53
Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Functional Analysis Review Lorenzo Rosasco –slides courtesy of Andre Wibisono 9.520: Statistical Learning Theory and Applications February 13, 2012 L. Rosasco Functional Analysis Review

Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

Embed Size (px)

Citation preview

Page 1: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Functional Analysis Review

Lorenzo Rosasco–slides courtesy of Andre Wibisono

9.520: Statistical Learning Theory and Applications

February 13, 2012

L. Rosasco Functional Analysis Review

Page 2: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

1 Vector Spaces

2 Hilbert Spaces

3 Matrices

4 Linear Operators

L. Rosasco Functional Analysis Review

Page 3: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Vector Space

A vector space is a set V with binary operations

+: V × V → V and · : R× V → V

such that for all a,b ∈ R and v,w, x ∈ V:

1 v+w = w+ v2 (v+w) + x = v+ (w+ x)3 There exists 0 ∈ V such that v+ 0 = v for all v ∈ V4 For every v ∈ V there exists −v ∈ V such that v+ (−v) = 05 a(bv) = (ab)v6 1v = v7 (a+ b)v = av+ bv8 a(v+w) = av+ aw

Example: Rn, space of polynomials, space of functions.

L. Rosasco Functional Analysis Review

Page 4: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Vector Space

A vector space is a set V with binary operations

+: V × V → V and · : R× V → V

such that for all a,b ∈ R and v,w, x ∈ V:

1 v+w = w+ v2 (v+w) + x = v+ (w+ x)3 There exists 0 ∈ V such that v+ 0 = v for all v ∈ V4 For every v ∈ V there exists −v ∈ V such that v+ (−v) = 05 a(bv) = (ab)v6 1v = v7 (a+ b)v = av+ bv8 a(v+w) = av+ aw

Example: Rn, space of polynomials, space of functions.

L. Rosasco Functional Analysis Review

Page 5: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Inner Product

An inner product is a function 〈·, ·〉 : V × V → R suchthat for all a,b ∈ R and v,w, x ∈ V:

1 〈v,w〉 = 〈w, v〉2 〈av+ bw, x〉 = a〈v, x〉+ b〈w, x〉3 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0.

v,w ∈ V are orthogonal if 〈v,w〉 = 0.

Given W ⊆ V, we have V = W ⊕W⊥, whereW⊥ = { v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

Cauchy-Schwarz inequality: 〈v,w〉 6 〈v, v〉1/2〈w,w〉1/2.

L. Rosasco Functional Analysis Review

Page 6: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Inner Product

An inner product is a function 〈·, ·〉 : V × V → R suchthat for all a,b ∈ R and v,w, x ∈ V:

1 〈v,w〉 = 〈w, v〉2 〈av+ bw, x〉 = a〈v, x〉+ b〈w, x〉3 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0.

v,w ∈ V are orthogonal if 〈v,w〉 = 0.

Given W ⊆ V, we have V = W ⊕W⊥, whereW⊥ = { v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

Cauchy-Schwarz inequality: 〈v,w〉 6 〈v, v〉1/2〈w,w〉1/2.

L. Rosasco Functional Analysis Review

Page 7: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Inner Product

An inner product is a function 〈·, ·〉 : V × V → R suchthat for all a,b ∈ R and v,w, x ∈ V:

1 〈v,w〉 = 〈w, v〉2 〈av+ bw, x〉 = a〈v, x〉+ b〈w, x〉3 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0.

v,w ∈ V are orthogonal if 〈v,w〉 = 0.

Given W ⊆ V, we have V = W ⊕W⊥, whereW⊥ = { v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

Cauchy-Schwarz inequality: 〈v,w〉 6 〈v, v〉1/2〈w,w〉1/2.

L. Rosasco Functional Analysis Review

Page 8: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Inner Product

An inner product is a function 〈·, ·〉 : V × V → R suchthat for all a,b ∈ R and v,w, x ∈ V:

1 〈v,w〉 = 〈w, v〉2 〈av+ bw, x〉 = a〈v, x〉+ b〈w, x〉3 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0.

v,w ∈ V are orthogonal if 〈v,w〉 = 0.

Given W ⊆ V, we have V = W ⊕W⊥, whereW⊥ = { v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

Cauchy-Schwarz inequality: 〈v,w〉 6 〈v, v〉1/2〈w,w〉1/2.

