedthreephasepowersystem,and

    documentshowthatsequencecurrentswillflowiftheycanexist.Thesenetworksarebestexplainedbyanexample,

    soconsider

    the

    section

    ofapower

    system

    ofFig.

    2.9.

    Reactance valuesonlyhave been shown for the generator and the transformers. Theoretically, impedance values

    shouldbeused,buttheresistancesoftheseunitsareverysmallandnegligibleforfaultstudies.

    Figure2.9 Singlelinediagramofasectionofapowersystem.

    Itisveryimportantthatallvaluesbespecifiedwithabase[voltageifohmsareused,orMVA(kVA)andkVifperunit

    orpercentimpedancesareused].Beforeapplyingthesetothesequencenetworks,allvaluesmustbechangedtoone

    commonbase.

    Inmost

    cases

    per

    unit

    (percent)

    values

    are

    used

    and

    acommon

    base

    inprac

    tceis100

    MVA

    atthe

    particularsystemkV.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    21/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page21of39

    Positivesequencenetwork

    Thisistheusuallinetoneutralsystemdiagramforoneofthethreesymmetricalphasesmodifiedforfaultconditions.

    Thepositive sequencenetwork for the systemofFig.2.9 is shown in Fig.2.10.VGandVSare the system lineto

    neutral

    voltages.

    VG

    is

    the

    voltage

    behind

    the

    generator

    sub

    transient

    direct

    axis

    reactance

    Xd'',

    and

    VS

    is

    the

    voltage

    behindthesystemequivalentimpedanceZ1S.

    (a) (b)

    Figure2.10 PositvesequencenetworkforthesysteminFig.2.9

    XTG isthe transformer leakage impedance for thebankbusG,andXHM is the leakage impedance forthebankatH

    between theH and M windings. The delta winding L of this threewinding bank is not involved in the positive

    sequence network unless a generator or synchronousmotor is connected to this delta or unless a fault is to be

    consideredinthedeltasystem.

    Forthe linebetweenbusesGandH,Z1GH isthe linetoneutral impedanceofthisthreephasecircuit.Foropenwire

    transmission line, an approximate estmatng value is 0.8m/ml for bundled conductors. Typical values for shut

    capacitanceoftheselinesare0.2m/milforsingleconductorand0.14/milforbundledconductors.Normally,this

    capacitance isneglected,as it is veryhigh in relation toallother impedances involved in fault calculations.These

    values should be used for estimating or in the absence of specific line constants. The impedances of cables vary

    considerably,sospecificdataarenecessaryforthese.

    Theimpedanceangleoflinescanvaryquitewidelydependingonthevoltageandwhethercableoropenwireisused

    incomputer faultprograms theanglesareconsideredand included,but forhandcalculation it ispractical inmost

    cases to simplify calculatonsbyas summing thatall theequipment involved in the faultcalculatonareat90oor

    reactancevaluesonly.Sometimesitmaybepreferredtousethelineimpedancevaluesandtreatthemasreactances.

    Unlessthenetworkconsistsofalargeproportionoflowanglecircuits,theerrorofusingallvaluesas90owillnotbe

    toosignificant.

    LoadisshownconnectedatbusesGandH.NormallythiswouldbespecifiedaskVAorMVAandcanbeconvertedinto

    impedance:

    3

    1000

    3

    1000 kVVand

    kV

    loadMVA

    loadI LN ==

    kVatMVAkVI

    VZ

    loadload

    LNload ===

    2

    (51)

  • 7/29/2019 Fundamentals of Switching Phenomenon

    22/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page22of39

    Equaton(51) isa linetoneutralvalueandwouldbeused forZLGandZLHrepresentingthe loadsatGandH inFig.

    2.10a. If load isrepresented,thevoltagesVGandVSwillbedifferent inmagnitudeandangle,varyingasthesystem

    loadvaries.

    Thevalueofloadimpedanceusuallyisquitelargecomparedtothesystemimpedances,sothatloadhasanegligible

    effecton the faultedphase current. Thus itbecomepracticaland simplifies calculations toneglect load for shunt

    faults.Withno load,ZLGandZLHare infinite,VGandVSareequaland inphaseand soare replacedbyacommon

    voltageVasinFig.2.10b.Normally,Visconsideredas1pu,thesystemratedlinetoneutralvoltages.

    ConventionalcurrentflowisassumedtobefromtheneutralbusN1totheareaorpointofunbalance.Withthisthe

    voltagedropV1xatanypointinthenetworkisalways,

    = 111 ZIVV x (52)

    whereVisthesourcevoltage(VgorVsinFig.2.10a)and 11ZI isthesumofthedropsalonganypathfromtheN1neutralbustothepointofmeasurement.

