56
ELEMAN Diámetro y longitu Newbie Group: Members Posts: 7 Member No.: 7,154 Joined: 3-May 07 Buenas tardes Art: Espero que al leer estas líneas se encuentre bie En esta ocasión vuelvo sobre el tema de la sedim asentamiento de agua contenidos en combustible p el suelo. Para provocar el asentamiento de agua y partícul almacenamiento, se alimenta vapor a través de un Habiendo analizado la Ley de Stokes vemos que, l sólidos es función directa tanto de la viscosida ambas varían con la temperatura. Por ello, hemo proceso alimentando más calor para elevar la tem tanques. Los datos de los cálculos que he realizado con u Tanque desnudo (sin aislamiento térmico), c respiradero. Diámetro del tanque: 16.8 m Altura del tanque: 9.1 m Altura de llenado máximo (por seguridad): 8 Espesor promedio de la chapa del tanque: 0, Temperatura ambiente: 35 ºC El viento es calmo (casi estático) Temperatura inicial del combustible: 40 ºC Temperatura final del combustible: 65 ºC Volumen de combustible (tanque lleno): 1,80 Densidad del combustible: 998 kg/m³ @ 15 ºC Viscosidad del combustible: 635 cSt @ 50 ºC Calor específico del combustible: 2,1 kJ/kg Tiempo de calentamiento: 24 horas Presión del vapor antes de válvula regulado Presión del vapor después de válvula regula El tanque al inicio del llenado tendrá un volume una temperatura de 65 ºC. El flujo másico de ll 40 ºC. Tiempo de llenado 8 horas. Después de llenado el tanque, el combustible rep

Fuel_Oil_Tank_Heat_Up.xls

Embed Size (px)

DESCRIPTION

Oil tanks

Citation preview

Page 1: Fuel_Oil_Tank_Heat_Up.xls

ELEMAN Diámetro y longitud de serpentín, Oct 1 2007, 03:58 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

Espero que al leer estas líneas se encuentre bien al lado de los suyos.

En esta ocasión vuelvo sobre el tema de la sedimentación de sólidos y el asentamiento de agua contenidos en combustible pesado almacenado en tanques sobre el suelo.

Para provocar el asentamiento de agua y partículas sólidas en el tanque de almacenamiento, se alimenta vapor a través de un serpentín (bobina o coil). Habiendo analizado la Ley de Stokes vemos que, la velocidad de precipitación de los sólidos es función directa tanto de la viscosidad como de la densidad del fluido y, ambas varían con la temperatura. Por ello, hemos decidido tratar de “acelerar” ese proceso alimentando más calor para elevar la temperatura del combustible en los tanques.

Los datos de los cálculos que he realizado con un tanque lleno son:

Tanque desnudo (sin aislamiento térmico), cerrado con techo fijo y tiene respiradero. Diámetro del tanque: 16.8 m Altura del tanque: 9.1 m Altura de llenado máximo (por seguridad): 8 m Espesor promedio de la chapa del tanque: 0,0079 m Temperatura ambiente: 35 ºC El viento es calmo (casi estático) Temperatura inicial del combustible: 40 ºC Temperatura final del combustible: 65 ºC Volumen de combustible (tanque lleno): 1,800 m³ Densidad del combustible: 998 kg/m³ @ 15 ºC Viscosidad del combustible: 635 cSt @ 50 ºC Calor específico del combustible: 2,1 kJ/kg ºK Tiempo de calentamiento: 24 horas Presión del vapor antes de válvula reguladora: 6,5 barg y T = 170 ºC Presión del vapor después de válvula reguladora: 4,35 bara y T = 147º C

El tanque al inicio del llenado tendrá un volumen muerto (inextraíble) de 130 m³ a una temperatura de 65 ºC. El flujo másicode llenado es 210 m³/h de combustible a 40 ºC. Tiempo de llenado 8 horas.

Después de llenado el tanque, el combustible reposa (no entra ni sale producto del tanque) por 50 horas. Una vez cumplidas las 50 horas, este tanque comienza a ser vaciado.

El resultado final que obtengo para este escenario es:

Área de transferencia de calor requerida: 261 m² Diámetro del serpentín: 162 mm (arriba de 6") Longitud: 495 m

También hice un cálculo para 36 horas de calentamiento y me da un diámetro 128 mm (redondeado a 6") y longitud de 371 m.

Como podrá usted ver Art, el tiempo de reposo para el asentamiento es el que me obliga a alcanzar la temperatura de 65 ºC en el menor tiempo posible.

Después de toda esta exposición, las preguntas que me agobian son ¿existen en la industria y en las plantas de generación aplicaciones reales de serpentines de este diámetro y de esta longitud? ¿Estoy calculando mal mi serpentín? Aún disponiendo los tubos en forma de retícula ¿cómo instalar tantos tubos en un tanque de 16,8 m de diámetro?

Art, espero en esta ocasión no haber abusado de su confianza y, después de que analice lo aquí expuesto, mucho le agradeceré sus comentarios al respecto.

Atentamente

ELEMAN

Page 2: Fuel_Oil_Tank_Heat_Up.xls

ELEMAN Diámetro y longitud de serpentín, Oct 1 2007, 03:58 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

Espero que al leer estas líneas se encuentre bien al lado de los suyos.

En esta ocasión vuelvo sobre el tema de la sedimentación de sólidos y el asentamiento de agua contenidos en combustible pesado almacenado en tanques sobre el suelo.

Para provocar el asentamiento de agua y partículas sólidas en el tanque de almacenamiento, se alimenta vapor a través de un serpentín (bobina o coil). Habiendo analizado la Ley de Stokes vemos que, la velocidad de precipitación de los sólidos es función directa tanto de la viscosidad como de la densidad del fluido y, ambas varían con la temperatura. Por ello, hemos decidido tratar de “acelerar” ese proceso alimentando más calor para elevar la temperatura del combustible en los tanques.

Los datos de los cálculos que he realizado con un tanque lleno son:

Tanque desnudo (sin aislamiento térmico), cerrado con techo fijo y tiene respiradero. Diámetro del tanque: 16.8 m Altura del tanque: 9.1 m Altura de llenado máximo (por seguridad): 8 m Espesor promedio de la chapa del tanque: 0,0079 m Temperatura ambiente: 35 ºC El viento es calmo (casi estático) Temperatura inicial del combustible: 40 ºC Temperatura final del combustible: 65 ºC Volumen de combustible (tanque lleno): 1,800 m³ Densidad del combustible: 998 kg/m³ @ 15 ºC Viscosidad del combustible: 635 cSt @ 50 ºC Calor específico del combustible: 2,1 kJ/kg ºK Tiempo de calentamiento: 24 horas Presión del vapor antes de válvula reguladora: 6,5 barg y T = 170 ºC Presión del vapor después de válvula reguladora: 4,35 bara y T = 147º C

El tanque al inicio del llenado tendrá un volumen muerto (inextraíble) de 130 m³ a una temperatura de 65 ºC. El flujo másicode llenado es 210 m³/h de combustible a 40 ºC. Tiempo de llenado 8 horas.

Después de llenado el tanque, el combustible reposa (no entra ni sale producto del tanque) por 50 horas. Una vez cumplidas las 50 horas, este tanque comienza a ser vaciado.

El resultado final que obtengo para este escenario es:

Área de transferencia de calor requerida: 261 m² Diámetro del serpentín: 162 mm (arriba de 6") Longitud: 495 m

También hice un cálculo para 36 horas de calentamiento y me da un diámetro 128 mm (redondeado a 6") y longitud de 371 m.

Como podrá usted ver Art, el tiempo de reposo para el asentamiento es el que me obliga a alcanzar la temperatura de 65 ºC en el menor tiempo posible.

Después de toda esta exposición, las preguntas que me agobian son ¿existen en la industria y en las plantas de generación aplicaciones reales de serpentines de este diámetro y de esta longitud? ¿Estoy calculando mal mi serpentín? Aún disponiendo los tubos en forma de retícula ¿cómo instalar tantos tubos en un tanque de 16,8 m de diámetro?

Art, espero en esta ocasión no haber abusado de su confianza y, después de que analice lo aquí expuesto, mucho le agradeceré sus comentarios al respecto.

Atentamente

ELEMAN

Diámetro y longitud de serpentínPersonal MessageELEMAN Diámetro y longitud de serpentín, Oct 1 2007, 04:05 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Estimado Art:

Pido un millón de disculpas por no poner en mi carta datos importantes que usé para los cálculos.

Calor requerido: 1,723 kW Calor latente de vaporización: 2,126 kJ/kg Flujo másico de vapor: 2,918 kg/h

Gracias por su comprensión.

Consulta no atendidaPersonal MessageELEMAN Consulta no atendida, October 17, 2007; 05:44 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

El 1 de Octubre recién pasado le envié una consulta sobre el cálculo de un serpentín para calentamiento con vapor.

Conociendo lo diligente de su accionar en los foros en que participa, me parece un tanto raro que no haya dado una opinión sobre el trabajo que hice. Yo me pregunto ¿hice algo malo al preguntar en forma privada y no en el foro? ¿Están tan malos los cálculos que no vale la pena ni contestar? ¿No soy tan hábil al preguntar si una tubería de diámetro grande puede sustituirse porun haz de tubos de diámetro menor? En este último caso, no creo que sea eso porque en los foros cuando alguien no formula bien una pregunta, usted la recompone en la forma como debiera hacerse la pregunta y, en base a ello usted da su opinión.

Estoy un tanto desconcertado por su silencio, por ello mucho le agradeceré me señale mi error o errores y ello me bastará para cerrar el tema.

Reciba un saludo fraterno

Page 3: Fuel_Oil_Tank_Heat_Up.xls

Consulta no atendidaPersonal MessageELEMAN Consulta no atendida, October 17, 2007; 05:44 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

El 1 de Octubre recién pasado le envié una consulta sobre el cálculo de un serpentín para calentamiento con vapor.

Conociendo lo diligente de su accionar en los foros en que participa, me parece un tanto raro que no haya dado una opinión sobre el trabajo que hice. Yo me pregunto ¿hice algo malo al preguntar en forma privada y no en el foro? ¿Están tan malos los cálculos que no vale la pena ni contestar? ¿No soy tan hábil al preguntar si una tubería de diámetro grande puede sustituirse porun haz de tubos de diámetro menor? En este último caso, no creo que sea eso porque en los foros cuando alguien no formula bien una pregunta, usted la recompone en la forma como debiera hacerse la pregunta y, en base a ello usted da su opinión.

Estoy un tanto desconcertado por su silencio, por ello mucho le agradeceré me señale mi error o errores y ello me bastará para cerrar el tema.

Reciba un saludo fraterno

Re:Consulta no atendidaPersonal Message

Art Montemayor

Re:Consulta no atendida, Oct 18 2007, 11:28 AM

ChE JediGroup: AdminPosts: 1,025Member No.: 4Joined: 8-March 03

ELEMAN:

Lamento que aunque leí tus mensajes, no les di prioridad ya que no me indicaste que era urgente el contestarte y, como me ha estado pasando frecuentemente, simplemente me olvide.