L. Rosasco Functional Analysis Review

Page 9: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Inner Product

An inner product is a function 〈·, ·〉 : V × V → R suchthat for all a,b ∈ R and v,w, x ∈ V:

1 〈v,w〉 = 〈w, v〉2 〈av+ bw, x〉 = a〈v, x〉+ b〈w, x〉3 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0.

v,w ∈ V are orthogonal if 〈v,w〉 = 0.

Given W ⊆ V, we have V = W ⊕W⊥, whereW⊥ = { v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

Cauchy-Schwarz inequality: 〈v,w〉 6 〈v, v〉1/2〈w,w〉1/2.

L. Rosasco Functional Analysis Review

Page 10: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Norm

A norm is a function ‖ · ‖ : V → R such that for all a ∈ Rand v,w ∈ V:

1 ‖v‖ > 0, and ‖v‖ = 0 if and only if v = 0

2 ‖av‖ = |a| ‖v‖3 ‖v+w‖ 6 ‖v‖+ ‖w‖

Can define norm from inner product: ‖v‖ = 〈v, v〉1/2.

L. Rosasco Functional Analysis Review

Page 11: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Norm

A norm is a function ‖ · ‖ : V → R such that for all a ∈ Rand v,w ∈ V:

1 ‖v‖ > 0, and ‖v‖ = 0 if and only if v = 0

2 ‖av‖ = |a| ‖v‖3 ‖v+w‖ 6 ‖v‖+ ‖w‖

Can define norm from inner product: ‖v‖ = 〈v, v〉1/2.

L. Rosasco Functional Analysis Review

Page 12: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Metric

A metric is a function d : V × V → R such that for allv,w, x ∈ V:

1 d(v,w) > 0, and d(v,w) = 0 if and only if v = w

2 d(v,w) = d(w, v)

3 d(v,w) 6 d(v, x) + d(x,w)

Can define metric from norm: d(v,w) = ‖v−w‖.

L. Rosasco Functional Analysis Review

Page 13: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Metric

A metric is a function d : V × V → R such that for allv,w, x ∈ V:

1 d(v,w) > 0, and d(v,w) = 0 if and only if v = w

2 d(v,w) = d(w, v)

3 d(v,w) 6 d(v, x) + d(x,w)

Can define metric from norm: d(v,w) = ‖v−w‖.

L. Rosasco Functional Analysis Review

Page 14: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Basis

B = {v1, . . . , vn} is a basis of V if every v ∈ V can beuniquely decomposed as

v = a1v1 + · · ·+ anvn

for some a1, . . . ,an ∈ R.

An orthonormal basis is a basis that is orthogonal(〈vi, vj〉 = 0 for i 6= j) and normalized (‖vi‖ = 1).

L. Rosasco Functional Analysis Review

Page 15: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Basis

B = {v1, . . . , vn} is a basis of V if every v ∈ V can beuniquely decomposed as

v = a1v1 + · · ·+ anvn

for some a1, . . . ,an ∈ R.

An orthonormal basis is a basis that is orthogonal(〈vi, vj〉 = 0 for i 6= j) and normalized (‖vi‖ = 1).

L. Rosasco Functional Analysis Review

Page 16: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

1 Vector Spaces

2 Hilbert Spaces

3 Matrices

4 Linear Operators

L. Rosasco Functional Analysis Review

Page 17: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Hilbert Space, overview

Goal: to understand Hilbert spaces (complete innerproduct spaces) and to make sense of the expression

f =

∞∑i=1

〈f,φi〉φi, f ∈ H

Need to talk about:

1 Cauchy sequence

2 Completeness

3 Density

4 Separability

L. Rosasco Functional Analysis Review

Page 18: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Cauchy Sequence

Recall: limn→∞ xn = x if for every ε > 0 there existsN ∈ N such that ‖x− xn‖ < ε whenever n > N.

(xn)n∈N is a Cauchy sequence if for every ε > 0 thereexists N ∈ N such that ‖xm − xn‖ < ε whenever m,n > N.

Every convergent sequence is a Cauchy sequence (why?)

L. Rosasco Functional Analysis Review

Page 19: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Cauchy Sequence

Recall: limn→∞ xn = x if for every ε > 0 there existsN ∈ N such that ‖x− xn‖ < ε whenever n > N.

