30
172 REFERENCES 1. Mallick, P. K. (1993). Fibre-reinforced composites-materials, manufacturing and design, 2 nd edition, Marcel Dekker, New York. 2. Gibson, R. F. (1994). Principles of composite material mechanics, McGraw Hill, Singapore. 3. Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Materials Science and Engineering: R: Reports, 28(1-2): 1-63. 4. Pavlidou, S. and Papaspyrides, C.D. (2008). A review on polymer–layered silicate nanocomposites, Progress in Polymer Science, 33(12): 1119–1198. 5. Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R.E. (2006). Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of Composite Materials, 40(17): 1511-1575. 6. Utracki, L.A. (2004). Clay-containing polymeric nanocomposites Volume 1, Rapra Technology Limited, Shawbury, United Kingdom. 7. Pinnavaia, T. J. and Beall, G. W. (2000). Polymer-Clay Nanocomposites, Wiley, Chichester. 8. Schmidt, D. F. (2003). Polysiloxane / layered silicate nanocomposites : synthesis, characterization and properties, PhD Thesis, Graduate School of Cornell University. 9. Usuki, A., Kojima, Y., Kawasumi, M, Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O. (1993). Synthesis of nylon 6–clay hybrid. Journal of Materials Research, 8(5):1179– 1184. 10. Luo, J.J. and Daniel, I.M. (2003). Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Composite Science and Technology, 63(11): 1607–1616. 11. McWilliams, A. (2010). Nanocomposites, nanoparticles, nanoclays, and nanotubes, Report Code: NAN021D, published January 2010, BCC Research, Wellesley, USA 12. "Nanocomposites - A Global Strategic Business Report”, February 2011, Global Industry Analysts, Inc., San Jose, USA 13. Thomas, S. and Stephen, R., Eitor (2010). Rubber nanocomposites preparation, properties and applications, John Wiley & Sons (Asia) Pte Ltd, Singapore.

Front page, Certificates - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/3919/18/18_references.pdf · Rapra Technology Limited, ... Report Code: NAN021D, published January 2010,

Embed Size (px)

Citation preview

172

REFERENCES

1. Mallick, P. K. (1993). Fibre-reinforced composites-materials, manufacturing and

design, 2nd edition, Marcel Dekker, New York.

2. Gibson, R. F. (1994). Principles of composite material mechanics, McGraw Hill,

Singapore.

3. Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites:

preparation, properties and uses of a new class of materials, Materials Science and

Engineering: R: Reports, 28(1-2): 1-63.

4. Pavlidou, S. and Papaspyrides, C.D. (2008). A review on polymer–layered silicate

nanocomposites, Progress in Polymer Science, 33(12): 1119–1198.

5. Hussain, F., Hojjati, M., Okamoto, M. and Gorga, R.E. (2006). Review article:

polymer-matrix nanocomposites, processing, manufacturing, and application: an

overview. Journal of Composite Materials, 40(17): 1511-1575.

6. Utracki, L.A. (2004). Clay-containing polymeric nanocomposites Volume 1,

Rapra Technology Limited, Shawbury, United Kingdom.

7. Pinnavaia, T. J. and Beall, G. W. (2000). Polymer-Clay Nanocomposites, Wiley,

Chichester.

8. Schmidt, D. F. (2003). Polysiloxane / layered silicate nanocomposites : synthesis,

characterization and properties, PhD Thesis, Graduate School of Cornell

University.

9. Usuki, A., Kojima, Y., Kawasumi, M, Okada, A., Fukushima, Y., Kurauchi, T.

and Kamigaito, O. (1993). Synthesis of nylon 6–clay hybrid. Journal of Materials

Research, 8(5):1179– 1184.

10. Luo, J.J. and Daniel, I.M. (2003). Characterization and modeling of mechanical

behavior of polymer/clay nanocomposites. Composite Science and Technology,

63(11): 1607–1616.

11. McWilliams, A. (2010). Nanocomposites, nanoparticles, nanoclays, and

nanotubes, Report Code: NAN021D, published January 2010, BCC Research,

Wellesley, USA

12. "Nanocomposites - A Global Strategic Business Report”, February 2011, Global

Industry Analysts, Inc., San Jose, USA

13. Thomas, S. and Stephen, R., Eitor (2010). Rubber nanocomposites preparation,

properties and applications, John Wiley & Sons (Asia) Pte Ltd, Singapore.