    NegativeSequence Network

    Thisnetworkdefinestheflowofnegativesequencecurrentswhentheyexist.Thesystemgeneratorsdonotgenerate

    negative sequence, but negativesequence current can flow through their windings. Thus these generators and

    sourcesarerepresentedbyanimpedancewithoutvoltage,asshowninFig.2.11.Inthetransformers,lines,andsoon,

    thephasesequencesofthecurrentdoesnotchangetheimpedanceencountered,sothesamevaluesareusedasin

    thepositive

    sequence

    network.

    (a) (b)

    Figure

    2.11

    Negat

    ve

    sequence

    networks

    for

    the

    system

    in

    Fig.

    2.9:

    (a)

    network

    including

    loads;

    (b)

    network

    neglectingloads.

    Arotatingmachinecanbevisualizedasatransformerwithonestationaryandonerotatingwinding.Thusdc inthe

    field produces positive sequence in the stator. Similarly, the dc offset in the stator ac current produces an ac

    component inthefield.Inthisrelativemotionmodelwiththeonewindingrotatingatsynchronousspeed,negative

    sequence in the stator results in a doublefrequency component in the field. Thus the negativesequence flux

    component in the air gap is alternately between and under the poles at this double frequency. One common

    expressionforthenegativesequenceimpedanceofasynchronousmachineis

    )(2

    1 ""

    2 qd

    XXX += (53)

    ontheaverageofthedirectandquadratureaxessubtransientreactances.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    23/39

  • 7/29/2019 Fundamentals of Switching Phenomenon

    24/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page24of39

    Zerosequenceimpedancefortransformerbanksisequaltothepositiveandnegativesequenceandisthetransformer

    leakageimpedance.Theexceptiontothisisforthreephasecoretypetransformers,wheretheconstructiondoesnot

    provideanironfluxpathforzerosequence.Forthesethezerosequencefluxmustpassfromthecoretothetankand

    return.

    Hence

    for

    these

    types

    X0

    usually

    is

    0.85

    to

    0.9

    X1,

    and

    when

    known

    the

    specific

    value

    should

    be

    used.

    The lowerrighthanddiagramofFig.2.12isforthesystemconnectedtobusH(Fig.2.9).Currentsoutofthethree

    windingtransformerwillflowasshowninthelandmwindings.Thethreecurrentscanflowinthemgroundedwye

    sincetheequivalentsourceisshowngroundedwithZ0sgiven.Thusthethreewindingequivalentcircuitisconnected

    inthezerosequencenetwork(Fig.2.13)asshown.NotethatintherighthandpartofFig.2.12,ifanyofthewyeconnectonswerenotgrounded,theconnectonswould

    bedifferent.

    Figure2.13 ZerosequencenetworkforthesystemofFig.2.9

    Iftheequivalentsystemorthemwindingwereungrounded,thenetworkwouldbeopenbetweenZmandZos,aszero

    sequencecurrentscouldnotflowasshown.Load, ifdesired,wouldbeshown inthezerosequencenetworkonly if

    theywerewyegrounded.Deltaloadswouldnotpasszerosequence.

    Zerosequenceisalwaysdifferent,asitisaloopimpedance;theimpedanceofthelineplusareturnpatheitherinthe

    earth,or inaparallel combinationof theearthandgroundwire, cable sheath, and soon. Thepositivesequence

    impedanceisaonewayimpedance:fromoneendtootherend.Asaresult,zerosequencevariesfrom2to6 tmesX1

    forlines.Forestimatingopenwritelines,avalueofX0=3or3.5X1iscommonlyused.

    Thezerosequenceimpedanceofgeneratorsislowandvariable,dependingonthewindingdesign.Exceptforverylow

    voltageunits,generatorsareneversolidlygrounded.InFig.2.9,thegeneratorGisshowngroundedthrougharesistor

    R. FaultsonbusGand in the system to the rightdonot involve thegeneratoras faras zero sequence since the

    transformerdeltablockstheflowofzerosequencecurrentasshown.

    ConventionalcurrentflowisassumedtobefromthezeropotentialbusN0totheareaorpointofunbalance.Thusthe

    voltagedropVoxatanypointinthenetworkisalways

    Vox=0 i0z0 (55)

    wherei0z0isthesumofthedropsalonganypathfromtheN0bustothepointofmeasurement.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    25/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page25of39

    2.7.4 SYMMETRICAL & UNSYMMETRICAL FAULT CALCULATIONS

    Theprincipaltypesoffaultsare:threephase,phasetophase,twophasetoground,andonephasetoground.

    Example: Fault calculat

    ons on a typical system shown in Fig. 2.14

    ThesystemofFig.2.14issimilartothatshowninFig.2.9butwithtypicalconstantsforthevariousparts.These

    are on the bases indicated, so the first step is to transfer them to a common base. The positive and negative

    sequencenetwork(negativethesameaspositiveexceptfortheomissionofthevoltage) isshown inFig.2.15.The

    conversiontoacommonbaseof100MVAisshownasnecessary.

