Upload
ngokiet
View
213
Download
0
Embed Size (px)
Lanzhou Summer School 2004
Frontiers in Atomic and Molecular Physics with Charged Particles
Klaus BlaumEuropean Organisation for Nuclear Research, CERN,
Physics Department, 1211 Geneva 23, Switzerland
and
Gesellschaft für Schwerionenforschung, GSI, 64291 Darmstadt, Germany
Email: [email protected] or [email protected]
http://isoltrap.web.cern.ch/isoltrap
Lecture #0
Atomic Physics with Stored andCooled Ions
Klaus BlaumGesellschaft für Schwerionenforschung, GSI, Darmstadt
and CERN, Physics Department, Geneva, Switzerland
Summer School, Lanzhou, China, 9 – 17 August 2004
0. Lecture: Introduction and Motivation
Content
Atomic Physics with Stored andCooled Ions
Introduction and motivationPrinciple of storing charged particles
012 Cooling techniques for charged particles
Production of HCI and radioactive nuclei3Applications and performance of ion traps4
Test of QED in extreme fields: g-factor56 Weak interaction studies
Atomic masses and Penning trap MS7Future techniques and experiments8
Summary and conclusions9
Atomic physics with stored ions at GSI
ATOMIC PHYSICS WITH HIGHLY
CHARGED IONS OREXOTIC NUCLEI
ATOMICSPECTROSCOPY NUCLEAR
GROUND STATE PROPERTIES
HIGH-PRECISION MASS
SPECTROMETRY
DETECTORTECHNIQUES
COOLING TECHNIQUES
CALIBRATIONTECHNIQUES
STORAGE RING TECHNIQUES
CHARGE BREEDING
TECHNIQUES
ION TRAP TECHNIQUES
The history of ion traps
Hans Dehmelt
Seattle Mainz
SMILETRAPATHENA
g-factor trapCPT REXTRAP
Gernot Graeff
CLUSTER TRAP
NIPNET
HITRAP
ATRAPISOLTRAP
Harvard
RETRAP
SCIENCEFrans Michel
PenningWolfgang
Paul EUROTRAPS
EXOTRAPS
MIT
Operational:
e+ TRAP
LEBIT SHIPTRAP JYFL TRAP WITCHIn setup:
MAFF TRAP TRIUMF TRAP HITRAP KVI TRAPFuture projects:
Lecture #1
Atomic Physics with Stored andCooled Ions
Klaus BlaumGesellschaft für Schwerionenforschung, GSI, Darmstadt
and CERN, Physics Department, Geneva, Switzerland
Summer School, Lanzhou, China, 9 – 17 August 2004
1. Lecture: Principle of storing charged particles
1. Why storing? 2. Trapping devices for charged particles
- radio frequency quadrupole (Paul) traps - Penning traps- storage rings
Why storing?