173

14. Sengupta, R., Chakraborty, S., Bandyopadhyay, S., Dasgupta, S., Mukhopadhyay,

R., Auddy, K. and Deuri, A.S. (2007). A short review on rubber/clay

nanocomposites with emphasis on mechanical properties. Polymer Engineering

and Science, 47(11): 1956–1974.

15. Ray, S. S. and Bousima, M. (2005). Biodegradable polymers and their layered

silicate nanocomposites: in greening the 21st century materials world. Progress in

Materials Science, 50(8): 962–1079.

16. Herrmann, W., Uhl, C., Heinrich, G. and Jehnichen, D. (2006). Analysis of

HNBR-montmorillonite nanocomposites morphology, orientation and

macroscopic properties. Polymer Bulletin, 57(3): 395–405.

17. Gatos, K.G., Thomann, R. and Karger-Kocsis, J. (2004). Characteristics of

ethylene propylene diene monomer rubber/organoclay nanocomposites resulting

from different processing conditions and formulations. Polymer International,

53(8): 1191–1197.

18. Chung, D. D. L. (2010). Composite materials, science and applications, Second

Edition, Springer, London.

19. Lubin, G. and Peters, S. T. (1998). Handbook of composites, 2nd Edition,

Chapman & Hall, London.

20. Chen, J.S., Poliks, M.D., Ober, C.K., Zhang, Y., Wiesner, U. and Giannelis, E.P.

(2002). Study of the interlayer expansion mechanism and thermal–mechanical

properties of surface-initiated epoxy nanocomposites. Polymer, 43(18): 4895–

4904.

21. Zeng, Q. H., Yu, A. B., Lu, G. Q. (Max) and Paul, D. R. (2005). Clay-Based

Polymer Nanocomposites: Research and Commercial Development. Journal of

Nanoscience and Nanotechnology, 5(10): 1574–1592.

22. Biswas, M. and Ray, S. S. (2001). Recent progress in synthesis and evaluation of

polymer- montmorillonite nanocomposites. Advances in Polymer Science,

155(2001):167–221.

23. LeBaron, P.C., Wang, Z. and Pinnavaia, T.J. (1999). Polymer-layered silicate

nanocomposites: an overview. Applied Clay Science, 15(1–2):11–29.

24. Giannelis, E. P. (1998). Polymer-layered silicate nanocomposites: synthesis,

properties and applications. Applied Organometallic Chemistry, 12(10–11): 675–

680.

174

25. Schmidt, D., Shah, D. and Giannelis, E. P. (2002). New advances in

polymer/layered silicate nanocomposites. Current Opinion in Solid State and

Materials Science, 6(3):205–212.

26. Fu, S., Feng, X., Lauke, B. and Mai, Y. (2008). Effects of particle size,

particle/matrix interface adhesion and particle loading on mechanical properties of

particulate–polymer composites. Composites: Part B, 39(6): 933–961.

27. Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A. and Jasiuk, I. (2005).

Experimental trends in polymer nanocomposites—a review. Materials Science

and Engineering A, 393(1-2): 1–11.

28. Vaia, R. A. andWagner, H. D. (2004). Framework for nanocomposites. Materials

Today, 7(11):32–37.

29. Hu, H., Onyebueke, L. and Abatan, A. (2010). Characterizing and modeling

mechanical properties of nanocomposites- review and evaluation. Journal of

Minerals & Materials Characterization & Engineering, 9(4): 275-319.

30. Crosby, A. J. and Lee, J. (2007) Polymer Nanocomposites: The “Nano” Effect on

Mechanical Properties. Polymer Reviews, 47(2): 217 — 229.

31. Ray, S. S. and Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a

review from preparation to processing. Progress in Polymer Science, 28 (11):

1539–1641.

32. Ray, S. S. and Bousmina, M. (2006). Polymer nanocomposites and their

applications. American Scientific Publishers, California.

33. Sza´zdi, L., Pozsgay, A. and Puka´nszky, B. (2007). Factors and processes

influencing the reinforcing effect of layered silicates in polymer nanocomposites.

European Polymer Journal, 43(2): 345–359.

34. Giannelis, E. P., Krishnamoorti, R. and Manias, E. (1999). Polymer - silicate

nanocomposites: model systems for confined polymers, and polymer brushes.