    Figure2.14 Powersystemexampleforfaultcalculatons

    Fora faultatbusG,therighthand impedances(j0.18147+j0.03667+j0.03=j0.2481)areparalleledwiththe lef

    hand impedances (j0.20+j0.1375=j0.3375).Reactancevaluesratherthan impedancevaluesareused,as istypical

    wheretheresistanceisquitesmallrelatively.( ) ( )

    pujXX 1430.05856.0

    2481.03375.0

    4237.05763.0

    21

    =

    == (56)

  • 7/29/2019 Fundamentals of Switching Phenomenon

    26/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page26of39

    Figure2.15 Positve andnegativesequencenetworksandtheirreductiontoasingleimpedanceforafaultatbusG

    inthepowersystemofFig.2.14.

    Thedivisionof0.3375/0.5856=0.5763and0.2481/0.5856=0.4237as shownprovidesapartal check,as0.5763+

    0.4237mustequal1.0andarethedistributonfactorsindicatngtheperunitcurrentflowoneithersideofthefault.

    Thesevaluesareaddedtothenetworkdiagram.Thusforfaultsatbusg,X1=X2=j0.1430puon100MVAbase.

    ThezerosequencenetworkforFig.2.14isshowninFig.2.16.Againthereactancevaluesareconvertedtoacommon

    100MVAbase.

    Theconversionstoacommon100MVAbaseareshownexceptforthethreewindingtransformer.Forthisbank,

    puX

    puX

    puX

    ML

    HL

    HM

    18667.0150

    100280.0

    2400.0150

    100360.0

    03667.0150

    100055.0

    ==

    ==

    ==

    and,

  • 7/29/2019 Fundamentals of Switching Phenomenon

    27/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page27of39

    ( )

    ( )

    ( ) puXL

    puX

    puX

    M

    H

    1950.003667.018667.02400.02

    1

    00833.0240.018667.003667.02

    1

    0450.018667.02400.003667.02

    1

    =+=

    =+=

    =+=

    (57)

    TheseareshowninFig.2.16.

    Figure2.16 ZerosequencenetworkanditsreductiontoasingleimpedanceforafaultatbusGinthepowersystemofFig.2.14.

    ThisnetworkisreducedforafaultatbusGbyfirstparallelingX0S+ZHwithZLandthenaddingZMandX0GH;

    ( ) ( )

    ( )

    ( )

    6709.0

    620.0

    0083.0

    0592.0

    280.0

    0850.01950.0

    3036.06964.0

    j

    Xj

    Zj

    j

    OGH

    M

    =

    =

    Thisistherighthandbranch,parallelingwiththelefthandbranch,

    ( ) ( )

    15407.08709.0

    2000.06709.0

    2296.07704.0

    0 jX == puat100MVA (58)

  • 7/29/2019 Fundamentals of Switching Phenomenon

    28/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page28of39

    Thevalues(0.7704)and(0.2296)shownaddto1.0asacheckandprovidethecurrentdistributiononeithersideof

    thebusGfault,asshownonthezerosequencenetwork.Thedistributonfactor0.2296fortherightside isfurther

    dividedupby0.69640.2296=0.1599pu in the230kVsystemneutral,and0.30360.2296=0.0697pu in the

    three

    winding

    transformer

    H

    winding

    neutral.

    These

    are

    shown

    on

    the

    zero

    sequence

    network.

    ThreePhase Fault at Bus G

    Forthisfault,

    I1=IAF=(j1.0)/(j0.143)=6.993pu

    =6.993[(100.000)/ 3115)]

    =3510.8Aat115kV (59)

    The

    divisions

    of

    current

    from

    the

    left

    (IAG)

    and

    right

    (IAH)

    are:

    IAG=0.42376.993=2.963pu (60)

    IAH=0.57636.993=4.030 (61)

    SinglePhaseToGround Fault at Bus G

    Forthisfault,

    I1=I2=I0=[j1.0/j(0.143+0.143+0.1541)]=2.272pu (62)

    IAF=32.272=6.817pu

    =6.817[(100.000)/( 3115)]

    =3422.5Aat115kV

    Normally,the3Iocurrentsaredocumentedinthesystem,astheseareusedtooperatethegroundrelays.Equations

    (45)through(47)providethethreephasecurrents.SinceX1=X2,sothatI1=I2,thesereducetoIb=Ic= I1+I0forthe

    phasebandccurrents,sincea+a2= 1.ThecurrentsshownaredeterminedbyaddingI1+I2+I0forIa, I1+I0forIb

    andIc,and3I0fortheneutralcurrents.

    Inthe115kVsystemthesumofthetwoneutralcurrentsisequalandoppositetothecurrentinthefault.Inthe230

    kVsystemthecurrentuptheneutralequalsthecurrentdowntheotherneutral.