(xn)n∈N is a Cauchy sequence if for every ε > 0 thereexists N ∈ N such that ‖xm − xn‖ < ε whenever m,n > N.

Every convergent sequence is a Cauchy sequence (why?)

L. Rosasco Functional Analysis Review

Page 20: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Cauchy Sequence

Recall: limn→∞ xn = x if for every ε > 0 there existsN ∈ N such that ‖x− xn‖ < ε whenever n > N.

(xn)n∈N is a Cauchy sequence if for every ε > 0 thereexists N ∈ N such that ‖xm − xn‖ < ε whenever m,n > N.

Every convergent sequence is a Cauchy sequence (why?)

L. Rosasco Functional Analysis Review

Page 21: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Completeness

A normed vector space V is complete if every Cauchysequence converges.

Examples:

1 Q is not complete.

2 R is complete (axiom).

3 Rn is complete.

4 Every finite dimensional normed vector space (over R) iscomplete.

L. Rosasco Functional Analysis Review

Page 22: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Completeness

A normed vector space V is complete if every Cauchysequence converges.

Examples:

1 Q is not complete.

2 R is complete (axiom).

3 Rn is complete.

4 Every finite dimensional normed vector space (over R) iscomplete.

L. Rosasco Functional Analysis Review

Page 23: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Hilbert Space

A Hilbert space is a complete inner product space.

Examples:

1 Rn

2 Every finite dimensional inner product space.

3 `2 = {(an)∞n=1 | an ∈ R,

∑∞n=1 a

2n < ∞}

4 L2([0, 1]) = {f : [0, 1]→ R |∫1

0 f(x)2 dx < ∞}

L. Rosasco Functional Analysis Review

Page 24: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Hilbert Space

A Hilbert space is a complete inner product space.Examples:

1 Rn

2 Every finite dimensional inner product space.

3 `2 = {(an)∞n=1 | an ∈ R,

∑∞n=1 a

2n < ∞}

4 L2([0, 1]) = {f : [0, 1]→ R |∫1

0 f(x)2 dx < ∞}

L. Rosasco Functional Analysis Review

Page 25: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Density

Y is dense in X if Y = X.

Examples:

1 Q is dense in R.

2 Qn is dense in Rn.

3 Weierstrass approximation theorem: polynomials are densein continuous functions (with the supremum norm, oncompact domains).

L. Rosasco Functional Analysis Review

Page 26: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Density

Y is dense in X if Y = X.Examples:

1 Q is dense in R.

2 Qn is dense in Rn.

3 Weierstrass approximation theorem: polynomials are densein continuous functions (with the supremum norm, oncompact domains).

L. Rosasco Functional Analysis Review

Page 27: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Separability

X is separable if it has a countable dense subset.

Examples:

1 R is separable.

2 Rn is separable.

3 `2, L2([0, 1]) are separable.

L. Rosasco Functional Analysis Review

Page 28: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Separability

X is separable if it has a countable dense subset.Examples:

1 R is separable.

2 Rn is separable.

3 `2, L2([0, 1]) are separable.

L. Rosasco Functional Analysis Review

Page 29: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Orthonormal Basis

A Hilbert space has a countable orthonormal basis if andonly if it is separable.

Can write:

f =

∞∑i=1

〈f,φi〉φi for all f ∈ H.

Examples:

1 Basis of `2 is (1, 0, . . . , ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), . . .

2 Basis of L2([0, 1]) is 1, 2 sin 2πnx, 2 cos 2πnx for n ∈ N

L. Rosasco Functional Analysis Review

Page 30: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Orthonormal Basis

A Hilbert space has a countable orthonormal basis if andonly if it is separable.

Can write:

f =

∞∑i=1

〈f,φi〉φi for all f ∈ H.

Examples:

1 Basis of `2 is (1, 0, . . . , ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), . . .

2 Basis of L2([0, 1]) is 1, 2 sin 2πnx, 2 cos 2πnx for n ∈ N

L. Rosasco Functional Analysis Review

Page 31: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Maps

Next we are going to review basic properties of maps on aHilbert space.

functionals: Ψ : H→ Rlinear operators A : H→ H, such thatA(af+ bg) = aAf+ bAg, with a,b ∈ R and f,g ∈ H.

L. Rosasco Functional Analysis Review

Page 32: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Representation of Continuous Functionals

Let H be a Hilbert space and g ∈ H, then

Ψg(f) = 〈f,g〉 , f ∈ H

is a continuous linear functional.