Te pido mil disculpas y ojala no te he causado algún daño en tus necesidades. Como heestado renovando nuestra residencia - especialmente la cocina de mi señora - me ha costeado bastante tiempo y preocupación los proyectos que tengo en casa. Sin embargo, tengo respuesta(s) a tu solicitud.

1. No me parece práctico lo que tú propones. Aunque no lo dices abiertamente, lo que entiendo según tu descripción del proceso, tú propones hacer un calentamiento tipo “batch” en el tanque de almacenamiento. Este es el tipo de calefacción más ineficiente y yo no lo respaldo porque es dificilísimo diseñar este tipo de proceso - además de costoso, como te habrás dado cuenta.

2. La forma que yo lo haría es con un intercambiador tipo TEMA, con los espejos fijos. El vapor en la carcaza y el petróleo en los tubos, con pasos múltiples en los tubos. Yo calentaría el petróleo mientras lo bombeas al tanque y tomo provecho del cabezal de la bomba para lograr una caída de presión a través del calentador. Es así que puedo disminuir el área requerida para lograr la transferencia de calor. Yo calculo (a grosso modo) que una área de aproximadamente 700 pies cuadrados seria suficiente. Tú calculas 2, 800 pies cuadrados. Como no mandaste tus cálculos, no se tu forma y base de cálculos.

Propongo que solicites a través del Foro solución a tu problema y allí te puedo contestar todos los detalles que necesites. Inclusive, te envío a través del Foro mis cálculos en forma de Excel - conjuntamente con todas las explicaciones de los cálculos.

Tengo mucho por decir y explicar sobre esta aplicación, pero no tengo el tiempo en estemomento. Espero tu respuesta.

Ojala esto te ayude en tu proyecto.

Page 4: Fuel_Oil_Tank_Heat_Up.xls

Re:Consulta no atendidaPersonal Message

Art Montemayor

Re:Consulta no atendida, Oct 18 2007, 11:28 AM

ChE JediGroup: AdminPosts: 1,025Member No.: 4Joined: 8-March 03

ELEMAN:

Lamento que aunque leí tus mensajes, no les di prioridad ya que no me indicaste que era urgente el contestarte y, como me ha estado pasando frecuentemente, simplemente me olvide.

Te pido mil disculpas y ojala no te he causado algún daño en tus necesidades. Como heestado renovando nuestra residencia - especialmente la cocina de mi señora - me ha costeado bastante tiempo y preocupación los proyectos que tengo en casa. Sin embargo, tengo respuesta(s) a tu solicitud.

1. No me parece práctico lo que tú propones. Aunque no lo dices abiertamente, lo que entiendo según tu descripción del proceso, tú propones hacer un calentamiento tipo “batch” en el tanque de almacenamiento. Este es el tipo de calefacción más ineficiente y yo no lo respaldo porque es dificilísimo diseñar este tipo de proceso - además de costoso, como te habrás dado cuenta.

2. La forma que yo lo haría es con un intercambiador tipo TEMA, con los espejos fijos. El vapor en la carcaza y el petróleo en los tubos, con pasos múltiples en los tubos. Yo calentaría el petróleo mientras lo bombeas al tanque y tomo provecho del cabezal de la bomba para lograr una caída de presión a través del calentador. Es así que puedo disminuir el área requerida para lograr la transferencia de calor. Yo calculo (a grosso modo) que una área de aproximadamente 700 pies cuadrados seria suficiente. Tú calculas 2, 800 pies cuadrados. Como no mandaste tus cálculos, no se tu forma y base de cálculos.

Propongo que solicites a través del Foro solución a tu problema y allí te puedo contestar todos los detalles que necesites. Inclusive, te envío a través del Foro mis cálculos en forma de Excel - conjuntamente con todas las explicaciones de los cálculos.

Tengo mucho por decir y explicar sobre esta aplicación, pero no tengo el tiempo en estemomento. Espero tu respuesta.

Ojala esto te ayude en tu proyecto.

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

Tanks diameter: 16,8 m Tanks height: 9,1 m Maximum level of fuel in the tanks: 8 m Average tank plate thickness: 0,0079 m Ambient temperature: 35 ºC The wind in the tank farm area is still Initial temperature of fuel in the tanks: 40 ºC Final temperature of fuel in the tanks: 65 ºC Initial volume of fuel in the tank: 130 m³ at T = 65 ºC Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC Mass flow rate of filling up: 210 m³/h at T = 40 ºC Time for filling up: ~ 8 hours Density of the fuel oil: 998 kg/m³ @ 15 ºC Kinematics viscosity of the fuel: 635 cSt @ 50 ºC Specific heat of the fuel: 2,1 kJ/kg ºK Heating time: 24 hours Steam pressure before regulating valve: 6,5 barg @ 168 ºC Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit your comments regarding to this subject.

Thanks in advance.

Page 5: Fuel_Oil_Tank_Heat_Up.xls

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

Tanks diameter: 16,8 m Tanks height: 9,1 m Maximum level of fuel in the tanks: 8 m Average tank plate thickness: 0,0079 m Ambient temperature: 35 ºC The wind in the tank farm area is still Initial temperature of fuel in the tanks: 40 ºC Final temperature of fuel in the tanks: 65 ºC Initial volume of fuel in the tank: 130 m³ at T = 65 ºC Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC Mass flow rate of filling up: 210 m³/h at T = 40 ºC Time for filling up: ~ 8 hours Density of the fuel oil: 998 kg/m³ @ 15 ºC Kinematics viscosity of the fuel: 635 cSt @ 50 ºC Specific heat of the fuel: 2,1 kJ/kg ºK Heating time: 24 hours Steam pressure before regulating valve: 6,5 barg @ 168 ºC Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit your comments regarding to this subject.

Thanks in advance.

Page 6: Fuel_Oil_Tank_Heat_Up.xls

0.0079 meters = 5/16

40 104

65 149

170 338

147 297

t1 = 100

t2 = 150

T1 = 300

T2 = 300

200

150

oC =oC =

oC =oC =

Dt1 =

Dt2 =

ELEMAN Diámetro y longitud de serpentín, Oct 1 2007, 03:58 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

Espero que al leer estas líneas se encuentre bien al lado de los suyos.

En esta ocasión vuelvo sobre el tema de la sedimentación de sólidos y el asentamiento de agua contenidos en combustible pesado almacenado en tanques sobre el suelo.

Para provocar el asentamiento de agua y partículas sólidas en el tanque de almacenamiento, se alimenta vapor a través de un serpentín (bobina o coil). Habiendo analizado la Ley de Stokes vemos que, la velocidad de precipitación de los sólidos es función directa tanto de la viscosidad como de la densidad del fluido y, ambas varían con la temperatura. Por ello, hemos decidido tratar de “acelerar” ese proceso alimentando más calor para elevar la temperatura del combustible en los tanques.

Los datos de los cálculos que he realizado con un tanque lleno son:

Tanque desnudo (sin aislamiento térmico), cerrado con techo fijo y tiene respiradero. Diámetro del tanque: 16.8 m Altura del tanque: 9.1 m Altura de llenado máximo (por seguridad): 8 m Espesor promedio de la chapa del tanque: 0,0079 m Temperatura ambiente: 35 ºC El viento es calmo (casi estático) Temperatura inicial del combustible: 40 ºC Temperatura final del combustible: 65 ºC Volumen de combustible (tanque lleno): 1,800 m³ Densidad del combustible: 998 kg/m³ @ 15 ºC Viscosidad del combustible: 635 cSt @ 50 ºC Calor específico del combustible: 2,1 kJ/kg ºK Tiempo de calentamiento: 24 horas Presión del vapor antes de válvula reguladora: 6,5 barg y T = 170 ºC Presión del vapor después de válvula reguladora: 4,35 bara y T = 147º C

El tanque al inicio del llenado tendrá un volumen muerto (inextraíble) de 130 m³ a una temperatura de 65 ºC. El flujo másicode llenado es 210 m³/h de combustible a 40 ºC. Tiempo de llenado 8 horas.

Después de llenado el tanque, el combustible reposa (no entra ni sale producto del tanque) por 50 horas. Una vez cumplidas las 50 horas, este tanque comienza a ser vaciado.

El resultado final que obtengo para este escenario es:

Área de transferencia de calor requerida: 261 m² Diámetro del serpentín: 162 mm (arriba de 6") Longitud: 495 m

También hice un cálculo para 36 horas de calentamiento y me da un diámetro 128 mm (redondeado a 6") y longitud de 371 m.

Como podrá usted ver Art, el tiempo de reposo para el asentamiento es el que me obliga a alcanzar la temperatura de 65 ºC en el menor tiempo posible.

Después de toda esta exposición, las preguntas que me agobian son ¿existen en la industria y en las plantas de generación aplicaciones reales de serpentines de este diámetro y de esta longitud? ¿Estoy calculando mal mi serpentín? Aún disponiendo los tubos en forma de retícula ¿cómo instalar tantos tubos en un tanque de 16,8 m de diámetro?

Art, espero en esta ocasión no haber abusado de su confianza y, después de que analice lo aquí expuesto, mucho le agradeceré sus comentarios al respecto.

Atentamente

ELEMAN

Page 7: Fuel_Oil_Tank_Heat_Up.xls

261 2,809

Q = 5,879,120 Btu/hr

Q =

U = 50

173.803

A = 676.527

M2 =

UA DT

Btu/hr-ft2-oF

DT = oF

ft2

ELEMAN Diámetro y longitud de serpentín, Oct 1 2007, 03:58 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

Espero que al leer estas líneas se encuentre bien al lado de los suyos.

En esta ocasión vuelvo sobre el tema de la sedimentación de sólidos y el asentamiento de agua contenidos en combustible pesado almacenado en tanques sobre el suelo.

Para provocar el asentamiento de agua y partículas sólidas en el tanque de almacenamiento, se alimenta vapor a través de un serpentín (bobina o coil). Habiendo analizado la Ley de Stokes vemos que, la velocidad de precipitación de los sólidos es función directa tanto de la viscosidad como de la densidad del fluido y, ambas varían con la temperatura. Por ello, hemos decidido tratar de “acelerar” ese proceso alimentando más calor para elevar la temperatura del combustible en los tanques.

Los datos de los cálculos que he realizado con un tanque lleno son:

Tanque desnudo (sin aislamiento térmico), cerrado con techo fijo y tiene respiradero. Diámetro del tanque: 16.8 m Altura del tanque: 9.1 m Altura de llenado máximo (por seguridad): 8 m Espesor promedio de la chapa del tanque: 0,0079 m Temperatura ambiente: 35 ºC El viento es calmo (casi estático) Temperatura inicial del combustible: 40 ºC Temperatura final del combustible: 65 ºC Volumen de combustible (tanque lleno): 1,800 m³ Densidad del combustible: 998 kg/m³ @ 15 ºC Viscosidad del combustible: 635 cSt @ 50 ºC Calor específico del combustible: 2,1 kJ/kg ºK Tiempo de calentamiento: 24 horas Presión del vapor antes de válvula reguladora: 6,5 barg y T = 170 ºC Presión del vapor después de válvula reguladora: 4,35 bara y T = 147º C

El tanque al inicio del llenado tendrá un volumen muerto (inextraíble) de 130 m³ a una temperatura de 65 ºC. El flujo másicode llenado es 210 m³/h de combustible a 40 ºC. Tiempo de llenado 8 horas.