Advances in Polymer Science, 138(1990): 107 -147

35. Messersmith, P.B. and Giannelis, E. P. (1995). Synthesis and barrier properties of

poly(e-caprolactone)-layered silicate nanocomposites. Journal of Polymer Science

Part A: Polymer Chemistry, 33(7):1047–1057

36. Sadhu, S. and Bhowmick, A. K. (2005). Effect of nanoclay on the dynamic

mechanical properties of styrene butadiene and acrylonitrile butadiene rubber

vulcanizates. Rubber Chemistry and Technology, 78(2): 321–335.

175

37. Sadhu, S. and Bhowmick, A. K. (2004). Preparation and properties of styrene–

butadiene rubber based nanocomposites: the influence of the structural and

processing parameters. Journal of Applied Polymer Science, 92(2): 698–709.

38. Lagaly, G. (1999). Introduction: from Clay Mineral-polymer Interactions to Clay

Mineral polymer Nanocomposites, Applied Clay Science, 15(1-2): 1–9.

39. Choudalakis, G. and Gotsis, A.D. (2009). Permeability of polymer/clay

nanocomposites: a review. European Polymer Journal, 45(4): 967–984.

40. Mittal, V., Editor. (2010). Barrier properties of polymer clay nanocomposites,

Nova Science Publishers, New York.

41. Nah, C., Ryu, H.J., Kim, W.D. and Choi, S. (2002). Barrier property of clay -

acrylonitrile butadiene copolymer nanocomposite. Polymers for Advanced

Technologies, 13(9): 649–652

42. Kim, J., Oh, T. and Lee, D. (2004). Curing and barrier properties of NBR/organo-

clay nanocomposite. Polymer International, 53(4): 406–411.

43. Shields, R. J., Bhattacharya, D. and Fakirov, S. (2008). Oxygen permeability

analysis of microfibril reinforced composites from PE/PET blends. Composites

Part A: Applied Science and Manufacturing, 39(6): 940-949.

44. Mallapragada, S. and Narasimhan, B. Editors. (2005). Handbook of biodegradable

polymeric, materials and their applications, American Scientific Publishers,

California.

45. Dietsche, F., Thomann, Y., Thomann, R. and Mulhaupt, R. (2000). Translucent

acrylic nanocomposites containing anisotropic laminated nanoparticles derived

from intercalated layered silicates. Journal of Applied Polymer Science, 75 (3):

396-406.

46. Mittal, V., Kim, J. K. and Pal, K., Editors. (2011). Recent advances in elastomeric

nanocomposites, Springer, Heidelberg.

47. Romero, D. B., Carrard, M., Heer, W. D. and Zuppiroli, L. (1996). A carbon

nanotube/organic semiconducting polymer heterojunction. Advanced Materials,

8(11): 899–902.

48. Mildred, S. Dresselhaus, Gene Dresselhaus, Phaedon Avouris. (2001). Carbon

nanotubes: synthesis, structure, properties, and applications, Springer, berlin.

49. Lau, K. T., Gu, C. and Hui, D. (2006). A critical review on nanotube and

nanotube/ nanoclay related polymer composite materials. Composites Part B,

37(6): 425–436.

176

50. Bokobza, L. (2007). Multiwall carbon nanotube elastomeric composites: a review.

Polymer, 48(17): 4907 – 4920.

51. Andrews, R. and Weisenberger, M. C. (2004). Carbon nanotube polymer

composites. Current Opinion in Solid State and Materials Science, 8(1): 31–37.

52. Ramanathan, T., Liu, H. and Brinson, L. C. (2005). Functionalized

SWNT/polymer nanocomposites for dramatic property improvement. Journal of

Polymer Science Part B: Polymer Physics, 43(17): 2269- 2279.

53. El-Nashar D. E., Mansour S. H. and Girgis, E. (2006). Nickel and iron nano-

particles in natural rubber composites, Journal of Material Science, 41(16): 5359–

5364.

54. Chen, Y.C., Zhou, S.X., Yang, H.H. and Wu, L.M. (2005). Structure and

properties of polyurethane/nanosilica composites, Journal of Applied Polymer

Science, 95(5): 1032–1039.

55. Cai, L. F., Lin, Z. Y. and Qian, H. (2010). Dispersion of nano-silica in monomer

casting nylon6 and its effect on the structure and properties of composites.

eXPRESS Polymer Letters, 4(7): 397–403.

56. Omar, M. F., Akil, H. M. and Ahmad, Z. A. (2011). Mechanical properties of

nanosilica/polypropylene composites under dynamic compression loading.