    Thecalculationsassumednoload,soprefault,allcurrentsinthesystemwerezero.Withthefaultinvolvingphasea

    only,itwillbeobservedthatcurrentflowsinthebandcphases.Thisisbecausethedistributionfactorsinthezero

    sequencenetwork aredifferent from the positive andnegativesequencedistribution factors.On a radial system

    wherepositive,negative, and zerosequence currents flowonly fromone source and in the samedirection, the

    distributionfactors inallthreenetworkswillbe1.0,althoughthezerosequence impedancesaredifferentfromthe

    positivesequence impedances. Then Ib=Ic=I1 + I0 abovebecomes zero,and fault currentonly flows in the faulted

    phase.InthistypeIa=3I0throughoutthesystemforasinglephasetogroundfault.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    29/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page29of39

    2.8 SHORTCIRCUIT LEVEL

    QuiteoftenshortcircuitMVAdataaresuppliedforthreephaseandsinglephasetogroundfaultsatvariousbusesor

    interconnection points in a power system. The derivation of this and conversation into system impedances is a

    follows:

    ThreePhaseFaults

    MVASC=3faultshortcircuitMVA=(3I3kV)/1000 (63)

    whereI3isthetotalthreephasefaultcurrentinamperesandkVisthesystemlinetolinevoltageinkilovolts.From

    this,

    I3=(1000MVASC)/(3kV) (64)

    Z=(VlN)/I3=(1000kV)/(3I3)

    =(kV2)/(MVASC) (65)

    SubstitutingEq.Zpu=(MVAbaseZ)/(kV2),thepositivesequenceimpedancetothefaultlocationis

    Z1=[(MVAbase)/(MVAsc)] pu (66)

    Z1=Z2forallpracticalcases.Z1canbeassumedtobeX1unlessX/Rdataareprovidetodetermineanangle.

    SinglePhaseToGroundFaults

    MVAGSC=GfaultshortcircuitMVA=(3IGkV)/1000 (67)

    where IG is the total singlelinetoground fault current in amperes and kV is the system linetoline voltage in

    kilovolts.

    IG=(1000MVAGSC)/( 3kV) (68)

    However,

    IG=I1+I2+I0=(3VlN)/(Z1+Z2+Z0)=(3VlN)/ZG) (69)

    ZG=[(3kV2)/(MVAGSC)] in (70)

    ZG=[(3MVAbase)/(MVAGSC)] pu (71)

    ThenZ0=ZGZ1Z2,orinmostpracticalcases,X0=XGX1X2,sincetheresistanceisusuallyverysmallin

    relationtothereactance.

    Example

    Ashortcircuitstudyindicatesthatatbusxinthe68kVsystem,

    MVAsc=594MVA

    MVAGSC=631MVA

    ona100MVAbase.

    Thusthetotalreactancetothefaultis

    X1=X2=100/594=0.1684pu

    XG=300/631=0.4754pu

  • 7/29/2019 Fundamentals of Switching Phenomenon

    30/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page30of39

    X0=0.47540.16840.1684=0.1386pu,

    allvaluesona100MVA69kVbase.

    Effect of Induction Machines on Short Circuit LevelDuringfaultcondition, inductionmotorwillbe inductiongeneratorwithsubtransientortransientreactance

    dependingonthespeedofthecircuitbreaker.Therefore,inductionmachinesas loadswill increasetheshortcircuit

    level.

    2.9 RUPTURE CAPACITY OF CIRCUIT BREAKERS

    Asmostfaultprotectivedevices,suchascircuitbreakersandfuses,operatewellbeforesteadystateconditionsare

    reached,generatorsynchronousreactance isalmostneverusedincalculatingfaultcurrentsforapplicationofthese

    devices.Asdiscussedbefore,inordertodeterminetheinitialsymmetricalrmscurrent,thesubtransientreactances

    of the synchronous generators and motors are used. However, the interrupting capacity of circuit breakers is

    determinedusing the subtransient reactance forgeneratorsand transient reactance for the synchronousmotors.

    Theeffectsofinductionmotorsareignored.Itisappropriatetousesubtransientreactanceforsynchronousmotorsif

    fastactingcircuitbreakersareused.Forexample,modernairblastcircuitbreakersusuallyoperatein2.5cyclesof60

    Hz.Oldercircuitbreakersandthoseusedonlowervoltagesmaytake8cyclesormoretooperate.Notethatsofarthe

    dcoffset(orunidirectona1currentcomponent)hasbeenexcludedintheabovediscussions. Withfastactingcircuit

    breakerstheactualcurrenttobe interrupted is increasedbythedccomponentofthefaultcurrent,andthe initial

    symmetrical rmscurrentvalue is increasedbyaspecific factordependingon the speedof thecircuitbreaker.For

    example,ifthecircuitbreakeropening tmeis8,3,or2cycles,thenthecorrespondingmultplyingfactoris1.0,1.2,or