effective use of rare species
easy manipulation of trapped particles
q/m-separation
extended observation & manipulation time
accumulation & bunching
charge breeding
polarization
increase of luminosity
EFFICIENCYACCURACYSENSITIVITY
Pioneers of trapping and cooling in ion and laser traps
Principle of Penning Traps
Frans Michel Penning
Storage and Cooling
of AntiprotonsNobel Prize 1984J. van der Meer
C. Rubbia
Storage and Cooling of AtomsNobel Prize 1997
S. Chu C. Cohen-Tannoudji W. D. Phillips
Bose-Einstein CondensationNobel Prize 2001
E. Cornell W. Ketterle C. Wieman
Storage and Cooling of IonsNobel Prize 1989
H. Dehmelt W. Paul
Principle of trapping
Radial force Harmonic potential Cooling
electric fields
magnetic fields
light fields
damping of oscillationamplitudes
minimization of trap
imperfections
harmonic oscillation
2 or 3 independent
eigen frequencies
“infinite” storage time
Storage devices
Penning and Paul Trap Storage Ring
B
U
0 0.5 1 cm
particles at nearly rest in space relativistic particles
∗ ion cooling ∗ “infinite“ storage time ∗ single-ion sensitivity ∗ high accuracy ∗ mass spectrometric capabilities
Storage of charged particles
required: potential minimum in 3 dimensionsdesired: harmonic force in direction of trap center
→
→ harmonic oscillations
F ~ - r
⇒⇒222 CzByAx ++=φF = -e∇φ ~ - r
in addition: ∆φ = 0 (Laplace equation)z
simplification: rotational symmetry (z-axis)y
x
Storage of charged particles in an ion trap
⇒ ( ) ( )22
2
0
2222
2
0
0 z2d
z2yxd
−ρφ
=−+φ
=φ
equipotential surfaces: ρ2 – 2z2 = consthyperboloidal shapes⇒
geometry of ring electrode
geometry of endcaps
characteristic trap dimension
minimum radius of ring electrode
minimum distance between endcaps
20
22 z2 ρ=−ρ
20
22 z2z2 −=−ρ
20
20
20 z2d +ρ=
ρ0
2z0
z0
r0
ring electrode
end cap
ρ0
Storage of charged particles in a Penning / Paul trap
BUT: sign of different !
no simultaneous trapping in 3 dimensions possible by purely electrostatic potentials
SOLUTION:
a: superposition of magneticfield in z-direction:
Penning trap
b: time varying voltage (RF) between ring electrode and endcaps:
Paul trap
r
Paul trap geometries
URF
3D confinement
The linear RFQ trap
end cap
ring electrode potential
Equation of motion in a Paul trap
( ) 00 =+∇ rmt,re &&ρφ
( ) 020
000 =+Ω+ ρρ
ρ&&
mtcos VUe
( )02
0
000 =+Ω+
− zz m
tcos VUe&&
ρ
mr = 0··∇
z = 0··
ρ = 0··
equation of motion:
220
00rz mr
Ue8a2aΩ
−=−=t2Ω
=τ ∼ U0substitution:
220
0042
Ω=−=
mrVe
qq rzu = x, y, z ∼ V0
( ) 0u 2cos q2ad
uduu2
2=τ−+
τMathieu differential equation
Ion motion in a Paul trap
Solution for small amplitudes:
( )ρω −
Ω−∝ ttqtu u
u cos cos 2
1)(
macro motion (slow)micro motion (fast, RF)
Ion trajectory
Stable motion only for special combinations of U0 and V0
STABILITY DIAGRAM
Stability diagram of a Paul trap
Principle of Penning traps
Cyclotron frequency: Bmqfc ⋅⋅=
π21
B
q/m
PENNING trapStrong homogeneous magnetic fieldWeak electric 3Dquadrupole field
z0
r0
ring electrode
end cap
Frans Michel Penning(Penning discharge 1936)
Hans G. Dehmelt(Nobel prize in physics 1989)
Confinement in a Penning trap
axial harmonicpotential
radial confinement with magnetic field
Penning trap configurations
mm
Uz (V)
0
50
100
-50
-100
0 40 80
Cylindrical Penning trap
Potentialdistribution
main electrodescorrection electrodes
0
50
100mm
0
5
10
Hyperbolical Penning trap
main electrodescorrection electrodes
Equation of motion in a Penning trap
F = −e0∇φ(r)+v×Bplus Lorentz force:
F = −e0(∇φ(r)+v×B) + mr = 0··equation of motion:
axial oscillation
02
20
00 =+⋅ zmzmd
Ue&&m z = 0··
20
002md
Uez =ω z or axial
frequency
radial oscillation
242
22zcc ωωω
ω −+=+
242
22zcc ωωωω −−=−
modified cyclotronfrequency
magnetronfrequency
iyxu +=
Bme
c0=ω
( ) tieutu ω−= 0
0uu2
ui2z
c =+ω
−ω &&&
substitution:
·u - ·u=
Ion motion in a Penning trap
Motion of an ion is the superposition of three characteristic harmonic motions:– axial motion (frequency fz)– magnetron motion (frequency f–)– modified cyclotron motion (frequency f+)
The frequencies of the radial motions obey the relation
c-+ fff =+
magnetron motion (f-)
modified cyclotronmotion (f+)
axial motion (fz)
zr
r-
r+
Typical frequenciesq = e, m = 100 u,B = 6 T⇒ f- ≈ 1 kHz
f+ ≈ 1 MHz
L.S. Brown, G. Gabrielse,Rev. Mod. Phys. 58, 233 (1986).
