View
49
Download
0
Embed Size (px)
DESCRIPTION
Fun with Formulas !. Werner Joho Paul Scherrer Institute (PSI) CH5232 Villigen, Switzerland. 4.July 2003 (updated 1.10.2010). Introduction. Formulas can be fun. They often can be made to look simple, transparent and thus beautiful (in the spirit of Einstein and Chandrasekhar). - PowerPoint PPT Presentation
Fun with Formulas !Werner Joho
Paul Scherrer Institute (PSI) CH5232 Villigen, Switzerland4.July 2003(updated 1.10.2010)
IntroductionFormulas can be fun. They often can be made to look simple, transparent and thus beautiful (in the spirit of Einstein and Chandrasekhar). This can be achieved with some simple rules and a few tricks of the trade. This paper is a sample of some simple formulas, collected during my career as a physicist.The following material was presented (but not published) at a seminar talk given at the CERN Accelerator School on Synchrotron Radiation and Free Electron Lasers,Brunnen, Switzerland, 2-9 July 2003
(this file is available on the WEB with google: JOHO PSI)
Content philosophy for formulas capital growth new interpretation of Ohms law logarithmic derivatives the relativistic equations of Einstein the magic triangle formed by the logarithmic derivatives of the relativistic parameters Alternative Gradient Focusing, constructed by hand binomial curves everywhere, approximation of a variety of functions, like beam profiles, the fringe field of magnets, the flux and brightness of synchrotron radiation etc. simple representation of phase space ellipses how to win money with statistics ! design of beautiful tables with a Hamiltonian
philosophy for formulas simplify formulas, they should look beautiful formula should indicate the proper dimensions use units of 1'000 (cm should not exist in formulas!) choose right scales for plots (e.g. logarithmic)example: c = 3 108 m/s ?? better is:c = 0.3109 m/s or 300 m/ms or 0.3 mm/ps !!for comparison of electric forces: q (kV/mm) with magnetic forces: qvB = qcBc = 300 (kV/mm)/T !!
m0 = 4p 10-7 Vs/Am ?? better is:m0 = 0.4p mH/m = 0.4p T/(kA/mm)
how to avoid akward numbers in electrodynamics
electron mass: m = 9.1110-31 kg (?) => forget it !
use mc2 ( eUo , Uo = .511 MV
(o = 8.85410-12 As/Vm (?) => forget it !
use (o (o = 1/c2 with (o = 0.4 ( (H/m
introduce impedance Zo :
(( 29.9792458 ()
Alfven current IA (used in space charge calculations):
IA = 4((omc3/e (?) => forget it ! (similarly for "perveance")
use instead Ohms-law : IA = Uo/Zo = 511 kV/30( = 17 kA
charged particle in a magnetic field Bo
=> Larmor-frequency
electron:
= 1.761011 C/kg (?) => forget it !
use
=
= 28 GHz/T (15.25 MHz/T for protons)
how to avoid akward numbers in electro-dynamics
Zo ( EMBED Equation.3 = EMBED Equation.3 = 30 (
(o = EMBED Equation.3
_1118511451.unknown
_1118512706.unknown
_1118512821.unknown
_1118514183.unknown
_1118512633.unknown
_1118511324.unknown
use logarithmic derivatives !
Einstein triangle
in relativistic equations use dimensionless quantities for
velocity, energy and momentum on a democratic basis!
=> Einstein triangle and magic triangles for logarithmic derivatives
velocity:
v = ( c
total energy:E = ( E0 , E0 = mc2 = eU0 (0.511 MeV for electron)
( = (1-(2)-1/2 ,
momentum:p =
E0/c =
mc
Pythagoras- connection: E2 = E02 + (pc)2
give the Einstein triangle and derivatives
1) highly relativistic case
( >> 1 , ( ( 1 => use angle (
( ( cos( ( 1 (2
1/( ( sin( ( (
( (( = 1/tan( ( 1/(
a) race to the moon between electron and photon: electron looses by
(L = (1 - () L (
L
SLS: 2.4 GeV, (L = 8 m
ESRF: 6 GeV, (L = 1.4 m
LEP II: 100 GeV, (L = 5 mm
b) race over one undulator period (u : if electron is just one wavelength ( behind photon (slippage) => positive interference
K = 0.0934 B[T] (u [mm]
detour due to slalom in B-field !
2) mildly relativistic case: use angle (
the following table gives some easy reference values for
quick estimates or for calculations with a pocket calculator!
(
( = sin(
cos(
(= 1/cos(
p = (( = tan(
300
0.5
0.87
1.15
0.58
36.90
0.6
0.8
1.25
0.75
450
0.71
0.71
1.41
1
53.10
0.8
0.6
1.67
1.33
600
0.87
0.5
2
1.71
Einstein triangle
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
EMBED Equation.3
(L = ( = EMBED Equation.3 (u (1 + K2)
_1118764697.unknown
_1118765678.unknown
_1118766891.unknown
_1119003940.unknown
_1118765979.unknown
_1118764857.unknown
_1118473171.unknown
_1118764630.unknown
_1118431102.unknown
Magic Triangles (W.Joho) with logarithmic derivatives of relativistic parameter
multiplication factors form inverse triangle
trigonometric functions for relativistic formula !