Polymer Composites, 32(4): 565–575.

57. Chuayjuljit, S. and Luecha, W. (2011). XSBR/NR rubber blends filled with

polystyrene-encapsulated nanosilica prepared by in situ differential

microemulsion polymerization. Journal of Elastomers and Plastics, Published

online before print June 1, 2011, doi: 10.1177/0095244311405001.

58. Zou, H., Wu, S. and Shen, J. (2008). Polymer/silica nanocomposites: preparation,

characterization, properties, and applications. Chemical Reviews, 108(9): 3893–

3957.

59. Huang, W., Tsai, H. and Lee, W. (2010). Preparation and properties of

thermosensitive organic-inorganic hybrid gels containing modified nanosilica.

Polymer Composites, 31(10): 1712–1721.

60. Joshi, M. and Butola, B. S. (2004). Polymeric nanocomposites—polyhedral

oligomeric silsesquioxanes (POSS) as hybrid nanofiller. Polymer Reviews, 44(4):

389 – 410.

177

61. Madhavan, K. and Reddy, B.S.R. (2009). Structure–gas transport property

relationships of poly(dimethylsiloxane–urethane) nanocomposite membrane.

Journal of Membrane Science, 342(1-2): 291–299.

62. Fina, A., Tabuani, D., Frache, A. and Camino, G. (2005). Polypropylene–

polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer, 46(19):

7855-7866.

63. Zhao Y. and Schiraldi, D. A. (2005). Thermal and mechanical properties of

polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer,

46(25): 11640-11647.

64. Zhang, Y., Lee, S., Yoonessi, M., Liang, K. and Pittman, C. U. (2006). Phenolic

resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid

nanocomposites: structure and properties. Polymer, 47(9): 2984-2996.

65. Madbouly, S. A., Otaigbe, J. U., Nanda, A. K. and Wicks, D. A. (2007).

Rheological behavior of POSS/polyurethane−urea nanocomposite films prepared

by homogeneous solution polymerization in aqueous dispersions.

Macromolecules, 40 (14): 4982–4991.

66. Zeng, J., Kumar, S., Iyer, S., Schiraldi, D. A. and Gonzalez, R. I. (2005).

Reinforcement of poly(ethylene terephthalate) fibers with polyhedral oligomeric

silsesquioxanes (POSS). High Performance Polymers, 17(3): 403-424.

67. Zebarjad, S. M., Sajjadi, S. A., Tahani, M. and Lazzeri, A. (2006). A study on

thermal behaviour of HDPE/CaCO3 nanocomposites. Journal of Achievements in

Materials and Manufacturing Engineering, 17(1-2): 173-176.

68. Osman M. A. and Atallah A. (2006). Effect of the particle size on the viscoelastic

properties of filled polyethylene, Polymer 47(7): 2357-2368.

69. Kuang, Y., Zhao, L., Zhang, S., Zhang, F., Dong, M. and Xu, S. (2010).

Morphologies, preparations and applications of layered double hydroxide micro-

/nanostructures. Materials, 3(12): 5220-5235.

70. Reddy, B. S. R. Editor. (2011). Advances in Diverse Industrial Applications of

Nanocomposites, InTech, Croatia.

71. Jaymand, M. (2011). Synthesis and characterization of an exfoliated modified

syndiotactic polystyrene/Mg–Al-layered double-hydroxide nanocomposite.

Polymer Journal, 43(2): 186–193.

72. Valente, J. S. and Prince, J. (2010). Layered double hydroxides: properties,

applications and synthetic procedures. SciTopics. Retrieved June 27, 2011, from

178

http://www.scitopics.com/Layered_Double_Hydroxides_Properties_Applications_

and_Synthetic_Procedures.html

73. Angellier, H., Molina-Boisseau, S. and Dufresne, A. (2005) Mechanical properties

of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules,

38(22): 9161 - 9170.

74. Cherian, B. M., Pothan, L. A., Nguyen-Chung, T., Mennig, G., Kottaisamy, M.

and Thomas S. (2008). Novel method for the synthesis of cellulose nanofibril

whiskers from banana fibers and characterization. Journal of Agricultural and

Food Chemistry, 56(14): 5617–5627.

75. Henrickson, M., Berglund, L.A., Isaksson, P., Lindstrm, T. and Nishino, T (2008).

Cellulose nanopaper structures of high toughness. Biomacromolecules, 9(6):

1579–1585.