3
2
1
0n +
n+
0 1 2
0
n z
n_
Landau levels of an ion in a Penning trap
modifiedcyclotron frequency
axial frequency
magnetron frequency
Energy of harmonic oscillators:
E = ηω+(n++1/2) + ηωz(nz+1/2) - ηω-(n-+1/2)
amplitudes:
<ρ> ∼ n +12
⇒ magnetron motion is unstable !
cooling: quantum number n → 0
Excitation of radial ion motions
Dipolar azimuthal excitationEither of the ion's radial motions can be excited
by use of an electric dipole field in resonancewith the motion (RF excitation)⇒ amplitude of motion increases
without bounds
Quadrupolar azimuthal excitationIf the two radial motions are excited at their
sum frequency, they are coupled⇒ they are continuously converted
into each other
+Ud -Ud
r
r0
Ud
-Uq
-Uq
r0
r
+Uq+Uq
Uq
Magnetron excitation: ρ− Cyclotron excitation: ρ+
Conversion of radial motions
Penning and Paul traps at accelerators
• operating facilities • facilities under • planned facilitiesconstruction or test
• TRIUMF
Argonne• • MSU
• Jyväskylä
GSI •
Stockholm •
• LBL
SHIPTRAPHITRAP
ISOLTRAPREXTRAPATHENAATRAPWITCH
JYFL TRAP
SMILETRAP
CPT
LEBIT
RETRAP
TITAN
MAFF TRAP
• MunichCERN • RIKEN TRAP
European Community Networks
EUROTRAPS• GSI• Stockholm• Mainz• Aarhus• Swansea• CERN• K.U. Leuven• Bruker• Paris• Göteborg• Lisbon
EUROTRAPS• GSI• Stockholm• Mainz• Aarhus• Swansea• CERN• K.U. Leuven• Bruker• Paris• Göteborg• Lisbon
HITRAP• GSI• Mainz• GANIL• MPI Heidelberg• KVI Groningen• Stockholm• Krakow• Vienna• London
HITRAP• GSI• Mainz• GANIL• MPI Heidelberg• KVI Groningen• Stockholm• Krakow• Vienna• London
EXOTRAPS• Jyväskylä• K.U. Leuven• GSI• LMU Munich• LPC Caen• GANIL• ISOLDE
EXOTRAPS• Jyväskylä• K.U. Leuven• GSI• LMU Munich• LPC Caen• GANIL• ISOLDE
NIPNET• KVI Groningen• JYFL Jyväskylä• GSI• UNIFE Ferrara• LPC Caen• K.U. Leuven• CSNSM• LMU Munich• Mainz• Warsaw• ISOLDE
NIPNET• KVI Groningen• JYFL Jyväskylä• GSI• UNIFE Ferrara• LPC Caen• K.U. Leuven• CSNSM• LMU Munich• Mainz• Warsaw• ISOLDE
ION CATCHER• LMU Munich• GANIL• GSI• Jyväskylä• KVI Groningen• K.U. Leuven• Mainz• Warsaw• Giessen
ION CATCHER• LMU Munich• GANIL• GSI• Jyväskylä• KVI Groningen• K.U. Leuven• Mainz• Warsaw• Giessen
SCIENCE• Mainz• Stockholm
SCIENCE• Mainz• Stockholm
2002-2004
1998-2001
1993-1996