Después de llenado el tanque, el combustible reposa (no entra ni sale producto del tanque) por 50 horas. Una vez cumplidas las 50 horas, este tanque comienza a ser vaciado.

El resultado final que obtengo para este escenario es:

Área de transferencia de calor requerida: 261 m² Diámetro del serpentín: 162 mm (arriba de 6") Longitud: 495 m

También hice un cálculo para 36 horas de calentamiento y me da un diámetro 128 mm (redondeado a 6") y longitud de 371 m.

Como podrá usted ver Art, el tiempo de reposo para el asentamiento es el que me obliga a alcanzar la temperatura de 65 ºC en el menor tiempo posible.

Después de toda esta exposición, las preguntas que me agobian son ¿existen en la industria y en las plantas de generación aplicaciones reales de serpentines de este diámetro y de esta longitud? ¿Estoy calculando mal mi serpentín? Aún disponiendo los tubos en forma de retícula ¿cómo instalar tantos tubos en un tanque de 16,8 m de diámetro?

Art, espero en esta ocasión no haber abusado de su confianza y, después de que analice lo aquí expuesto, mucho le agradeceré sus comentarios al respecto.

Atentamente

ELEMAN

Diámetro y longitud de serpentínPersonal MessageELEMAN Diámetro y longitud de serpentín, Oct 1 2007, 04:05 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Estimado Art:

Pido un millón de disculpas por no poner en mi carta datos importantes que usé para los cálculos.

Calor requerido: 1,723 kW Calor latente de vaporización: 2,126 kJ/kg Flujo másico de vapor: 2,918 kg/h

Gracias por su comprensión.

Consulta no atendidaPersonal MessageELEMAN Consulta no atendida, October 17, 2007; 05:44 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

El 1 de Octubre recién pasado le envié una consulta sobre el cálculo de un serpentín para calentamiento con vapor.

Conociendo lo diligente de su accionar en los foros en que participa, me parece un tanto raro que no haya dado una opinión sobre el trabajo que hice. Yo me pregunto ¿hice algo malo al preguntar en forma privada y no en el foro? ¿Están tan malos los cálculos que no vale la pena ni contestar? ¿No soy tan hábil al preguntar si una tubería de diámetro grande puede sustituirse porun haz de tubos de diámetro menor? En este último caso, no creo que sea eso porque en los foros cuando alguien no formula bien una pregunta, usted la recompone en la forma como debiera hacerse la pregunta y, en base a ello usted da su opinión.

Estoy un tanto desconcertado por su silencio, por ello mucho le agradeceré me señale mi error o errores y ello me bastará para cerrar el tema.

Reciba un saludo fraterno

Page 8: Fuel_Oil_Tank_Heat_Up.xls

Consulta no atendidaPersonal MessageELEMAN Consulta no atendida, October 17, 2007; 05:44 PMNewbieGroup: MembersPosts: 7Member No.: 7,154Joined: 3-May 07

Buenas tardes Art:

El 1 de Octubre recién pasado le envié una consulta sobre el cálculo de un serpentín para calentamiento con vapor.

Conociendo lo diligente de su accionar en los foros en que participa, me parece un tanto raro que no haya dado una opinión sobre el trabajo que hice. Yo me pregunto ¿hice algo malo al preguntar en forma privada y no en el foro? ¿Están tan malos los cálculos que no vale la pena ni contestar? ¿No soy tan hábil al preguntar si una tubería de diámetro grande puede sustituirse porun haz de tubos de diámetro menor? En este último caso, no creo que sea eso porque en los foros cuando alguien no formula bien una pregunta, usted la recompone en la forma como debiera hacerse la pregunta y, en base a ello usted da su opinión.

Estoy un tanto desconcertado por su silencio, por ello mucho le agradeceré me señale mi error o errores y ello me bastará para cerrar el tema.

Reciba un saludo fraterno

Re:Consulta no atendidaPersonal Message

Art Montemayor

Re:Consulta no atendida, Oct 18 2007, 11:28 AM

ChE JediGroup: AdminPosts: 1,025Member No.: 4Joined: 8-March 03

ELEMAN:

Lamento que aunque leí tus mensajes, no les di prioridad ya que no me indicaste que era urgente el contestarte y, como me ha estado pasando frecuentemente, simplemente me olvide.

Te pido mil disculpas y ojala no te he causado algún daño en tus necesidades. Como heestado renovando nuestra residencia - especialmente la cocina de mi señora - me ha costeado bastante tiempo y preocupación los proyectos que tengo en casa. Sin embargo, tengo respuesta(s) a tu solicitud.

1. No me parece práctico lo que tú propones. Aunque no lo dices abiertamente, lo que entiendo según tu descripción del proceso, tú propones hacer un calentamiento tipo “batch” en el tanque de almacenamiento. Este es el tipo de calefacción más ineficiente y yo no lo respaldo porque es dificilísimo diseñar este tipo de proceso - además de costoso, como te habrás dado cuenta.

2. La forma que yo lo haría es con un intercambiador tipo TEMA, con los espejos fijos. El vapor en la carcaza y el petróleo en los tubos, con pasos múltiples en los tubos. Yo calentaría el petróleo mientras lo bombeas al tanque y tomo provecho del cabezal de la bomba para lograr una caída de presión a través del calentador. Es así que puedo disminuir el área requerida para lograr la transferencia de calor. Yo calculo (a grosso modo) que una área de aproximadamente 700 pies cuadrados seria suficiente. Tú calculas 2, 800 pies cuadrados. Como no mandaste tus cálculos, no se tu forma y base de cálculos.

Propongo que solicites a través del Foro solución a tu problema y allí te puedo contestar todos los detalles que necesites. Inclusive, te envío a través del Foro mis cálculos en forma de Excel - conjuntamente con todas las explicaciones de los cálculos.

Tengo mucho por decir y explicar sobre esta aplicación, pero no tengo el tiempo en estemomento. Espero tu respuesta.

Ojala esto te ayude en tu proyecto.

Page 9: Fuel_Oil_Tank_Heat_Up.xls

Re:Consulta no atendidaPersonal Message

Art Montemayor

Re:Consulta no atendida, Oct 18 2007, 11:28 AM

ChE JediGroup: AdminPosts: 1,025Member No.: 4Joined: 8-March 03

ELEMAN:

Lamento que aunque leí tus mensajes, no les di prioridad ya que no me indicaste que era urgente el contestarte y, como me ha estado pasando frecuentemente, simplemente me olvide.

Te pido mil disculpas y ojala no te he causado algún daño en tus necesidades. Como heestado renovando nuestra residencia - especialmente la cocina de mi señora - me ha costeado bastante tiempo y preocupación los proyectos que tengo en casa. Sin embargo, tengo respuesta(s) a tu solicitud.

1. No me parece práctico lo que tú propones. Aunque no lo dices abiertamente, lo que entiendo según tu descripción del proceso, tú propones hacer un calentamiento tipo “batch” en el tanque de almacenamiento. Este es el tipo de calefacción más ineficiente y yo no lo respaldo porque es dificilísimo diseñar este tipo de proceso - además de costoso, como te habrás dado cuenta.

2. La forma que yo lo haría es con un intercambiador tipo TEMA, con los espejos fijos. El vapor en la carcaza y el petróleo en los tubos, con pasos múltiples en los tubos. Yo calentaría el petróleo mientras lo bombeas al tanque y tomo provecho del cabezal de la bomba para lograr una caída de presión a través del calentador. Es así que puedo disminuir el área requerida para lograr la transferencia de calor. Yo calculo (a grosso modo) que una área de aproximadamente 700 pies cuadrados seria suficiente. Tú calculas 2, 800 pies cuadrados. Como no mandaste tus cálculos, no se tu forma y base de cálculos.

Propongo que solicites a través del Foro solución a tu problema y allí te puedo contestar todos los detalles que necesites. Inclusive, te envío a través del Foro mis cálculos en forma de Excel - conjuntamente con todas las explicaciones de los cálculos.

Tengo mucho por decir y explicar sobre esta aplicación, pero no tengo el tiempo en estemomento. Espero tu respuesta.

Ojala esto te ayude en tu proyecto.

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

Tanks diameter: 16,8 m Tanks height: 9,1 m Maximum level of fuel in the tanks: 8 m Average tank plate thickness: 0,0079 m Ambient temperature: 35 ºC The wind in the tank farm area is still Initial temperature of fuel in the tanks: 40 ºC Final temperature of fuel in the tanks: 65 ºC Initial volume of fuel in the tank: 130 m³ at T = 65 ºC Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC Mass flow rate of filling up: 210 m³/h at T = 40 ºC Time for filling up: ~ 8 hours Density of the fuel oil: 998 kg/m³ @ 15 ºC Kinematics viscosity of the fuel: 635 cSt @ 50 ºC Specific heat of the fuel: 2,1 kJ/kg ºK Heating time: 24 hours Steam pressure before regulating valve: 6,5 barg @ 168 ºC Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit your comments regarding to this subject.

Thanks in advance.

Page 10: Fuel_Oil_Tank_Heat_Up.xls

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

Tanks diameter: 16,8 m Tanks height: 9,1 m Maximum level of fuel in the tanks: 8 m Average tank plate thickness: 0,0079 m Ambient temperature: 35 ºC The wind in the tank farm area is still Initial temperature of fuel in the tanks: 40 ºC Final temperature of fuel in the tanks: 65 ºC Initial volume of fuel in the tank: 130 m³ at T = 65 ºC Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC Mass flow rate of filling up: 210 m³/h at T = 40 ºC Time for filling up: ~ 8 hours Density of the fuel oil: 998 kg/m³ @ 15 ºC Kinematics viscosity of the fuel: 635 cSt @ 50 ºC Specific heat of the fuel: 2,1 kJ/kg ºK Heating time: 24 hours Steam pressure before regulating valve: 6,5 barg @ 168 ºC Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit your comments regarding to this subject.

Thanks in advance.