2) mildly relativistic case: use angle (
the following table gives some easy reference values for
quick estimates or for calculations with a pocket calculator!
(with use of Pythagoras triangle with sides 3,4,5)
(
( = sin(
cos(
(= 1/cos(
p = (( = tan(
300
0.5
0.87
1.15
0.58
36.90
0.6
0.8
1.25
0.75
450
0.71
0.71
1.41
1
53.10
0.8
0.6
1.67
1.33
600
0.87
0.5
2
1.71
highly relativistic case
highly relativistic case
( >> 1 , ( ( 1 => use angle (
( ( cos( ( 1 (2 / 2
1/( ( sin( ( (
( (( = 1/tan( ( 1/(
a) race to the moon between electron and photon: electron "looses" by
(L = (1 - () L (
L
SLS: 2.4 GeV, (L = 8 m
ESRF: 6 GeV, (L = 1.4 m
LEP II: 100 GeV, (L = 5 mm
b) race over one undulator period (u : if electron is just one or n wavelengths ( behind photon (slippage) => positive interference
K = 0.0934 B[T] (u [mm]
detour due to slalom in B-field !
EMBED Equation.3
EMBED Equation.3
(L = ( = EMBED Equation.3 (u (1 + K2 / 2)
_1118473171.unknown
_1118765979.unknown
_1287400419.unknown
_1118765678.unknown
_1118431102.unknown
Undulator RadiationTESLAproduced by an electron beam of energy E = gmc2
AG-focusing simple example of alternative gradient focusing:
FODO-lattice with thin lenses (focal length f)if L = 2f => construction is possible by hand !it takes 6 periods to get a 3600-oscillationi.e. the phase advance/period is = 600for L = 2f => = 600 (graphic example) for L = 4f => = 1800 (instability !)exact solution with transfer matrices gives
magnetic fringe field with binomial
Diagramm1
1
0.9999999667
0.9999957334
0.9999271106
0.9994544624
0.9974093148
0.9908392374
0.9739653749
0.9385101073
0.8778347684
0.793700526
0.6973577481
0.6020201164
0.5160898112
0.4425012051
0.3809660936
0.3299325428
0.2876075066
0.252358926
0.2228252474
0.1979110744
0.1767475649
0.158647976
0.1430684362
0.1295761719
0.1178246951
0.1075347247
0.0984795879
0.0904740456
0.0833657075
0.077028403
0.0713570312
0.0662635336
0.0616737245
0.0575247801
0.0537632356
0.0503433787
0.0472259528
0.0443771039
0.0417675212
0.0393717318
N=7, S=-3
u
B
magnet edge
short range
Binomial Curve3/28/03Binom_curves.xls
short range:
y=A*((1-(X/XL)^^N)^^1/Sy(1)=0.5y(XL)=0
A1.0000
N4.0000
S0.2500
Einfgen-Name-Definieren
1/S4.0000
XL1.5834
xy=binom
01.0000
0.10.9999
0.20.9990
0.30.9949
0.40.9838
0.50.9608
0.60.9200
0.70.8557
0.80.7637
0.90.6434
10.5000
1.10.3462
1.20.2016
1.30.0886
1.350.0494
1.40.0228
1.50.0014
1.580.0000
short range
1
N=4, S=0.25
XL=1.583
X
Y
Binomial
long range
Binomial Curve6/5/03Binom_curves.xls
long range
y=A/(1+(X/XL)^^N)^^1/Ty(1)=0.5y(XL)=0
A1.0
N7.0
T3.0000
Einfgen-Name-Definieren
1/T0.3333
XL0.7573
xy=binom
01.0000
0.11.0000
0.21.0000
0.30.9995
0.40.9962
0.50.9824
0.60.9421
0.70.8592
0.80.7400
0.90.6127
10.5000
1.10.4088
1.20.3372
1.30.2813
1.40.2373
1.50.2024
1.60.1743
1.70.1514
1.80.1325
1.90.1169
20.1037
2.10.0925
2.20.0830
2.30.0749
2.40.0678
2.50.0616
2.60.0562
2.70.0515
2.80.0473
2.90.0436
30.0403
long range
N=7, S=-3
u
y
magnet edge
short range (2)
Binomial Curve3/28/03Binom_curves.xls
short range:
y=A*((1-(X/XL)^^N)^^1/Sy(1)=0.5y(XL)=0
A1.0000
N20.0000
S0.0500
Einfgen-Name-Definieren
1/S20.0000
XL1.1841
xy=binom
01.0000
0.031.0000
0.061.0000
0.091.0000
0.121.0000
0.151.0000
0.181.0000
0.211.0000
0.241.0000
0.271.0000
0.31.0000
0.331.0000