Riesz representation theoremThe theorem states that every continuous linear functional Ψcan be written uniquely in the form,

Ψ(f) = 〈f,g〉

for some appropriate element g ∈ H.

L. Rosasco Functional Analysis Review

Page 33: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

1 Vector Spaces

2 Hilbert Spaces

3 Matrices

4 Linear Operators

L. Rosasco Functional Analysis Review

Page 34: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Matrix

Every linear operator L : Rm → Rn can be represented byan m× n matrix A.

If A ∈ Rm×n, the transpose of A is A> ∈ Rn×m satisfying

〈Ax,y〉Rm = (Ax)>y = x>A>y = 〈x,A>y〉Rn

for every x ∈ Rn and y ∈ Rm.

A is symmetric if A> = A.

L. Rosasco Functional Analysis Review

Page 35: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Matrix

Every linear operator L : Rm → Rn can be represented byan m× n matrix A.

If A ∈ Rm×n, the transpose of A is A> ∈ Rn×m satisfying

〈Ax,y〉Rm = (Ax)>y = x>A>y = 〈x,A>y〉Rn

for every x ∈ Rn and y ∈ Rm.

A is symmetric if A> = A.

L. Rosasco Functional Analysis Review

Page 36: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Matrix

Every linear operator L : Rm → Rn can be represented byan m× n matrix A.

If A ∈ Rm×n, the transpose of A is A> ∈ Rn×m satisfying

〈Ax,y〉Rm = (Ax)>y = x>A>y = 〈x,A>y〉Rn

for every x ∈ Rn and y ∈ Rm.

A is symmetric if A> = A.

L. Rosasco Functional Analysis Review

Page 37: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Eigenvalues and Eigenvectors

Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvectorof A with corresponding eigenvalue λ ∈ R if Av = λv.

Symmetric matrices have real eigenvalues.

Spectral Theorem: Let A be a symmetric n× n matrix.Then there is an orthonormal basis of Rn consisting of theeigenvectors of A.

Eigendecomposition: A = VΛV>, or equivalently,

A =

n∑i=1

λiviv>i .

L. Rosasco Functional Analysis Review

Page 38: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Eigenvalues and Eigenvectors

Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvectorof A with corresponding eigenvalue λ ∈ R if Av = λv.Symmetric matrices have real eigenvalues.

Spectral Theorem: Let A be a symmetric n× n matrix.Then there is an orthonormal basis of Rn consisting of theeigenvectors of A.

Eigendecomposition: A = VΛV>, or equivalently,

A =

n∑i=1

λiviv>i .

L. Rosasco Functional Analysis Review

Page 39: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Eigenvalues and Eigenvectors

Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvectorof A with corresponding eigenvalue λ ∈ R if Av = λv.Symmetric matrices have real eigenvalues.

Spectral Theorem: Let A be a symmetric n× n matrix.Then there is an orthonormal basis of Rn consisting of theeigenvectors of A.

Eigendecomposition: A = VΛV>, or equivalently,

A =

n∑i=1

λiviv>i .

L. Rosasco Functional Analysis Review

Page 40: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Eigenvalues and Eigenvectors

Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvectorof A with corresponding eigenvalue λ ∈ R if Av = λv.Symmetric matrices have real eigenvalues.

Spectral Theorem: Let A be a symmetric n× n matrix.Then there is an orthonormal basis of Rn consisting of theeigenvectors of A.

Eigendecomposition: A = VΛV>, or equivalently,

A =

n∑i=1

λiviv>i .

L. Rosasco Functional Analysis Review

Page 41: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Singular Value Decomposition

Every A ∈ Rm×n can be written as

A = UΣV>,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is diagonal,and V ∈ Rn×n is orthogonal.

Singular system:

Avi = σiui AA>ui = σ2iui

A>ui = σivi A>Avi = σ2ivi

L. Rosasco Functional Analysis Review

Page 42: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Singular Value Decomposition

Every A ∈ Rm×n can be written as

A = UΣV>,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is diagonal,and V ∈ Rn×n is orthogonal.

Singular system:

Avi = σiui AA>ui = σ2iui

A>ui = σivi A>Avi = σ2ivi

L. Rosasco Functional Analysis Review

Page 43: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Matrix Norm

The spectral norm of A ∈ Rm×n is

‖A‖spec = σmax(A) =

√λmax(AA>) =

√λmax(A>A).

