13
Fundamentals of Computational Neuroscience 2e Thomas Trappenberg January 16, 2009 Chapter 2: Neurons and conductance-based model

Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

  • Upload
    others

  • View
    25

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Fundamentals of ComputationalNeuroscience 2e

Thomas Trappenberg

January 16, 2009

Chapter 2: Neurons and conductance-based model

Page 2: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Biological background

Inhibitory axon terminal

Excitatory axon terminal

Dendrites

Axon

Axon hillock

Myelin sheath

Ranvier node

Postsynaptic neurons

Synaptic cleft

Soma

A. B.

D. E.

C.

Axon

Nucleus

Page 3: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Ion channels

+

+

+

++

+

++

+

+

A. Leakage

channel

+

+

+

+

++

+

++

+

+

+

D. Ionotropic

+

+

+

++

+

+

+

+

B. Voltage-gated

ion channel

+

+

+

+

+

++

+

+

C. Ion pump

+

+

+

+

++

+

++

+

+

+

E. Metabotropic

(second messenger)

Neurotransmitter-gated ion channels

Page 4: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Synapse

A. Schematic synapse B. Microscope image of synapse

CaCa

Neurotransmitter

Synaptic vescicleVoltage-gated

Ca channel2+

Neurotransmitter

receptor

Page 5: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

non-NMDA: GABA, AMPA

∆V non−NMDAm ∝ t e−t/tpeak

Page 6: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Conductance-based models

cmdV (t)

dt= −I (1)

I(t) = g0V (t)− g(t)(V (t)− Esyn) (2)

τsyndg(t)

dt= −g(t) + δ(t − tpre − tdelay) (3)

g

mg

L

C

Time

I (t)/5syn

g (t)*5

V (t)

A. Electric circuit of basic synapse

Capacitor

Battery

Resistor

B. Time course of variables

0 2 4 6 8 10−2

0

2

4

m

syn

syn

Page 7: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

MATLAB Program

1 %% Synaptic conductance model to simulate an EPSP2 clear; clf; hold on;34 %% Setting some constants and initial values5 c_m=1; g_L=1; tau_syn=1; E_syn=10; delta_t=0.01;6 g_syn(1)=0; I_syn(1)=0; v_m(1)=0; t(1)=0;78 %% Numerical integration using Euler scheme9 for step=2:10/delta_t

10 t(step)=t(step-1)+delta_t;11 if abs(t(step)-1)<0.001; g_syn(step-1)=1; end12 g_syn(step)= (1-delta_t/tau_syn) * g_syn(step-1);13 I_syn(step)= g_syn(step) * (v_m(step-1)-E_syn);14 v_m(step) = (1-delta_t/c_m*g_L) * v_m(step-1) ...15 - delta_t/c_m * I_syn(step);16 end1718 %% Plotting results19 plot(t,v_m); plot(t,g_syn*5,’r--’); plot(t,I_syn/5,’k:’)

Page 8: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Hodgkin–Huxley model

+40

-70

0

Resting potential(leakage channels)

Hyperpolarization

Spike

Depolarization due

to sodium channelsInactivation of sodium channels

& opening of potassium channels

Closing of sodium

& potassium channels

Figure: Typical form of an action potential; redrawn from an oscilloscopepicture from Hodgkin and Huxley (1939).

Page 9: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

The minimal mechanisms

Resting potential

+Na

+Na

+Na +

Na+

Na

+K

+K

+K

+K

+K

+K

+K +

K

+K

+Na

Depolarization

+Na

+Na

+Na

+Na

+Na

+Na

+K

+K

+K

+K

+K

+K

+K

+K

+K

+Na

Hyperpolarization

+Na

+Na

+Na

+Na

+Na

+Na

+K

+K

+K

+K

+K

+K

+K

+K

+K

+K

Page 10: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Hodgkin–Huxley equations and simulation

CdVdt

= −gKn4(V − EK)− gNam3h(V − ENa)− gL(V − EL) + I(t)

τn(V )dndt

= −[n − n0(V )]

τm(V )dmdt

= −[m −m0(V )]

τh(V )dhdt

= −[h − h0(V )]

0 50 100 50

0

50

100

150

Time [ms]

Me

bra

ne

po

ten

tia

l [m

V]

0 5 10 150

20

40

60

80

100

External current [mA/cm ]

Firi

ng

fre

qu

en

cy [

Hz]

A. Spike train with constant input B. Frequency-current plot

2

Noise

Page 11: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Compartmental models

j + 1jj - 1

j

j + 1

j + 2

A. Chain of compartments C. Compartmental reconstruction

B. Branching compartments

Page 12: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Simulators

Page 13: Fundamentals of Computational Neuroscience 2ett/CSCI650809/SlidesChapter2.pdf · Neuroscience: exploring the brain, Lippincott Williams & Wilkins , 3rd edition. Eric R. Kandel, James

Further Readings

Mark F. Bear, Barry W. Connors, and Michael A. Paradiso (2006),Neuroscience: exploring the brain, Lippincott Williams & Wilkins ,3rd edition.

Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell (2000),Principles of neural science, McGraw-Hill, 4th edition

Gordon M. Shepherd (1994), Neurobiology, Oxford University Press, 3rdedition.

Christof Koch (1999), Biophysics of computation; informationprocessing in single neurons, Oxford University Press

Christof Koch and Idan Segev (eds.) (1998), Methods in neuralmodelling, MIT Press, 2nd edition.

C. T. Tuckwell (1988), Introduction to theoretical neurobiology,Cambridge University Press.

Hugh R. Wilson (1999) Spikes, decisions and actions: dynamicalfoundations of neuroscience, Oxford University Press. See also hispaper in J. Theor. Biol. 200: 375–88, 1999.