76. Messersmith, P. B. and Giannelis, E. P. (1993). Polymer-layered silicate

nanocomposites: in situ intercalative polymerization of ε-caprolactone in layered

silicates. Chemistry of Materials, 5(8): 1064-1066.

77. Bandyopadhyay, A., Sarkar, M. D. and Bhowmick, A. K. Polymer–filler

interactions in sol–gel derived polymer/silica hybrid nanocomposites. Journal of

Polymer Science Part B: Polymer Physics, 43(17): 2399–2412.

78. Sadeghi, M., Semsarzadeh, M. A., Barikani, M. and Chenar, M. P. (2011). Gas

separation properties of polyether-based polyurethane–silica nanocomposite

membranes. Journal of Membrane Science, 376(1-2): 188-195

79. Wu, Y., Wang, Y., Zhang, H., Wang, Y., Yu, D., Zhang, L. and Yang, J. (2005).

Rubber–pristine clay nanocomposites prepared by co-coagulating rubber latex and

clay aqueous suspension. Composites Science and Technology, 65(7-8): 1195–

1202.

80. Fornes, T. D., Yoon, P. J., Keskkula, H. and Paul D. R. (2001). Nylon 6

nanocomposites: the effect of matrix molecular weight. Polymer, 42(25): 9929 -

9940

81. Goettler, L. A., Lee, K. Y. and Thakkar, H. (2007). Layered silicate reinforced

polymer nanocomposites: development and applications. Polymer Reviews, 47(2):

291 — 317.

82. Naveau, E., Dominkovics, Z., Detrembleur, C., Jérôme, C., Hári, J., Renner, K.,

Alexandre, M. and Pukánszky, B. (2011). Effect of clay modification on the

179

structure and mechanical properties of polyamide-6 nanocomposites. European

Polymer Journal, 47(1): 5–15.

83. Chow, W.S., Bakar, A. A., Ishak, Z. A. M., Karger-Kocsis, J. and Ishiaku, U. S.

(2005). Effect of maleic anhydride-grafted ethylene–propylene rubber on the

mechanical, rheological and morphological properties of organoclay reinforced

polyamide /polypropylene nanocomposites. European Polymer Journal, 41(4):

687–696.

84. Gianelli, W., Ferrara, G., Camino, G., Pellegatti, G., Rosenthal, J. and Trombini,

R.C. (2005). Effect of matrix features on polypropylene layered silicate

nanocomposites. Polymer, 46(18): 7037–7046.

85. Malucelli, G., Ronchetti, S., Lak, N., Priola, A., Dintcheva, N. T. and Mantia, F.

P. L. (2007). Intercalation effects in LDPE/o-montmorillonites nanocomposites.

European Polymer Journal, 43(2): 328–335.

86. Fornes, T. D. and Paul, D. R. (2003). Modeling properties of nylon 6/clay

nanocomposites using composite theories. Polymer, 44(17): 4993–5013.

87. Incarnato, L., Scarfato, P., Scatteia, L. and Acierno D. (2004). Rheological

behavior of new melt compounded copolyamide nanocomposites. Polymer,

45(10): 3487–3496.

88. Yuan, M. and Turng, L. (2005). Microstructure and mechanical properties of

microcellular injection molded polyamide-6 nanocomposites. Polymer, 46(18):

7273–7292.

89. Vlasveld, D. P. N., Groenewold, J., Bersee, H. E. N. and Picken, S. J. (2005).

Moisture absorption in polyamide-6 silicate nanocomposites and its influence on

the mechanical properties, Polymer, 46(12): 12567–12576.

90. Lim, S., Dasari, A., Yu, Z., Mai, Y., Liu, S. and Yong, M. S. (2007). Fracture

toughness of nylon 6/organoclay/elastomer nanocomposites, Composites Science

and Technology, 67(14): 2914–2923.

91. Chung, H. and Das, S. (2008). Functionally graded Nylon-11/silica

nanocomposites produced by selective laser sintering. Materials Science and

Engineering A, 487(1-2): 251–257.

92. Gupta, R. K. and Bhattacharya, S. N. (2008). Polymer-clay nanocomposites:

current status and challenges. Indian Chemical Engineer, 50(3): 242-267

180

93. Mittal, V. (2007). Polypropylene-layered silicate nanocomposites: filler matrix

interactions and mechanical properties. Journal of Thermoplastic Composite

Materials, 20(6): 575- 599.