    1.4,respectvely.Therefore,theinterruptngcapacity(orratng)ofacircuitbreakerisexpressedas

    ( ) 6"int 10)(3 = IVS prefaulterrupting MVA (72)

    where Vprefault =prefaultvoltageatpointoffaultinvolts

    I'' =initialsymmetricalrmscurrentinamperes

    =multiplyingfactor

    ThemultiplyingfactorsandthereactancetypesaregiveninTable2.2.Asdiscussedbefore,theasymmetrical

    currentwavedecaysgraduallytoasymmetricalcurrent;therateofdecayofthedccomponentbeingdeterminedby

    thel/rofthesystemsupplyingthecurrent.Thetimeconstantfordccomponentdecaycanbefoundfrom

    s/circuit RLTdc = or

    2

    /circuit RLT

    dc= cycles (53)

  • 7/29/2019 Fundamentals of Switching Phenomenon

    31/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page31of39

    Table2.2 multplyingfactorsandthereactancetypesofcircuitbreakers

    ReactanceQuantityforUseinXs

    MultiplyingFactor

    Synchronous

    Generators

    and

    Condensers

    Synchronous

    MotorsInduction

    Machines

    A. CircuitBreakerInterruptingDuty1. GeneralCase

    Eightcycle or slower circuit

    breakers

    1.0 Subtransient Transient Neglect

    Fivecyclecircuitbreaker 1.1

    Threecyclecircuitbreaker 1.2

    Twocyclecircuitbreaker 1.4

    2. Specialcaseforcircuitbreakersat generator voltage only. For

    shortcircuit calculations of

    morethan500,000kVA(before

    the application of any

    multiplying factor) fed

    predominantly direct from

    generators,or through current

    limitingreactorsonly:

    Subtransient Transient Neglect

    Eightcycle or slower circuit

    breakers

    1.1

    Fivecyclecircuitbreaker 1.2

    Threecyclecircuitbreaker 1.3

    Twocyclecircuitbreaker 1.5

    3. Aircircuitbreakersrated600Vandless

    1.25 Subtransient Subtransient Subtransient

    B. Mechanical Stress andMomentary Duty of CircuitBreakers

    1. GeneralCase 1.6 Subtransient Subtransient Subtransient2. At 500 V and below, unless

    currentisfedpredominantlyby

    directly connected

    synchronous machines or

    throughreactors

    1.5 Subtransient Subtransient Subtransient

  • 7/29/2019 Fundamentals of Switching Phenomenon

    32/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page32of39

    The momentary duty (or rating) of a circuit breaker is expressed as

    6" 10)6.1)()((3 = IVS prefaultmomentary MVA (74)

    Therefore,thermsmomentarycurrentcanbeexpressedas

    "6.1 IImomentary = A (75)

    and it isused foroilcircuitbreakersof115kVandabove.Thecircuitbreakermustbeable towithstand this rms

    currentduringthefirsthalfcycleafterthefaultoccurs.NotethatiftheI''ismeasuredinpeakamperes,thenthepeak

    momentarycurrentisexpressedas

    "7.2 IImomentary = A (76)

    In the united states, the ratings of circuit breakers are given in theANSI Standards based on symmetrical

    currentintermsofnominalvoltage,ratedmaximumvoltage,ratedvoltagerangefactork,ratedcontinuouscurrent,

    andratedshortcircuitcurrent.Therequiredsymmetricalcurrentinterruptingcapabilityisdefinedas

    voltageoperating

    voltagemaximumratedcurrentcircuit-shortRated

    The standard dictates that for operatng voltages below 1/k times rated maximum voltage, the required

    symmetricalcurrentinterruptingcapabilityof thecircuitbreaker isequal tok times theratedshortcircuitcurrent.

    Table2.3givesoutdoorcircuitbreakerratngsbasedonsymmetricalcurrent.Notethattheratedvoltagefactork is

    defined as the ratioof ratedmaximum voltage to the lower limitof the rangeofoperating voltage inwhich the

    requiredsymmetricalandasymmetrical interruptingcapabilitiesvary in inverseproportiontotheoperatingvoltage.

    Therefore, general expressions (which take into account the rated voltage range factor k) for the rms and peak

    momentarycurrents,respectively,are

    "6.1 kIImomentary = A (77)

    and

    "7.2 kIImomentary = A (78)

    NotcethatinTable2.3thefactorkis1forthenominalvoltagesof115kVandabove.Therefore,equatons(77)and

