37
Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques Nucléaires

Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

Embed Size (px)

Citation preview

Page 1: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

Fundamentals of Neutronics :Reactivity Coefficients in Nuclear

Reactors

Paul Reuss

Emeritus Professorat the Institut National des Sciences et Techniques

Nucléaires

Page 2: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

2

Contents

A – Neutron balance

B – Temperature effects

C – Examples of design problems

Page 3: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

PART A

Neutron balance

Page 4: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

4

Fission chain reaction

• Fissions Neutrons Fissions Neutrons Fissions Neutrons Etc.

• Fission yields :

– About 200 MeV of energy (heat)– About 2.5 fast neutrons (about 2 MeV)– 2 fission products

• The scattering slows down the neutrons (thermalized neutron : about 1/40 eV)

Page 5: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

5

Reactor types

• Fast neutron reactors :

– Avoid the slowing down– Use a highly enriched fuel– Good neutron balance (breeding possible)

• Thermal neutron reactors :

– Slow down the neutrons thanks to a moderator– Great cross-sections of the fissile nuclei in the thermal range– Therefore possibility to use a low enriched fuel– Breeding impossible in practice

Page 6: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

6

Kinetics

• N kN k2N k3N k4N …

• Equivalently : N(0) exp(t)

• Criticality : k = 1 or : = (k - 1)/k = 0

• Otherwise : see inhour equation

Page 7: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

7

Inhour (or Nordheim’s) equationUranium 235

Page 8: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

8

Inhour (or Nordheim’s) equationPlutonium 239

Page 9: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

9

Neutron balance

The criticality is possible if the size is sufficient

Page 10: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

10

Fermi’s four factor formula

Page 11: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

11

Uranium 238 capture cross-section(zoom)

Page 12: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

12

Uranium 238 effective integral

Page 13: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

13

Dancoff’s factor (C)

Page 14: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

14

Examples for PWR cases

Page 15: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

15

Proposed k-infinity analysis

Page 16: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

16

Examples for PWR cases

Page 17: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

17

Examples for GFR cases

Page 18: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

PART B

Temperature effects

Page 19: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

19

Stability of a reactor

Page 20: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

20

Temperature effects

• Doppler effect– Broadening of the resonances– Mainly of uranium 238 capture– Negative (stabilizing) prompt effect

• Thermal spectrum effect– No-proportionality of the absorption cross-sections– Small effect (on f and ) for the PWRs

• Water expansion effect– p decreases, f increases if Tm increases– Main moderator effect for the PWRs

Page 21: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

21

Doppler effect : resonance broadening

Page 22: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

22

Example of cross-section in the thermal range

Page 23: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

PART C

Examples

of design problems

Page 24: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

24

Main parameters of the PWR design

• Radius of the fuel– Mainly thermal criteria

• Moderation ratio– If it increases, p improves and f decreases– There is an optimum of moderation– A under-moderated design is chosen

• Fuel enrichment– Get the adequate length of cycle

Page 25: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

25

Choice of the moderation ratio

Page 26: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

26

Problem of the boron poisoning

• Condition for a negative temperature coefficient : ln(1/p) > 1 – f

• If CB increases, f decreases and this condition may be non fulfilled

• Therefore a limit on the boron concentration

• If the need of boron is greater than the limit, burnable poisons are used

Page 27: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

27

Evolution of the multiplication factor

Page 28: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

28

Burnable poisons

• Solid : no positive expansion effect

• Efficient : reduce the excess of reactivity at the beginning of cycle

• Burnable : no more antireactivity at the end of cycle

• Usual materials : B, Gd, Eu…

Page 29: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

29

Problem of plutonium recycling

• Standard uranium fuel : about 1 % of plutonium after irradiation recycling interesting

• No FBR available recycling in the water reactors

• Great neutron absorption of the plutonium fuels control less efficient mixed core zoning of the MOX assemblies

Page 30: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

30

Evolution of the main heavy nuclides (PWR)

Page 31: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

31

Order of magnitude of the concentrations

Page 32: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

32

Typical isotopic composition of first generation plutonium

Page 33: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

33

Main cross-sections in the thermal range

Page 34: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

34

Typical thermal spectra

Page 35: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

35

Problem of U/Pu interfaces

Page 36: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

36

Example of MOX PWR assembly

Page 37: Fundamentals of Neutronics : Reactivity Coefficients in Nuclear Reactors Paul Reuss Emeritus Professor at the Institut National des Sciences et Techniques

37

Conclusions

• Major concerns : criticality and negative temperature coefficients

• Criticality adjust the content in fissile material• Temperature coefficients constraints on the

design and the choice of materials• Strong interactions between neutronics,

thermalhydraulics, sciences of materials, etc.• The safety analyses defines the limits• The margins must be as great as possible to

anticipate the evolutions• Weight of history