Page 11: Fuel_Oil_Tank_Heat_Up.xls

inches

oFoF

oFoF

oFoFoFoF

oFoF

Page 12: Fuel_Oil_Tank_Heat_Up.xls

ft2

Page 13: Fuel_Oil_Tank_Heat_Up.xls

Steam pressure before regulating valve: 6.5 bara = 94.3 psia

Steam temperature before regulating valve: 168 334

Steam pressure after regulating valve: 4.35 bara = 63.1 psia

147 297

1,179.90 Btu/lb (NIST Database)

266.82 Btu/lb (NIST Database)Latent Heat of Condensation = 913.08 Btu/lb (NIST Database)

Inlet Temperature of oil = 104

Outlet Temperature of oil = 149

Heater Duty = 5,879,120 Btu/hr = 1,723 kWSteam Flow Rate = 6,439 lb/hr = 2,921 kg/hr

Heater Heat Transfer Area Required = 694

Quantity of 1" O.D. tubes Required = 2,650 linear feet (14 BWG wall thickness)Quantity of 20 foot tube lengths = 132 tubes

Estimated Steam heater size is:

Shell O. D. = 22 inches = 55.88 cmShell Length = 20 ft 6.1 meters

Steam shell passes = OneOil Tube passes = Four (estimated; based on getting good tube velocity)

oC = oF

oC = oF

Saturated vapor enthalphy at 297 oF & 64.071 psia =

Saturated liquid enthalphy at 297 oF & 64.071 psia =

oF oF

ft2

Tem

pera

ture

, o

F

104

297

Distance along tubes

149

Page 14: Fuel_Oil_Tank_Heat_Up.xls

Art's data from NIST database (assuming saturated conditions)6.5 bara

161.98 (this means Eleman's data is slightly superheated)

4.35 bara

146.66 (this means Eleman is assuming that the flash product will approximate saturated conditions; he's correct)

oC

oC

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

1. Tanks diameter: 16,8 m2. Tanks height: 9,1 m3. Maximum level of fuel in the tanks: 8 m4. Average tank plate thickness: 0,0079 m5. Ambient temperature: 35 ºC6. The wind in the tank farm area is still7. Initial temperature of fuel in the tanks: 40 ºC8. Final temperature of fuel in the tanks: 65 ºC9. Initial volume of fuel in the tank: 130 m³ at T = 65 ºC10. Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC11. Mass flow rate of filling up: 210 m³/h at T = 40 ºC12. Time for filling up: ~ 8 hours13. Density of the fuel oil: 998 kg/m³ @ 15 ºC14. Kinematics viscosity of the fuel: 635 cSt @ 50 ºC15. Specific heat of the fuel: 2,1 kJ/kg ºK16. Heating time: 24 hours17. Steam pressure before regulating valve: 6,5 barg @ 168 ºC18. Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit yourcomments regarding to this subject.

Thanks in advance.

Page 15: Fuel_Oil_Tank_Heat_Up.xls

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

1. Tanks diameter: 16,8 m2. Tanks height: 9,1 m3. Maximum level of fuel in the tanks: 8 m4. Average tank plate thickness: 0,0079 m5. Ambient temperature: 35 ºC6. The wind in the tank farm area is still7. Initial temperature of fuel in the tanks: 40 ºC8. Final temperature of fuel in the tanks: 65 ºC9. Initial volume of fuel in the tank: 130 m³ at T = 65 ºC10. Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC11. Mass flow rate of filling up: 210 m³/h at T = 40 ºC12. Time for filling up: ~ 8 hours13. Density of the fuel oil: 998 kg/m³ @ 15 ºC14. Kinematics viscosity of the fuel: 635 cSt @ 50 ºC15. Specific heat of the fuel: 2,1 kJ/kg ºK16. Heating time: 24 hours17. Steam pressure before regulating valve: 6,5 barg @ 168 ºC18. Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit yourcomments regarding to this subject.

Thanks in advance.

Page 16: Fuel_Oil_Tank_Heat_Up.xls

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

1. Tanks diameter: 16,8 m2. Tanks height: 9,1 m3. Maximum level of fuel in the tanks: 8 m4. Average tank plate thickness: 0,0079 m5. Ambient temperature: 35 ºC6. The wind in the tank farm area is still7. Initial temperature of fuel in the tanks: 40 ºC8. Final temperature of fuel in the tanks: 65 ºC9. Initial volume of fuel in the tank: 130 m³ at T = 65 ºC10. Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC11. Mass flow rate of filling up: 210 m³/h at T = 40 ºC12. Time for filling up: ~ 8 hours13. Density of the fuel oil: 998 kg/m³ @ 15 ºC14. Kinematics viscosity of the fuel: 635 cSt @ 50 ºC15. Specific heat of the fuel: 2,1 kJ/kg ºK16. Heating time: 24 hours17. Steam pressure before regulating valve: 6,5 barg @ 168 ºC18. Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit yourcomments regarding to this subject.

Thanks in advance.

Page 17: Fuel_Oil_Tank_Heat_Up.xls

Heating Of Heavy Fuel OilELEMAN Oct 19 2007, 09:15 AM IP: 63.245.9.171 Post #1

NewbieGroup: MembersPosts: 8Joined: 3-May 07Member No.: 7,154

Hello everybody:

In order to obtain some sedimentation and/or settling of solids and water contained in heavy fuel oil (Bunker C or distillate #6), we are planning to heat this fuel oil in their above ground uninsulated storage tanks. The heating fluid available is saturated steam that would be feeded to an immersed steam coil in the tanks.

We plan to fill up these tanks and then, supply the heat.

The tanks are uninsulated, with fixed and vented roof.

1. Tanks diameter: 16,8 m2. Tanks height: 9,1 m3. Maximum level of fuel in the tanks: 8 m4. Average tank plate thickness: 0,0079 m5. Ambient temperature: 35 ºC6. The wind in the tank farm area is still7. Initial temperature of fuel in the tanks: 40 ºC8. Final temperature of fuel in the tanks: 65 ºC9. Initial volume of fuel in the tank: 130 m³ at T = 65 ºC10. Final volume of fuel in the tank: 1,800 m³ at T ~ 40 ºC11. Mass flow rate of filling up: 210 m³/h at T = 40 ºC12. Time for filling up: ~ 8 hours13. Density of the fuel oil: 998 kg/m³ @ 15 ºC14. Kinematics viscosity of the fuel: 635 cSt @ 50 ºC15. Specific heat of the fuel: 2,1 kJ/kg ºK16. Heating time: 24 hours17. Steam pressure before regulating valve: 6,5 barg @ 168 ºC18. Steam pressure after regulating valve: 4,35 bara @ 147 ºC

After the filling up is achieved, the fuel remains at rest (no fuel in and no fuel out of the tank) for 50 hours. At the end of this settling time, the tank starts to be emptied.

From my calculations I have this:

Heat required: 1.723 kW Latent heat of vaporization: 2,126 kJ/kg Steam mass flow rate: 2,918 kg/h Heat transfer area: 261 m² Steam coil diameter: 162 mm (more than 6") Steam coil length: 495 m

For a heating time of 36 hours, the coil diameter is 128 mm and length of 371 m.

The maximum settling time of 50 hours obliges to heat the fuel oil to 65 ºC in a very short time. I am surprised with those dimensions of the steam coils. Please submit yourcomments regarding to this subject.

Thanks in advance.

Page 18: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor September 30, 2005Rev: 0

Page 18 of 43 FileName: document.xlsWorkSheet: TEMA Designations

TEMA DESIGNATIONS

Front End Stationary Head Shell Type Rear End Stationary Head

A Channel and removable cover E One-pass shell L Fixed tubesheet; like "A" Stationary head.

B Bonnet (Integral Cover) F 2-pass shell with longitudinal M Fixed tubesheet; like "B"baffle stationary head.

C Channel integral with tubesheet G Split Flow Shell N Fixed tubesheet; like "C" & removable cover. stationary head.

Shown: Removable Tube Bundle

N Channel integral with tubesheet H Double split flow P Outside, packed floating head& removable cover.

Page 19: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor September 30, 2005Rev: 0

Page 19 of 43 FileName: document.xlsWorkSheet: TEMA Designations

D Special, high-pressure closure J Divided shell flow S Floating head with backingdevice (split-ring)

Conventional Front End Heads:

Aor,

B

K Kettle type of reboiler T Pull-through floating head

Other popular rear end head types employed:

U U-tube bundle design(No Rear Head Required)

W Packed floating tubesheet with lantern ring

Page 20: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor September 30, 2005Rev: 0

Page 20 of 43 FileName: document.xlsWorkSheet: TEMA Designations

Some examples of the TEMA designation for Heat Exchangers are shown below:

BEM Front bonnet (Intergral Cover), with one-Pass Shell and a Fixed Tubesheet rear Bonnet

Fixed tubesheet heat exchanger. This is a very popular version as the heads can be removed to clean the inside of the tubes. The front head piping must be unbolted to allow front head removal; if this is undesirable, thenthis can be avoided by applying a type A front head. In that case only the cover needs to be removed. It is not possible to mechanically clean the outside surface of the tubes as these are fixed inside the shell. Chemical cleaning can be used in the shell side. Shown is a version with one shell pass and two tube passes. This is probably the least expensive of the shell-and-tube designs.

BEM This is the same type of heat exchanger as shown above, except it has only one tube pass

AEM Channel with Removable Cover, One Pass Shell, Fixed Tubesheet Bonnet

This is almost the same type of heat exchanger as the first BEM. The removable cover allows the inside of the tubes to be inspected and cleaned without unbolting the piping. However, as can be expected, the tradeoff is that this convenient feature makes it more expensive.

Page 21: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor September 30, 2005Rev: 0

Page 21 of 43 FileName: document.xlsWorkSheet: TEMA Designations

The maintenance feature of having a removable tube bundles requires an exchanger as the following:

AES Channel and Removable Cover, One Pass Shell, Floating Head with Backing Device

A floating head heat exchanger is excellent for applications where the difference in temperature between the hot and cold fluid causes unacceptable stresses in the axial direction, between the shell and tubes. The floating head can move, i.e. it provides the ability to allow tube expansion in the axial direction.

Note that the bundle can not be pulled from the front end. For maintenance both the front and rear end head,

should be selected.

However, it is wise and prudent to be aware of the inherent trade-offs in this design. Note that the tube-side fluid can leak through the internal floating head cover gasket and mix (or contaminate) the shell-side fluid.It is very difficult -and sometimes impossible to mitigate or compensate for the internal bolts tightening the internal bonnet to remain under constant, steady torque. Hot fluid temperatures make the bolts expand and the result is a reduction in bolt torque and subsequent leaks through the bonnet gasket. Additionally, it is acommon and expected occurance for maintenance crews to find the internal bolts badly rusted or corroded to the point where they have to be burned or sawed off in order to extract the "removable" tube bundle.

The chemical engineer has other options to apply when requiring mechanical expansion of a heat exchanger tube bundle. Various rear head design also exist that allow for tube bundle expansion. Among these are the popular (and inexpensive) "U" tube bundle design. A "P" and "W" rear head design will also contribute this feature without the hazard of internal mixing (or contamination) of the two fluids.

Also, be aware that any TEMA shell and tube design with a removable tube bundle feature has - by nature - a larger shell diameter (& increased cost) due to the need to be able to pull the rear tubesheet the length of the exchanger's shell. A larger diameter shell can sometimes also present problems in a lower Reynoldsnumber (yielding a lower heat transfer) and internal by-passing of the shell fluid around the baffles (this also reduces the effective heat transferred. All these effects eventually lead to a bigger heat exchanger (more areaand more tubes) in order to do a heat transfer operation.

including the backing device, must be disassembled. If pulling from the front head is required a type AET

Page 22: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor September 30, 2005Rev: 0

Page 22 of 43 FileName: document.xlsWorkSheet: TEMA Designations

Longitudinal Baffles - their application and inherent problems

The employment of longitudinal baffles in heat exchangers - such as the "F", "G", and "H" shell types - can often resolve both heat transfer and fluid flow problems within the shell and tube exchanger used.

Their application can significantly increase the shell-side Reynolds Number and lead to more efficient shell-side heat transfer coefficients with a subsequent increase in heat transfer. Additionally, these type of baffles permitthe engineer to incorporate counter-flow heat transfer. True counter-current heat transfer is as efficient a heat transfer configuration as an engineer can obtain. In some heat recovery applications, this is highly sought.By splitting the shell-side flow, some applications can actually have a significant reduction in shell-side pressuredrop. This is especially true in partial vacuum process operations where a minimum of pressure drop can be tolerated.