    (78)becomethesameasequatons (75)and (76),respectvely.Asanexample,assumethatacircuitbreakerhasa

    ratedmaximumrmsvoltageof38kVandisbeingoperatedat34.5kV.FromTable2.3,theratedvoltagerangefactor

    kis1.65,theratedcontnuousrmscurrentis1200A,andtheratedshortcircuitrmssymmetricalcurrentattherated

    maximum rms voltageof37kV is22,000A.However, since thecircuitbreaker isusedat34.5 kV, its symmetrical

    currentinterruptingcapabilityis

    A232,24kV34.5

    kV38A)000,22( =

  • 7/29/2019 Fundamentals of Switching Phenomenon

    33/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page33of39

    Thehighestsymmetricalcurrentinterruptingcapabilityis

    A36,0001.6522,000kA22,000( =)whichispossiblewhentheoperatingvoltageis

    kVk

    kV23

    65.1

    3838=

    Table 2.3 Outdoor circuit breaker ratngs based on symmetrical current

    Nominal

    rmsVoltage

    Class(kV)

    Rated

    Maximumrms

    Voltage

    (kV)

    Rated

    VoltageRange

    Factor,K

    Rated

    Continuousrms

    Current

    (kA)

    Rated

    Short

    Circuitrms

    Current

    (at Rated

    Maximum

    kV)(kA)

    Rated

    InterruptingTime

    (cycles)

    Rated

    Maximumrms

    Voltage

    Divided

    byK(kV)

    Maximum

    rmsSymmetrical

    Interrupting

    Capability*

    (kA)

    14.4 15.5 2.67 0.6 8.9 5 5.8 24

    14.4 25.5 1.29 1.2 18 5 12 23

    23 25.8 2.15 1.2 11 5 12 24

    34.5 38 1.65 1.2 22 5 23 36

    46 48.3 1.21 1.2 17 5 40 21

    69 72.5 1.21 1.2 19 5 60 23

    115 121 1 1.2 20 3 121 20

    115 121 1 1.6 40 3 121 40

    115 121 1 3 63 3 121 63

    138 145 1 1.2 20 3 145 20

    138 145 1 1.6 40 3 145 40

    138 145 1 2 40 3 145 40

    138 145 1 3 80 3 145 80

    163 169 1 1.2 16 3 169 16

    163 169 1 1.6 31.5 3 169 31.5

    163 169 1 2 50 3 169 50

    230 242 1 1.6 31.5 3 242 31.5

    230 242 1 2 31.5 3 242 31.5

    230 242 1 3 63 3 242 63

    345 362 1 2 40 3 362 40

  • 7/29/2019 Fundamentals of Switching Phenomenon

    34/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page34of39

    345 262 1 3 40 3 362 40

    500 550 1 2 40 2 550 40

    500 550 1 3 40 2 550 40

    700

    765

    1

    2 40 2 765

    40

    700 765 1 3 40 2 765 40

    *ItisequaltoKtimestheratedshortcircuitrmscurrent

    Note that at lower operating voltages the highest symmetrical currentinterruptng capability of 36,000 A

    cannotbeexceeded.Theassociatedrmsandpeakmomentarycurrentratings,respectively,are

    "momentary kI.I 61= =1.6(36,000A)=57,600Arms

    and

    "momentary kI.I 72= =2.7(36.000A)=97.200Apeak

    A simplified procedure for determining the symmetrical fault current is known as the E/Xmethod and is

    describedinsecton5.3.1ofANSIC37.010.Thismethodgivesresultsapproximatngthoseobtainedbymorerigorous

    methods. In using this method, it is necessary first to make an E/X calculation. The method then corrects this

    calculationtotakeintoaccountboththedcandacdecayofcurrent,dependingoncircuitparametersX/R.

    Example

    ConsiderthesystemshowninFigure2.17andassumethatthegeneratorisunloadedandrunningattherated

    voltagewith the circuit breaker open at bus 3. Assume that the reactance values of the generator are given as

    14.021" === XXXd puandX0=0.08pubasedonitsratngs.ThetransformerimpedancesareZ1=Z2=Z0 =

    0.05pubasedon itsratngs.Thetransmission lineTL23hasZ1=Z2=0.04puandZ0=0.10pu.Assumethatthefault

    point is located on bus 1, and determine the subtransient fault current for a threephase fault in per units and

    amperes.Select25MVAasthemegavoltampere baseand8.5and138kVasthelowvoltageandhighvoltagevoltage

    bases.

    Figure2.17 Transmissionsystemforexampleabove

  • 7/29/2019 Fundamentals of Switching Phenomenon

    35/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page35of39

    Solution

    pu143.7j0.14

    00.1"

    " jX

    EI

    d

    gf ===

    o

    Thecurrentbaseforthelowvoltagesideis

    A1.1698kV)5.8(3

    kVA000.25

    3 )()( ===

    LVB

    BLVB

    V

    SI

    Therefore,

    A52.129.12143.71.1698" ==fI

    Example

    Usetheresultsofexampleaboveanddeterminethefollowing:(a)Maximumvaluepossibleofdccurrentcomponent.(b)Totalmaximuminstantaneouscurrent.(c)Momentarycurrent.(d)Interruptingcapacityofthreecyclecircuitbreakeriflocatedatbus1.