The Frobenius norm of A ∈ Rm×n is

‖A‖F =

√√√√ m∑i=1

n∑j=1

a2ij =

√√√√min{m,n}∑i=1

σ2i .

L. Rosasco Functional Analysis Review

Page 44: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Matrix Norm

The spectral norm of A ∈ Rm×n is

‖A‖spec = σmax(A) =

√λmax(AA>) =

√λmax(A>A).

The Frobenius norm of A ∈ Rm×n is

‖A‖F =

√√√√ m∑i=1

n∑j=1

a2ij =

√√√√min{m,n}∑i=1

σ2i .

L. Rosasco Functional Analysis Review

Page 45: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Positive Definite Matrix

A real symmetric matrix A ∈ Rm×m is positive definite if

xtAx > 0, ∀x ∈ Rm.

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by >.

L. Rosasco Functional Analysis Review

Page 46: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

1 Vector Spaces

2 Hilbert Spaces

3 Matrices

4 Linear Operators

L. Rosasco Functional Analysis Review

Page 47: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Linear Operator

An operator L : H1 → H2 is linear if it preserves the linearstructure.

A linear operator L : H1 → H2 is bounded if there existsC > 0 such that

‖Lf‖H26 C‖f‖H1

for all f ∈ H1.

A linear operator is continuous if and only if it is bounded.

L. Rosasco Functional Analysis Review

Page 48: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Linear Operator

An operator L : H1 → H2 is linear if it preserves the linearstructure.

A linear operator L : H1 → H2 is bounded if there existsC > 0 such that

‖Lf‖H26 C‖f‖H1

for all f ∈ H1.

A linear operator is continuous if and only if it is bounded.

L. Rosasco Functional Analysis Review

Page 49: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Linear Operator

An operator L : H1 → H2 is linear if it preserves the linearstructure.

A linear operator L : H1 → H2 is bounded if there existsC > 0 such that

‖Lf‖H26 C‖f‖H1

for all f ∈ H1.

A linear operator is continuous if and only if it is bounded.

L. Rosasco Functional Analysis Review

Page 50: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Adjoint and Compactness

The adjoint of a bounded linear operator L : H1 → H2 is abounded linear operator L∗ : H2 → H1 satisfying

〈Lf,g〉H2= 〈f,L∗g〉H1

for all f ∈ H1,g ∈ H2.

L is self-adjoint if L∗ = L. Self-adjoint operators have realeigenvalues.

A bounded linear operator L : H1 → H2 is compact if theimage of the unit ball in H1 has compact closure in H2.

L. Rosasco Functional Analysis Review

Page 51: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Adjoint and Compactness

The adjoint of a bounded linear operator L : H1 → H2 is abounded linear operator L∗ : H2 → H1 satisfying

〈Lf,g〉H2= 〈f,L∗g〉H1

for all f ∈ H1,g ∈ H2.

L is self-adjoint if L∗ = L. Self-adjoint operators have realeigenvalues.

A bounded linear operator L : H1 → H2 is compact if theimage of the unit ball in H1 has compact closure in H2.

L. Rosasco Functional Analysis Review

Page 52: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Spectral Theorem for Compact Self-Adjoint Operator

Let L : H→ H be a compact self-adjoint operator. Thenthere exists an orthonormal basis of H consisting of theeigenfunctions of L,

Lφi = λiφi

and the only possible limit point of λi as i→∞ is 0.

Eigendecomposition:

L =

∞∑i=1

λi〈φi, ·〉φi.

L. Rosasco Functional Analysis Review

Page 53: Functional Analysis Review - mit.edu9.520/spring12/slides/mathcamp2012-fa-slides.pdf · Functional Analysis Review Lorenzo Rosasco {slides courtesy of Andre Wibisono 9.520: Statistical

OutlineVector SpacesHilbert Spaces

MatricesLinear Operators

Spectral Theorem for Compact Self-Adjoint Operator

Let L : H→ H be a compact self-adjoint operator. Thenthere exists an orthonormal basis of H consisting of theeigenfunctions of L,

Lφi = λiφi

and the only possible limit point of λi as i→∞ is 0.

Eigendecomposition:

L =

∞∑i=1

λi〈φi, ·〉φi.

L. Rosasco Functional Analysis Review