However, the application of longitudinal baffles should be always carefully scrutinized and used sparingly. Thereare, as would be expected, some very important trade-offs involved in the application of longitudinal baffles.Firstly, if a longitudinal baffle is a process necessity, the baffle should be seal-welded against the inner shellwall in order to ensure that there will be no internal, by-pass leakage. This positive step negates the possibilityof having a removable tube bundle. Additionally, the welding necessity requires a minimum shell diameter and this winds up being applicable only to relatively large streams.

By the basic need to establish effective shell-side flow around a longitudinal baffle, one has to accept the obvious fact that a minimum of shell-side clearances can be tolerated. Once having said and applied these facts,one then has to also accept that the required, small baffle clearances mean extraordinary fabrication techniquesand resultant super-human maintenance efforts to extract a removable tube bundle. In far too many actual field cases, it has been found that the removable tube bundle with a longitudinal baffle is a non-practical device.Field results have shown that in most cases the tube bundle has resulted in being destroyed in order to remove it.This extraordinary and desperate maintenance act labels such a design as non-practical.

Page 23: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor September 30, 2003Rev: 0

Page 23 of 43 FileName: document.xlsWorkSheet: Tube Counts

Heat Exchanger Tube Sheet Layout Count TableSource: "Applied Process Design for Chemical and Petrochemical Plants"; Vol. 3; p.24

Ernest E. Ludwig; Gulf Publishing Co.; Houston, TX (1965)

Shell I. D., inchesTube O. D. & Pitch 8 10 12 13-1/4 15-1/4 17-1/4 19-1/4 21-1/4 23-1/4 25 27 29 31 33 35 37

On

e-P

ass

Fix

ed

T

ub

es 3/4" on 15/16" Triang. 33 69 105 135 193 247 307 391 481 553 663 763 881 1,019 1,143 1,269

3/4" on 1" Triang. 33 57 91 117 157 217 277 343 423 493 577 667 765 889 1,007 1,1273/4" on 1" Square 33 53 85 101 139 183 235 287 355 419 495 587 665 765 865 9651" on 1-1/4" Triang. 15 33 57 73 103 133 163 205 247 307 361 427 481 551 633 6991" on 1-1/4" Square 17 33 45 65 83 111 139 179 215 255 303 359 413 477 545 595

Tw

o-P

ass

Fix

ed

T

ub

es 3/4" on 15/16" Triang. 32 58 94 124 166 228 300 370 452 528 626 734 846 964 1,088 1,242

3/4" on 1" Triang. 28 56 90 110 154 208 264 326 398 468 556 646 746 858 972 1,0883/4" on 1" Square 26 48 78 94 126 172 222 280 346 408 486 560 644 746 840 9461" on 1-1/4" Triang. 16 32 52 62 92 126 162 204 244 292 346 410 462 530 608 6881" on 1-1/4" Square 12 26 40 56 76 106 136 172 218 248 298 348 402 460 522 584

U T

ub

es

3/4" on 15/16" Triang. 8 34 64 94 134 180 234 304 398 460 558 648 768 882 1,008 1,1263/4" on 1" Triang. 8 26 60 72 108 158 212 270 336 406 484 566 674 772 882 1,0003/4" on 1" Square 12 30 52 72 100 142 188 242 304 362 436 506 586 688 778 8841" on 1-1/4" Triang. XX 8 26 42 58 84 120 154 192 234 284 340 396 466 532 6101" on 1-1/4" Square XX 12 22 38 58 76 100 134 180 214 256 304 356 406 464 526

Fo

ur-

Pa

ss

Fix

ed

T

ub

es 3/4" on 15/16" Triang. XX 48 84 108 154 196 266 332 412 484 576 680 788 904 1,024 1,172

3/4" on 1" Triang. XX 44 72 96 134 180 232 292 360 424 508 596 692 802 912 1,0243/4" on 1" Square XX 48 72 88 126 142 192 242 308 366 440 510 590 688 778 8801" on 1-1/4" Triang. XX 24 44 60 78 104 138 176 212 258 308 368 422 486 560 6381" on 1-1/4" Square XX 24 40 48 74 84 110 142 188 214 260 310 360 414 476 534

U T

ub

es

3/4" on 15/16" Triang. XX 28 56 84 122 166 218 286 378 438 534 622 740 852 976 1,0923/4" on 1" Triang. XX 20 52 64 98 146 198 254 318 386 462 542 648 744 852 9683/4" on 1" Square XX 24 44 64 90 130 174 226 286 342 414 482 560 660 748 8521" on 1-1/4" Triang. XX 20 36 50 74 110 142 178 218 266 322 376 444 508 5841" on 1-1/4" Square XX 16 32 50 66 90 122 166 198 238 286 336 384 440 500

Six

-Pa

ss

Fix

ed

T

ub

es 3/4" on 15/16" Triang. XX 80 116 174 230 294 372 440 532 632 732 844 964 1,106

3/4" on 1" Triang. XX 66 104 156 202 258 322 388 464 548 640 744 852 9643/4" on 1" Square XX 54 78 116 158 212 266 324 394 460 536 634 224 8181" on 1-1/4" Triang. XX 34 56 82 112 150 182 226 274 338 382 442 514 5861" on 1-1/4" Square XX 44 66 88 116 154 184 226 268 318 368 430 484

U T

ub

es

3/4" on 15/16" Triang. XX 74 110 156 206 272 358 416 510 596 716 826 944 1,0583/4" on 1" Triang. XX 56 88 134 184 268 300 366 440 518 626 720 826 9403/4" on 1" Square XX 56 80 118 160 210 268 322 392 458 534 632 718 8201" on 1-1/4" Triang. XX 30 42 68 100 130 168 206 252 304 356 426 488 5621" on 1-1/4" Square XX 42 60 80 110 152 182 224 268 316 362 420 478

Eig

ht-

Pa

ss

Fix

ed

T

ub

es 3/4" on 15/16" Triang. XX 94 140 198 258 332 398 484 576 682 790 902 1,040

3/4" on 1" Triang. XX 82 124 170 224 286 344 422 496 588 694 798 9023/4" on 1" Square XX 94 132 174 228 286 352 414 490 576 662 7601" on 1-1/4" Triang. XX 66 90 120 154 190 240 298 342 400 466 5421" on 1-1/4" Square XX 74 94 128 150 192 230 280 334 388 438

U T

ub

es

3/4" on 15/16" Triang. XX 68 102 142 190 254 342 398 490 578 688 796 916 1,0323/4" on 1" Triang. XX 52 82 122 170 226 286 350 422 498 600 692 796 9083/4" on 1" Square XX 48 70 106 146 194 254 306 374 438 512 608 692 7921" on 1-1/4" Triang. XX 24 38 58 90 118 154 190 238 290 340 404 464 5401" on 1-1/4" Square XX 34 50 70 98 142 170 206 254 300 344 396 456

Notes: 1) The above tube counts have an allowance made for Tie Rods.2) The Radius of Bend for the U-Tube bundles is equal to (2.5) (Tube O.D.); The actual number of U-tubes is 1/2 of the above figures.

Page 24: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Heat Exchanger Estimate August 21, 1998Rev: 0

Page 24 of 43 FileName: document.xlsWorkSheet: HX DESIGN

HEAT EXCHANGER SUMMARY

104

149

297

297 Exchanger Heat Duty 5,879 M Btu/hr

Overall U estimated 50 Number of shell passes 1 Number of tube passes 4

Log Mean Temperature Difference, LMTD 170 F Factor (See Calcs below) 1.00

Adjusted LMTD 170

Heat Transfer Area calculated 694 Design Contingency Factor 1.10 Over Design Factor 1.00

Total Heat Transfer Area Required 763

450 psig, Saturated Steam Req'd, 7,685 lbs/hr

CW Req'd @ 45 deg rise, gpm 261 gpm

Calculation of F Factor: P (or S) 0.23 R 0.00 Term 1 1.30 [(RP-1)/(P-1)]^(1/N)Px 0.23 Term 2 -1.00 (R^2+1)^0.5/(R-1)Term 3 -0.27 0.77 Term 4A 8.58 Term 4B 6.58 Term 4 0.27 F 1.00

T in, Cold Side (t1) oF

T out, Cold Side (t2) oF

T in, Hot Side (T1) oF

T out, Hot Side (T2) oF

Btu/hr - Ft2 - oF

oF

oF

Ft2

Ft2

Page 25: Fuel_Oil_Tank_Heat_Up.xls

SHELL & TUBE HEAT EXCHANGER SPECIFICATION Sheet 1 of 1

(English Units)

Corporation Project No.

1 Service Lean MEA Solution Cooler Equipment No.

2 Location Km 8, Avda. Venezuela; Lima, Peru Unit German Huanuco P.O. No.

3 Manufacturer * Model * Mfr Ref. No. * No. Req'd

4 TEMA Size, Type Horiz. Vert. Connected in Series Parallel

5 Surface/Unit * Gross Eff. Shells/Unit One Surface/Shell * Gross Eff.

6 P&ID No. Plot Plan No. Other Ref. Dwg No.

7 PERFORMANCE OF ONE UNIT8 Fluid Allocation SHELL SIDE TUBE SIDE9 Fluid Circulated

10 Total Fluid Entering lb/h 11 Vapor (In/Out) lb/h 12 Liquid lb/h 13 Steam lb/h 14 Non-Condensables lb/h 15 Fluid Vaporized or Condensed lb/h 16 Steam Condensed lb/h 17 Temperature ºF 18 Density, Specific Gravity19 Viscosity cP 20 Vapor Molecular Weight21 Specific Heat Btu/lb·ºF 22 Thermal Conductivity Btu/h·ft·ºF 23 Latent Heat Btu/lb 24 Operating Pressure, Inlet psig 25 Velocity Max. Min. fps 26 Pressure Drop, Clean (Allow./Calc.) psi 27 Fouling Resistance28 Heat Exchanged Btu/h Log MTD (Uncorrected) ºF Log MTD (Corrected) * ºF 29 Transfer Rate, Service * Transfer Rate, Clean *30 CONSTRUCTION AND MATERIALS31 SHELL SIDE TUBE SIDE Sketch (Bundle, Nozzle Orientation)32 Design Pressure psig 33 Test Pressure psig 34 Design Temperature ºF 35 Number of Passes per Shell36 In37 Out38 Intermediate39 Tubes: Type Number * OD 0.75 in. 16 BWG or in. X Min. Av. Wall

40 Tube Length in. Tube Pitch 0.9375 in. Flow Pattern (circle one)

41 Shell: ID * in. OD * in. Tube-to-Tubesheet Joint Rolled and Seal Welded42 Baffles - Cross: Type * Spacing * in. * % Cut on X Diam. Area43 Baffles - Long: Perm. Removable Seal Type: Bypass Seal:44 Inlet Nozzle * lb/ft·sec Bundle Entrance * lb/ft·sec Bundle Exit * lb/ft·sec

45 Expansion Joint? Yes X No Type: Impingement Protection? X Yes No

46 PART THK, in. C.A., in. PART THK, in. C.A., in.47 Tubes Stainless Stl 16 BWG min. Floating Tubesheet Carbon Steel * ----48 Shell Fixed Tubesheet Carbon Steel * 0.12549 Shell Cover Tube Supports Carbon Steel * 0.12550 Channel Cross Baffles Carbon Steel * 0.12551 Channel Cover Long Baffle Bronze * 0.12552 Fltg Head Cover Gaskets Stainless Stl ----53 User Spec.:54 Code Requirements: ASME Sec. VIII, Para. 1 (1992) Stamp? Yes TEMA Class:55 Weights: Shell * lb Filled with Water * lb Bundle * lb56 Remarks5758

Rev Date Description By Chk. Appr. Rev Date Description By Chk. Appr.