    Solution

    (a) pu1.10)143.7(22 "max, === fdc II (b) 2.20222 "max,"max === fdc III pu(c) 43.11)143.7(6.16.1 " === fmomentary II pu(d) 6"fint 10V3 = ferrupting IS

    MVA3.21410)2.1)(52.129,12)(8500(3 6 ==

    (e) 6"f

    10)6.1(V3

    = fmomentaryIS

    MVA7.28510)6.1)(52.129,12)(8500(3 6 ==

    2.10 SELECTION OF CIRCUITBREAKER

    Thesubtransientcurrentistheinitialsymmetricalcurrentanddoesnotincludethedccomponent.Aswehaveseen,

    inclusionofthedccomponentresults inarmsvalueofcurrentimmediatelyafterthefault,which ishigherthanthe

    subtransientcurrent.Foroilcircuitbreakersabove5kVthesubtransientcurrentmultpliedby1.6isconsideredto

    bethermsvalueofthecurrentwhosedisruptiveforcesthebreakermustwithstandduringthefirsthalfcycleafterthe

    faultoccurs.Thiscurrentiscalledthemomentarycurrent,andformanyyearscircuitbreakerswereratedintermsof

    theirmomentarycurrentaswellasothercriteria.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    36/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page36of39

    The interrupting ratingofa circuitbreakerwas specified in kilovoltamperesormegavoltamperes. The interrupting

    kilovoltamperesequal 3 tmesthekilovoltsofthebustowhichthebreakerisconnected tmesthecurrentwhichthe

    breakermustbecapableof interruptingwhen itscontactspart.Thiscurrent isofcourse lowerthanthemomentary

    current

    and

    depends

    on

    the

    speed

    of

    the

    breaker,

    such

    as

    8,

    5,

    3,

    or

    1

    cycles,

    which

    is

    a

    measure

    of

    thet

    me

    from

    theoccurrenceofthefaulttotheextinctionofthearc.

    The currentwhichabreakermust interrupt isusuallyasymmetrical since it still contains someof thedecayingdc

    component.A schedule of preferred ratings for ac highvoltage circuit breakers specifies the interrupting current

    ratingsofbreakersintermsofthecomponentoftheasymmetricalcurrentwhichissymmetricalaboutthezeroaxis.

    Thiscurrentisproperlycalledtherequiredsymmetricalinterruptingcapabilityorsimplytheratedsymmetricalshort

    circuitcurrent.Oftentheadjectivesymmetricalisomitted.Selectionofcircuitbreakersmayalsobemadeonthebasis

    oftotalcurrent(dccomponentincluded).Weshalllimitourdiscussiontoabrieftreatmentofthesymmetricalbasisof

    breakerselection.

    Breakersare identifiedbynominalvoltageclass,suchas69kV.Alongother factorsspecifiedare ratedcontnuous

    current,ratedmaximumvoltage,voltagerangefactorK,andratedshortcircuitcurrentatratedmaximumkilovolts.K

    determinestherangeofvoltageoverwhichratedshortcircuitcurrent tmesoperatngvoltageisconstant.Fora69kV

    breakerhavingamaximumratedvoltageof72.5kV,avoltagerangefactorKof1.21,andacontnuouscurrentratng

    of1200A,theratedshortcircuitcurrentatthemaximumvoltage(symmetricalcurrentwhichcanbe interruptedat

    72.5kV) is19,000A.Thismeansthattheproduct72.519,000 istheconstantvalueofratedshortcircuitcurrent

    tmesoperatngvoltageintherange72.5to60kVsince72.5/1.21equals60.Theratedshortcircuitcurrentcannotbe

    exceeded.At69kVtheratedshortcircuitcurrentis

    Breakersofthe115kVclassandhigherhaveakof1.0.

    A simplified procedure for calculating the symmetrical shortcircuit current, called the E/Xmethod, disregards all

    resistance,allstaticloads,andallprefaultcurrent.SubtransientreactanceisusedforgeneratorsintheE/Xmethod,

    andforsynchronousmotorstherecommendedreactanceisthe ofthemotor tmes1.5,whichistheapproximate

    valueofthetransientreactanceofthemotor. Inductonmotorbelow50hpareneglected,andvariousmultiplying

    factorsareappliedtothe oflargerinductionmotordependingontheirsize.Ifnomotorsarepresent,symmetrical

    shortcircuitcurrentequalssubtransientcurrent.