0 For Purchase

ft2 ft2

ft2·h·ºF/Btu .

Btu/ft2·h·ºF . Btu/ft2·h·ºF .

rv2:

MATERIAL§ MATERIAL§

§ Stress Relieved (Mark "SR') and/or Radiographed (Mark 'XR') Parts

1. Items marked with an asterisk (*) to be completed by Vendor.

ConnectionsSize & Rating

60° 90°45°30°

Rev

. No

.

Montemayor

Page 26: Fuel_Oil_Tank_Heat_Up.xls

PLATE & FRAME HEAT EXCHANGER SPECIFICATION Sheet 1 of 1(English Units)

Corporation Project No. 1234567

1 Service Cooling Water Exchanger Equipment No.

2 Location Barbados, W. I. Unit Sandy Forbes P.O. No.

3 Manufacturer * Model * Mfr Ref. No. * No. Req'd One4 Size, Type * - * Frames/Unit One Connected in Single

5 Surface/Unit * Effective Surface/Frame * Gross6 P&ID No. Plot Plan No. Other Ref. Dwg No.

7 PERFORMANCE OF ONE UNIT

8 Fluid Allocation HOT SIDE COLD SIDE

9 Fluid Circulated Cooling Water

10 Total Fluid Entering lb/h 31,500 206,483 11 Vapor (In/Out) lb/h ---- ---- ---- ---- 12 Liquid lb/h 31,500 31,500 206,483 206,483 13 Steam lb/h ---- ---- ---- ---- 14 Non-Condensables lb/h ---- ---- ---- ---- 15 Fluid Vaporized or Condensed lb/h ---- ---- ---- ---- 16 Steam Condensed lb/h ---- ---- ---- ---- 17 Temperature ºF 235 120 90 10518 Density, Specific Gravity 0.907 0.929 0.995 0.99219 Viscosity cP 0.54 13.7 0.76 0.6520 Vapor Molecular Weight ---- ---- ---- ---- 21 Specific Heat Btu/lb·ºF 0.867 0.843 1.0 1.022 Thermal Conductivity Btu/h·ft·ºF 0.178 0.160 0.358 0.36523 Latent Heat Btu/lb ---- ---- 24 Operating Pressure, Inlet psig 75 6025 Velocity X Max. Min. fps 8.0 8.026 Pressure Drop, Clean (Allow./Calc.) psi 10 * 10 *27 Fouling Resistance 0.001 0.00328 Heat Exchanged 3,097,238 Btu/h Log MTD (Uncorrected) 157.0 ºF Log MTD (Corrected) * ºF

29 Transfer Rate, Service * Transfer Rate, Clean *30 CONSTRUCTION AND MATERIALS

31 Allocation HOT SIDE COLD SIDE Sketch (Frame, Nozzle Orientation)

32 Design Pressure psig 150 12533 Test Pressure psig Code Code34 Design Temperature ºF 300 30035 Number of Passes per Frame Two *36 Corrosion Allowance in. 0.0625 None37 In 3" 150# RF 6" 125# FF38 Out 3" 150# RF 6" 125# FF39 Intermediate ---- ----40 lb/ft·s

41 Impingement Protection? Yes42 No. of Plates Frame Capacity (Max. No. of Plates)

43 PART THK, in. C.A., in. PART THK, in. C.A., in.

44 Plates Stnless Steel 16 BWG min. 0.03125 Connections Stnless Steel 0.0312545 Plate Gaskets Carbon Steel * 0.03125 Frame Carbon Steel 0.0312546 End Cover Carbon Steel * 0.03125 Carrying Bar Carbon Steel 0.0312547 Carbon Steel 0.03125 Carbon Steel 0.0312548

49 OSHA Type Protective Shroud? Yes Material: Carbon Steel Insulation: Heat Conservation

50 Cleaning: Painting:

51 Code Requirements: ASME Sec. VIII, Para. 1 (1992) Stamp? Yes52 Client Spec.: Weights: Empty Frame * lb Filled with Water * lb

53 Remarks

54

55

Rev Date Description By Chk. Appr. Rev Date Description By Chk. Appr.

0 9-Dec-96 For Inquiry ABC DEF XYZ

ft2 ft2

ft2·h·ºF/Btu

Btu/ft2·h·ºF Btu/ft2·h·ºF

rv2, Inlet/Outlet

MATERIAL§ MATERIAL§

§ Stress Relieved (Mark "SR') and/or Radiographed (Mark 'XR') Parts

1. Items marked with an asterisk (*) to be completed by Vendor.

ConnectionsSize & Rating

Rev

. No

.

Montemayor

Page 27: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Overall Heat Transfer Coefficient October 02, 2003Rev: 0

Page 27 of 43 FileName: document.xlsWorkSheet: Typical "U"

Typical Overall Heat Transfer CoefficientsSource: http://www.the-engineering-page.com/forms/he/typU.html

Shell and Tube Heat Exchangers Overall “U”Hot Fluid Cold Fluid

Heat ExchangersWater Water 800 – 1,500 140 - 264Organic solvents Organic Solvents 100 - 300 17 – 52Light oils Light oils 100 - 400 17 – 70Heavy oils Heavy oils 50 - 300 9 – 53Reduced crude Flashed crude 35 - 150 6 – 26Regenerated DEA Fouled DEA 450 - 650 79 – 114Gases (p = atm) Gases (p = atm) 5 - 35 1.0 – 6Gases (p = 200 bar) Gases (p = 200 bar) 100 - 300 17 – 53

CoolersOrganic solvents Water 250 - 750 44 – 132Light oils Water 350 - 700 62 - 123Heavy oils Water 60 - 300 11 - 53Reduced crude Water 75 - 200 13 – 35Gases (p = atm) Water 5 - 35 1.0 – 6Gases (p = 200 bar) Water 150 - 400 26 – 70Gases Water 20 - 300 4 – 53Organic solvents Brine 150 - 500 26 – 88Water Brine 600 – 1,200 106 – 211Gases Brine 15 - 250 3 - 44

HeatersSteam Water 1,500 – 4,000 264 - 700Steam Organic solvents 500 – 1,000 88 - 176Steam Light oils 300 - 900 53 – 159Steam Heavy oils 60 - 450 11 – 79Steam Gases 30 - 300 5 – 53Heat Transfer (hot) Oil Heavy oils 50 - 300 9 – 53Heat Transfer (hot) Oil Gases 20 - 200 4 - 35Flue gases Steam 30 - 100 5 - 18Flue gases Hydrocarbon vapors 30 -100 5 - 18

CondensersAqueous vapors Water 1,000 – 1,500 176 – 264Organic vapors Water 700 – 1,000 123 – 176Refinery hydrocarbons Water 400 - 550 70 - 97

W/m2-C Btu/hr-ft2-oF

Page 28: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Overall Heat Transfer Coefficient October 02, 2003Rev: 0

Page 28 of 43 FileName: document.xlsWorkSheet: Typical "U"

Vapors with some non condensables Water 500 - 700 88 – 123Vacuum condensers Water 200 - 500 35 – 88

VaporizersSteam Aqueouos solutions 1,000 – 1,500 176 – 264Steam Light organics 900 – 1,200 159 – 211Steam Heavy organics 600 - 900 106 – 159Heat Transfer (hot) oil Refinery hydrocarbons 250 - 550 44 – 97

Air Cooled ExchangersProcess Fluid (tube side)Water 300 - 450 53 - 79Light organics 300 - 700 53 - 123Heavy organics 50 - 150 9 - 26Gases 50 - 300 9 - 53Condensing hydrocarbons 300 - 600 53 - 106

Immersed coilsCoil Fluid Pool Fluid

Natural circulationSteam Dilute aqueous solutions 500 – 1,000 88 – 176

Steam Light oils 200 - 300 35 – 53Steam Heavy oils 70 - 150 12 – 26Aqueous solutions Water 200 - 500 35 – 88Light oils Water 100 - 150 18 – 26

AgitatedSteam Dilute aqueous solutions 800 – 1,500 140 – 264

Steam Light oils 300 - 500 53 – 88Steam Heavy oils 200 - 400 35 – 70Aqueous solutions Water 400 - 700 70 - 123Light oils Water 200 - 300 35 - 53

Jacketed vesselsJacket Fluid Vessel Fluid

Steam Dilute aqueous solutions 500 - 700 88 - 123Steam Light organics 250 - 500 44 - 88Water Dilute aqueous solutions 200 - 500 35 - 88Water Light organics 200 - 300 35 - 53

Art’s Note: Above U’s were originally given in metric units and the conversion to good, old fashioned US engineering units is based on:

1.0 Btu/hr-ft2-oF = 5.678263 Watts/m2-oK

Page 29: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor June 15, 1996Rev: 0

Page 29 of 43 FileName: document.xlsWorkSheet: Condenser Tubes Data

Some of this data was taken from Standards of the Tubular Exchanger Manufacturers Association (TEMA); 7th Edition (1988); page 178. Note: some of the tabular TEMA data contained ERRATA, but this was corrected with this spreadsheet's formulas.

BWG

1/2" O. D. Condenser tube 3/4" O. D. Condenser tube

Outside Inside Outside Inside78 0.1659 0.148

10 0.134 0.482 0.1825 0.1963 0.126211 0.120 0.510 0.2043 0.1963 0.133512 0.109 0.282 0.0625 0.1309 0.0738 0.456 0.532 0.2223 0.1963 0.139313 0.095 0.560 0.2463 0.1963 0.146614 0.083 0.334 0.0876 0.1309 0.0874 0.370 0.584 0.2679 0.1963 0.152915 0.072 0.606 0.2884 0.1963 0.158716 0.065 0.370 0.1075 0.1309 0.0969 0.302 168 0.620 0.3019 0.1963 0.162317 0.058 0.634 0.3157 0.1963 0.166018 0.049 0.402 0.1269 0.1309 0.1052 0.236 198 0.652 0.3339 0.1963 0.170720 0.035 0.430 0.1452 0.1309 0.1126 0.174 227 0.680 0.3632 0.1963 0.178022 0.028 0.444 0.1548 0.1309 0.1162 0.141 241

NOTES:

Material FactorAluminum 0.35Titanium 0.58

A.I.S.I. 300 Series Stainless Steels 0.99A.I.S.I. 400 Series Stainless Steels 1.02

Aluminum Bronze 1.04Aluminum Brass 1.06

Nickel-Chrome-Iron 1.07Admiralty 1.09

Nickel 1.13Nickel-Copper 1.12

Copper and Cupro-Nickels 1.14

Wall thickness

inchesTube I. D.

inches

Tube flow area

in2

Surface area per linear foot, ft2

Tube weight per linear foot,

lb of steel*

Constant C **

Tube I. D. inches

Tube flow area

in2

Surface area per linear foot, ft2

* The weight of the condenser tubes is based on low carbon steel with a density of 0.2836 lbs/in3. For other metal materials multiply by the following factors:

** Liquid Velocity within the tubes = (Lbs Per Tube Hour) / (C * Liquid Specific Gravity) in feet per sec. (Specific gravity of Water @ 60

Page 30: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor June 15, 1996Rev: 0

Page 30 of 43 FileName: document.xlsWorkSheet: Condenser Tubes Data

Some of this data was taken from Standards of the Tubular Exchanger Manufacturers Association (TEMA); 7th Edition (1988); page 178. Note: some of the tabular TEMA data contained ERRATA, but this was corrected with this spreadsheet's formulas.