    TheimpedancebywhichthevoltageVfatthefaultisdividedtofindshortcircuitcurrentmustbeexaminedwhenthe

    E/Xmethod isused. In specifyingabreaker forbusk this impedance isZkkof thebus impedancematrixwith the

    propermachinereactances. IftheratioofX/Rofthis impedance is15or less,abreakerofthecorrectvoltageand

    kilovoltamperesmaybeusedifitsinterruptingcurrentratingisequaltoorexceedsthecalculatedcurrent.IftheX/R

    rato isunknown, thecalculatedcurrent shouldbenomore than80%of theallowedvalue for thebreakerat the

    existingbusvoltage.TheANSIapplicationguidespecifiesacorrectedmethodtoaccountforacanddctimeconstants

    for thedecayof the current amplitude if theX/R rato exceeds 15. The correctedmethod also considersbreaker

    speed.

  • 7/29/2019 Fundamentals of Switching Phenomenon

    37/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page37of39

    Thisdiscussionoftheselectionofcircuitbreakersispresentednotasastudyofbreakerapplicationsbuttoindicate

    theimportanceofunderstandingfaultcalculations.Thefollowingexampleshouldclarifytheprinciple.

    Example:A25,000

    kVA

    13.8

    kVgenerator

    with

    =15%

    isconnected

    through

    atransformer

    toabus

    which

    supplies

    fouridentcalmotors,asshowninFig.2.18.Thesubtransientreactance ofeachmotoris20%onabaseof

    5000 kVA, 6.9 kV. The threephase rating of the transformer is 25,000 kVA, 13.8/6.9 kV, with a leakage

    reactanceof10%.Thebusvoltageatthemotorsis6.9kVwhenathreephasefaultoccursatthepointP.For

    thefaultspecified,determine(a)thesubtransientcurrentinthefault,(b)thesubtransientcurrentinbreaker

    A,and(c)thesymmetricalshortcircuitinterruptingcurrent(asdefinedforcircuitbreakerapplications)inthe

    faultandinbreakerA.

    Figure2.18 OnelinediagramforExample

    Solution:

    (a) Forabaseof25,000kVA,13.8kVinthegeneratorcircuit,thebaseforthemotorsis25,000kVA,6.9kV.Thesubtransientreactanceofeachmotoris

    unitper0.15000

    000,252.0" ==

    dX

    Figure2.19isthediagramwithsubtransientvaluesofreactancemarked.ForafaultatP,

    unitper0.1=f

    V

    unitper125.0jZth =

    unitper0.8125.0

    0.1" jj

    If

    ==

    Thebasecurrentinthe6.9kVcircuitis

    A720,1620908

    A20909.63

    000,25

    " ==

    =

    fI

  • 7/29/2019 Fundamentals of Switching Phenomenon

    38/39

    LV,MV&HVSwitchgear

    Module(02)FundamentalsofSwitching Page38of39

    Figure2.19 ReactancediagramforExample

    (b) ThroughbreakerAcomesthecontributionfromthegeneratorandthreeofthefourmotors.Thegeneratorcontributesacurrentof

    unitper0.450.0

    25.00.8 jj =

    Eachmotorcontributes25%oftheremainingfaultcurrent,orj1.0perunitA.ThroughbreakerA,

    I"= j4.0+3(j1.0)= j7.0perunit=72090=14,630A

    (c) TocomputethecurrentthroughbreakerAtobeinterrupted,replacethesubtransientreactanceofj1.0bythetransientreactanceofj1.5inthemotorcircuitsofFig.2.19.Then

    unitper15.025.0375.0

    25.0375.0jjZ

    th=

    +=

    Thegeneratorcontributesacurrentof

    unitper0.4625.0

    375.0

    15.0

    0.1j

    j=

    Eachmotorcontributesacurrentof

    unitper67.0625.025.0

    15.00.1

    41 j

    j=

    Thesymmetricalshortcircuitcurrenttobeinterruptedis:

    (4.0+30.67)2090=12,560A

    Theusualprocedureistorateallthebreakersconnectedtoabusonthebasisofthecurrentintoafaultonthebus.In

    thatcasetheshortcircuitcurrentinterruptngratngofthebreakersconnectedtothe6.9kVbusmustbeatleast

    4+40.67=6.67 perunit

    or

  • 7/29/2019 Fundamentals of Switching Phenomenon

    39/39

    LV,MV&HVSwitchgear

    6.672090=13,940A

    A14.4kVcircuitbreakerhasaratedmaximumvoltageof15.5kVandakof2.67.At15.5kV itsratedshortcircuit

    interrupt

    ng

    current

    is

    8900

    A.

    This

    breaker

    is

    rated

    for

    a

    symmetrical

    short

    circuit

    interrupt

    ng

    current

    of

    2.67

    8900

    =23,760A,atavoltageof15.5/2.67=5.8kV.Thiscurrentisthemaximumthatcanbeinterruptedeventhoughthe

    breakermaybeinacircuitoflowervoltage.Theshortcircuitinterruptngcurrentratngat6.9kVis

    A000,2089009.6

    5.15=

    Therequiredcapabilityof13,940Aiswellbelow80%of20,000A,andthebreakerissuitablewithrespecttoshort

    circuitcurrent.