3/4" O. D. Condenser tube 1" O. D. Condenser tube 1-1/4" O. D. Condenser tube

Outside Inside Outside Inside0.890 0.6221 0.3272 0.2330

0.670 0.3526 0.2618 0.1754 1.473 550 0.920 0.6648 0.3272 0.24090.704 0.3893 0.2618 0.1843 1.348 0.954 0.7148 0.3272 0.2498

0.883 285 0.732 0.4208 0.2618 0.1916 1.241 656 0.982 0.7574 0.3272 0.25710.808 319 0.760 0.4536 0.2618 0.1990 1.129 708 1.010 0.8012 0.3272 0.26440.747 347 0.782 0.4803 0.2618 0.2047 1.038 749 1.030 0.8332 0.3272 0.26970.665 384 0.810 0.5153 0.2618 0.2121 0.919 804 1.060 0.8825 0.3272 0.27750.592 418 0.834 0.5463 0.2618 0.2183 0.814 852 1.080 0.9161 0.3272 0.28270.522 450 0.856 0.5755 0.2618 0.2241 0.714 898 1.110 0.9677 0.3272 0.29060.476 471 0.870 0.5945 0.2618 0.2278 0.650 927 1.120 0.9852 0.3272 0.29320.429 492 0.884 0.6138 0.2618 0.2314 0.584 1.130 1.0029 0.3272 0.29580.367 521 0.902 0.6390 0.2618 0.2361 0.498 997 1.150 1.0387 0.3272 0.30110.268 567 0.930 0.6793 0.2618 0.2435 0.361 1,060 1.180 1.0936 0.3272 0.3089

Tube weight per linear foot,

lb of steel

Constant C **

Tube I. D. inches

Tube flow area

in2

Surface area per linear foot, ft2

Tube weight per linear foot,

lb of steel

Constant C **

Tube I. D. inches

Tube flow area

in2

Surface area per linear foot, ft2

. For other metal materials multiply by the following factors:

** Liquid Velocity within the tubes = (Lbs Per Tube Hour) / (C * Liquid Specific Gravity) in feet per sec. (Specific gravity of Water @ 60 oF = 1.00)

Page 31: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor June 15, 1996Rev: 0

Page 31 of 43 FileName: document.xlsWorkSheet: Condenser Tubes Data

1-1/4" O. D. Condenser tube 1-1/2" O. D. Condenser tube 2" O. D. Condenser tube

Outside Inside Outside Inside2.059 9701.914 1,037 1.170 1.0751 0.3927 0.3063 2.3551.744 1.200 1.1310 0.3927 0.3142 2.1651.599 1,182 1.230 1.1882 0.3927 0.3220 1.970 1,8601.450 1,250 1.260 1.2469 0.3927 0.3299 1.771 1.760 2.4328 0.5236 0.46081.341 1,305 1.280 1.2868 0.3927 0.3351 1.635 2,014 1.782 2.4941 0.5236 0.46651.173 1,377 1.310 1.3478 0.3927 0.3430 1.427 1.810 2.5730 0.5236 0.47391.059 1,440 1.330 1.3893 0.3927 0.3482 1.286 2,180 1.834 2.6417 0.5236 0.48010.883 1.360 1.4527 0.3927 0.3560 1.0700.824 1,537 1.370 1.4741 0.3927 0.3587 0.997 2,3000.763 1.380 1.4957 0.3927 0.3613 0.9240.641 1,626 1.400 1.5394 0.3927 0.3665 0.7750.455 1,706

Tube weight per linear foot,

lb of steel

Constant C **

Tube I. D. inches

Tube flow area

in2

Surface area per linear foot, ft2

Tube weight per linear foot,

lb of steel

Constant C **

Tube I. D. inches

Tube flow area

in3

Surface area per linear foot, ft3

Page 32: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor June 15, 1996Rev: 0

Page 32 of 43 FileName: document.xlsWorkSheet: Condenser Tubes Data

2" O. D. Condenser tube

2.412 3,7952.204 3,8911.935 4,0141.701 4,121

Tube weight

per linear foot, lb of

steel

Constant C **

Page 33: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Heat Exchanger TubesheetsTubesheet Thickness

October 09, 1991Rev: 0

Page 33 of 43 FileName: document.xlsWorkSheet: TubeSheet

The thickness of heat exchanger tubesheets is an important consideration in cost-estimating and selecting design alternatives for process heat systems. According to the Tubular Exchanger Manufactureres Assn. (TEMA) standards, the tubesheet thickness for shell-and-tube exchangers is given by the formula:

F = 1.25G = 12 inchesP = 350 psigS = 17,500 psi

T = 1.06 inches

TEMA gives precise rules for determining the variables F, G, P, and S for exchanger design. For estimating purposes, however, these terms can be taken as:

T = Tubesheet thickness, inchesF = a factor

= 1.0 for stationary and floating-head tubesheets = 1.25 for U-tube tubesheets

G = shell internal diameter, as calculated from transfer surface and tube dimensions, inchesP = design pressure, psigS = tubesheets' material allowable stress, psi

Values of S for some common materials are shown in the following table. With this table and the other terms,tubesheet thickness can be calculated in this spreadsheet.

Material100 200 300 400 500

SA-516 Grade 70 17,500 17,500 17,500 17,500 17,500Stainless Steel -- 17,700 16,100 15,900 --1.25Cr - 0.5Mo - Si Steel 15,000 15,000 15,000 15,000 15,000Monel 17,500 16,500 15,500 14,800 14,700SB-171 Naval Brass -- 12,500 10,500 2,000 --SB-402 Copper Nickel 12,500 10,500 10,400 10,400 10,400SB-11 Copper 6,600 5,700 5,000 -- --

From: Chemical Engineering Magazine; Plant Notebook; May 12, 1975

Temperature, oF

T= F G2 √ PS

Page 34: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Tubesheet Layout November 11, 1997Rev: 0

Page 34 of 43 FileName: document.xlsWorkSheet: Square Pitch

SHELL AND TUBE HEAT EXCHANGER TUBESHEET LAYOUTS (TUBE COUNTS)Source: "Process Heat Transfer"; Donald Q. Kern, McGraw-Hill Book Co. (1950); page 841

3/4" O. D. tubes on 1-inch square pitch 1" O. D. tubes on 1-1/4 inch square pitch 1-1/4" O. D. tubes on 1-9/16 inch square pitch

8 32 26 20 20 21 16 1410 52 52 40 36 32 32 26 24 16 12 1012 81 76 68 68 60 48 45 40 38 36 30 24 22 16

13-1/4 97 90 82 76 70 61 56 52 48 44 32 30 30 2215-1/4 137 124 116 108 108 81 76 68 68 64 44 40 37 3517-1/4 177 166 158 150 142 112 112 96 90 82 56 53 51 4819-1/4 224 220 204 192 188 138 132 128 122 116 78 73 71 6421-1/4 277 270 246 240 234 177 166 158 152 148 96 90 86 8223-1/4 341 324 308 302 292 213 208 192 184 184 127 112 106 102

25 413 394 370 356 346 260 252 238 226 222 140 135 127 12327 481 460 432 420 408 300 288 278 268 260 166 160 151 14629 553 526 480 468 456 341 326 300 294 286 193 188 178 17431 657 640 600 580 560 406 398 380 368 358 226 220 209 20233 749 718 688 676 648 465 460 432 420 414 258 252 244 23835 845 824 780 766 748 522 518 488 484 472 293 287 275 26837 934 914 886 866 838 596 574 562 544 532 334 322 311 30439 1049 1024 982 968 948 665 644 624 612 600 370 362 348 342

Note: These tube counts can be taken only as an estimate. For accurate tube counts, an actual scaled layout should be done. Kern does not reveal where he obtained this information and he is not specific in giving details to what TEMA type, orientation, and Outer Tube Limits (OTL) this data applies.Consequently, the user is advised to scrutinize this information before using it.

Another estimating method for tube counts is found in "Petroleum Refinery Engineering"; Nelson; McGraw-Hill; Page 544:

The number of heat exchanger tubes can be estimated from the equation

where,C = 0.75 (a constant for Square pitch)P = the tube spacing, in inchesL = the Outer Tube Limit, in inches

Shell I. D. Inches 1

TubePass2

TubePass4

TubePass6

TubePass8

TubePass1

TubePass2

TubePass4

TubePass6

TubePass8

TubePass1

TubePass2

TubePass4

TubePass6

TubePass

N = C * (L/P)2

Page 35: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Tubesheet Layout November 11, 1997Rev: 0

Page 35 of 43 FileName: document.xlsWorkSheet: Square Pitch

The OTL is about 1-1/2" less than the inside diameter of the shell in floating head exchangers.It is about 5/8" less than the shell inside diameter of fixed-head or U-tube construction.

Tube Spacing = 1.5 inchesOuter Tube Limit = 13.5 inches

Number of Tubes = 61

Page 36: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Tubesheet Layout November 11, 1997Rev: 0

Page 36 of 43 FileName: document.xlsWorkSheet: Square Pitch

1-1/4" O. D. tubes on 1-9/16 inch square pitch 1-1/2" O. D. tubes on 1-7/8 inch square pitch

16 16 16 12 1222 22 22 16 1631 29 29 25 24 2244 39 39 34 32 2956 50 48 45 43 3978 62 60 57 54 5096 78 74 70 66 62

115 94 90 86 84 78140 112 108 102 98 94166 131 127 120 116 112193 151 146 141 138 131226 176 170 164 160 151258 202 196 188 182 176293 224 220 217 210 202336 252 246 267 230 224

Kern does not reveal where he obtained this information and he is not specific in giving details to what TEMA type, orientation, and Outer Tube Limits (OTL) this data applies.

8 TubePass

1 TubePass

2 TubePass

4 TubePass

6 TubePass

8 TubePass

Page 37: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Tubesheet Layout November 11, 1997Rev: 0

Page 37 of 43 FileName: document.xlsWorkSheet: Triangular Pitch

SHELL AND TUBE HEAT EXCHANGER TUBESHEET LAYOUTS (TUBE COUNTS)Source: "Process Heat Transfer"; Donald Q. Kern, McGraw-Hill Book Co. (1950); page 842

3/4" O. D. tubes on 15/16-inch triangular pitch 3/4" O. D. tubes on 1-inch triangular pitch

8 36 32 26 24 18 37 30 24 2410 62 56 47 42 36 61 52 40 3612 109 98 86 82 78 92 82 76 74

13-1/4 127 114 96 90 86 109 106 86 8215-1/4 170 160 140 136 128 151 138 122 11817-1/4 239 224 194 188 178 203 196 178 17219-1/4 301 282 252 244 234 262 250 226 21621-1/4 361 342 314 306 290 316 302 278 27223-1/4 442 420 386 378 364 384 376 352 342

25 532 506 468 446 434 470 452 422 39427 637 602 550 536 524 559 534 488 47429 721 692 640 620 594 630 604 556 53831 847 822 766 722 720 745 728 678 66633 974 938 878 852 826 856 830 774 76035 1102 1068 1004 988 958 970 938 882 86437 1240 1200 1144 1104 1072 1074 1044 1012 98639 1377 1330 1258 1248 1212 1206 1176 1128 1100

Note: These tube counts can be taken only as an estimate. For accurate tube counts, an actual scaled layout should be done. Kern does not reveal where he obtained this information and he is not specific in giving details to what TEMA type, orientation, and Outer Tube Limits (OTL) this data applies.As an example of a discrepancy, refer to the 8" shell with 3/4" tubes on 15/16" triangular pitch and 2-passes. An actual layout yields 48 tubes with 3/16" OTL, as compared with the listed 32 tubes.Consequently, the user is advised to scrutinize this information before using it.Triangular pitch should never be used with a dirty or fouling fluid on the shellside of an exchanger. This configuration is impossible to clean mechanically.

Another estimating method for tube counts is found in "Petroleum Refinery Engineering"; Nelson; McGraw-Hill; Page 544:

The number of heat exchanger tubes can be estimated from the equation

where,C = 0.86 (a constant for Triangular pitch)P = the tube spacing, in inchesL = the Outer Tube Limit, in inches

The OTL is about 1-1/2" less than the inside diameter of the shell in floating head exchangers.It is about 5/8" less than the shell inside diameter of fixed-head or U-tube construction.

Tube Spacing = 1.5 inchesOuter Tube Limit = 17.5 inches

Number of Tubes = 117

Shell I. D. Inches 1

TubePass2

TubePass4

TubePass6

TubePass8

TubePass1

TubePass2

TubePass4

TubePass6

TubePass

N = C * (L/P)2

Page 38: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Tubesheet Layout November 11, 1997Rev: 0

Page 38 of 43 FileName: document.xlsWorkSheet: Triangular Pitch

SHELL AND TUBE HEAT EXCHANGER TUBESHEET LAYOUTS (TUBE COUNTS)Source: "Process Heat Transfer"; Donald Q. Kern, McGraw-Hill Book Co. (1950); page 842

3/4" O. D. tubes on 1-inch triangular pitch 1" O. D. tubes on 1-1/4 inch triangular pitch 1-1/4" O. D. tubes on 1-9/16 inch triangular pitch

21 16 16 1432 32 26 24 20 18 14

70 55 52 48 46 4 32 30 26 2274 68 66 58 54 50 38 36 32 28

110 91 86 80 74 72 54 51 45 42166 131 118 106 104 94 69 66 62 58210 163 152 140 136 128 95 91 86 78260 199 188 170 164 160 117 112 105 101328 241 232 212 212 202 140 136 130 123382 294 282 256 252 242 170 164 155 150464 349 334 302 296 286 202 196 185 179508 397 376 338 334 316 235 228 217 212640 472 454 430 424 400 275 270 255 245732 538 522 486 470 454 315 305 297 288848 608 592 562 546 532 357 348 335 327870 674 664 632 614 598 407 390 380 374

1078 766 736 700 688 672 449 436 425 419

These tube counts can be taken only as an estimate. For accurate tube counts, an actual scaled layout should be done. Kern does not reveal where he obtained this information and he is not specific in giving details to what TEMA type, orientation, and Outer Tube Limits (OTL) this data applies.As an example of a discrepancy, refer to the 8" shell with 3/4" tubes on 15/16" triangular pitch and 2-passes. An actual layout yields 48 tubes with 3/16" OTL, as compared with the listed 32 tubes.

Triangular pitch should never be used with a dirty or fouling fluid on the shellside of an exchanger. This configuration is impossible to clean mechanically.

Another estimating method for tube counts is found in "Petroleum Refinery Engineering"; Nelson; McGraw-Hill; Page 544:

8 TubePass

1 TubePass

2 TubePass

4 TubePass

6 TubePass

8 TubePass

1 TubePass

2 TubePass

4 TubePass

6 TubePass

Page 39: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Tubesheet Layout November 11, 1997Rev: 0

Page 39 of 43 FileName: document.xlsWorkSheet: Triangular Pitch

1-1/4" O. D. tubes on 1-9/16 inch triangular pitch 1-1/2" O. D. tubes on 1-7/8 inch triangular pitch

20 18 14 14 12 1226 27 22 18 16 1438 36 34 32 30 2754 48 44 42 38 3669 61 58 55 51 4895 76 72 70 66 61

117 95 91 86 80 76140 115 110 105 98 95170 136 131 125 118 115202 160 154 147 141 136235 184 177 172 165 160275 215 206 200 190 184315 246 238 230 220 215357 275 268 260 252 246407 307 299 290 284 275

8 TubePass

1 TubePass

2 TubePass

4 TubePass

6 TubePass

8 TubePass

Page 40: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Exchanger Shell Size November 03, 1997Rev: 0

Page 40 of 43 FileName: document.xlsWorkSheet: Total Tubes

Number of Tube Passes

1 2 4 6 8

6.82

0.75 0.9375 Triang. 38 32 26 24 180.75 1.0000 Square 32 26 20 200.75 1.0000 Triang. 37 30 24 241.00 1.2500 Square 21 16 16 141.00 1.2500 Triang. 22 18 16 14

8.77

0.75 0.9375 Triang. 62 56 47 42 360.75 1.0000 Square 52 52 40 360.75 1.0000 Triang. 61 52 48 481.00 1.2500 Square 32 32 26 241.00 1.2500 Triang. 37 32 28 28

12.00 10.75

0.75 0.9375 Triang. 109 98 86 820.75 1.0000 Square 80 72 68 68 600.75 1.0000 Triang. 90 84 72 70 681.00 1.2500 Square 48 44 40 38 361.00 1.2500 Triang. 57 52 44 42 40

13.25 12.00

0.75 0.9375 Triang. 127 114 96 90 860.75 1.0000 Square 95 90 81 77 700.75 1.0000 Triang. 110 101 90 88 741.00 1.2500 Square 60 56 51 46 441.00 1.2500 Triang. 67 63 56 54 50

15.25 14.00

0.75 0.9375 Triang. 170 160 140 136 1280.75 1.0000 Square 138 132 116 112 1080.75 1.0000 Triang. 163 152 136 133 1101.00 1.2500 Square 88 82 75 70 641.00 1.2500 Triang. 96 92 86 84 72

17.25 16.00

0.75 0.9375 Triang. 239 224 194 188 1780.75 1.0000 Square 188 178 168 164 1420.75 1.0000 Triang. 211 201 181 176 1661.00 1.2500 Square 112 110 102 98 821.00 1.2500 Triang. 130 124 116 110 94

19.25 18.00

0.75 0.9375 Triang. 301 282 252 244 2340.75 1.0000 Square 236 224 216 208 1880.75 1.0000 Triang. 273 256 242 236 2101.00 1.2500 Square 148 142 136 129 1161.00 1.2500 Triang. 172 162 152 148 128

21.00 19.25

0.75 0.9375 Triang. 361 342 314 306 2900.75 1.0000 Square 276 264 246 240 2340.75 1.0000 Triang. 318 308 279 269 2601.00 1.2500 Square 170 168 157 150 1481.00 1.2500 Triang. 199 188 170 164 160

23.25 21.50

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

25.00 23.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

27.00 25.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

29.00 27.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

31.00 29.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

33.00 31.25

0.75 0.9375 Triang.

Shell ID in.

Outer Tube Limit

Diameter, in.

Tube OD in

Tube Pitch, in.

Tube Layout

8.071 (Sch. 30)

10.02 (Sch. 40)

TOTAL NUMBER OF TUBES IN AN EXCHANGER, Nt:

If not known by direct count, find in the tube count table, Table III, as a function of Dotl, the tube pitch, p, and the layout. The shell diameter Di and outer tube limit Dotl given in the table are those for a conventional split-ring floating head design, fully tubed out. For a given shell diameter, the value of Dotl will be greater than that shown for a fixed tube sheet design and smaller for a pull-through floating head. In any case, the tube count can be reasonably interpolated from the Table using the known or specified Dotl, asuming that the tube count is proportional to (Dotl)2. All tube count tables are only approximate since the actual number of tubes that can be fitted into a given tubesheet depends upon the pass partition pattern, the thickness of the pass dividers and exactly where the drilling pattern is started relative to the dividers and the outer tube limit. Additional tubes will be lost from the bundle for a U-tube design because the minimum bending radius prevents tubes from being inserted in some, or all, of the possible drilling positions near the centerline of the U-tube pattern. Tubes will also be lost if an impingement plate is inserted underneath the nozzle. For a no-tubes-in-the-window design, the actual number of tubes in the bundle is FcNt. Fc is the fraction of total tubes in crossflow.

Page 41: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Exchanger Shell Size November 03, 1997Rev: 0

Page 41 of 43 FileName: document.xlsWorkSheet: Total Tubes

33.00 31.250.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

35.00 33.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

37.00 35.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

39.00 37.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

42.00 40.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

44.00 42.25

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

48.00 46.00

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

52.00 50.00

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

56.00 54.00

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

60.00 58.00

0.75 0.9375 Triang.0.75 1.0000 Square0.75 1.0000 Triang.1.00 1.2500 Square1.00 1.2500 Triang.

Page 42: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Tube Layouts November 03, 1997Rev: 0

Tube OD, in. Tube Pitch, in. Layout

0.625 0.8125 0.704 0.406

0.750 0.9375 0.814 0.469

0.750 1.0000 1.000 1.000

0.750 1.0000 0.707 0.707

0.750 1.0000 0.866 0.500

1.000 1.2500 1.250 1.250

1.000 1.2500 0.884 0.884

1.000 1.2500 1.082 0.625

Pp, in. Pn, in.

TUBE PITCH PARALLEL TO FLOW, PP, AND NORMAL TO FLOW, PN

These quantities are needed only for the purpose of estimating other parameters. If a detailed drawing of the exchanger is available, or if the exchanger itself can be conveniently examined, it is better to obtain

these other parameters by direct count or calculation. The quantities are described by Figure 5.2-1 and read from Table IV for the most common tube layouts.

Page 43: Fuel_Oil_Tank_Heat_Up.xls

Art Montemayor Heat Exchanger Tube Layouts March 12, 1997Rev: 0

Page 43 of 43 FileName: document.xlsWorkSheet: Tube Pitch Types

Note: Flow arrows are perpendicular to the baffle cut edge

30o Triangular 60o Rotated Triangular

Flow

Flow

SquareRotated Square