94. Dadfar, S. M. A., Alemzadeh, I., Dadfar, S. M. R. and Vosoughi, M. (2011).

Studies on the oxygen barrier and mechanical properties of low density

polyethylene/organoclay nanocomposite films in the presence of ethylene vinyl

acetate copolymer as a new type of compatibilizer. Materials and Design, 32(4):

1806–1813.

95. Lotti, C., Isaac, C. S., Branciforti, M. C., Alves, R. M. V., Liberman, S. and

Bretas, R. E. S. (2008). Rheological, mechanical and transport properties of blown

films of high density polyethylene nanocomposites, European Polymer Journal,

44(5): 1346–1357

96. Morawiec, J., Pawlak, A., Slouf, M., Galeski, A., Piorkowska, E. and Krasnikowa,

N. (2005). Preparation and properties of compatibilized LDPE/organo-modified

montmorillonite nanocomposites. European Polymer Journal, 41(5): 1115–1122.

97. Dong, Y. and Bhattacharyya, D. (2008). Effects of clay type, clay/compatibiliser

content and matrix viscosity on the mechanical properties of

polypropylene/organoclay nanocomposites. Composites Part A: Applied Science

and Manufacturing, 39(7): 1177–1191.

98. Villaluenga, J.P.G., Khayet, M., Lo´pez-Manchado, M. A., Valentin, J. L.,

Seoane, B. and Mengual, J. I. (2007). Gas transport properties of

polypropylene/clay composite membranes, European Polymer Journal, 43(4):

1132–1143.

99. Frounchi, M., Dadbin, S., Salehpour, Z. and Noferesti, M. (2006). Gas barrier

properties of PP/EPDM blend nanocomposites. Journal of Membrane Science,

282(1-2): 142–148.

100. Zhu, W., Zhang G., Yu, J. and Dai, G. (2004). Crystallization behavior and

mechanical properties of polypropylene copolymer by in situ copolymerization

with a nucleating agent and/or nano-calcium carbonate. Journal of Applied

Polymer Science, 91(1): 431–438.

101. Yang, K., Yang, Q., Li, G., Sun, Y. and Feng, D. (2006). Morphology and

mechanical properties of polypropylene/calcium carbonate nanocomposites.

Materials Letters, 60(6): 805–809.

181

102. Lin, Y., Chen, H., Chan, C. and Wu, J. (2010). The toughening mechanism of

polypropylene/calcium carbonate nanocomposites. Polymer, 51(14): 3277-3284.

103. Gong, G., Wu, J., Lin, Y., Chan, C. and Yang, M. (2009). Dynamic rheological

behavior of isotactic polypropylene filled with nano-calcium carbonate modified

by stearic acid coating. Journal of Macromolecular Science, Part B, 48(2): 329 —

343.

104. Sahebian, S., Zebarjad, S. M., Sajjadi, S. A., Sherafat, Z. and Lazzeri, A. (2007).

Effect of both uncoated and coated calcium carbonate on fracture toughness of

HDPE/CaCO3 nanocomposites. Journal of Applied Polymer Science, 104(6):

3688–3694.

105. Wang, W., Zeng, X., Wang, G. and Chen, J. (2007). Preparation and

characterization of calcium carbonate/ low-density-polyethylene nanocomposites.

Journal of Applied Polymer Science, 106(3): 1932–1938.

106. Chen, J. H., Rong, M. Z., Ruan, W. H. and Zhang, M. Q. (2009). Interfacial

enhancement of nano-SiO2/polypropylene composites. Composites Science and

Technology, 69(2): 252–259.

107. Kalaitzidou, K., Fukushima, H. and Drzal, L. T. (2007). Mechanical properties

and morphological characterization of exfoliated graphite–polypropylene

nanocomposites. Composites Part A: Applied Science and Manufacturing, 38(7):

1675–1682.

108. Zhou, Z., Wang, S., Lu, L., Zhang, Y. and Zhang Y. (2008). Functionalization of

multi-wall carbon nanotubes with silane and its reinforcement on polypropylene

composites. Composites Science and Technology, 68(7-8): 1727–1733.

109. Xu, D. and Wang, Z. (2008). Role of multi-wall carbon nanotube network in

composites to crystallization of isotactic polypropylene matrix. Polymer, 49(1):

330 – 338.

110. Awad, W. H., Beyer, G., Benderly, D., Ijdo, W. L., Songtipya, P., Jimenez-Gasco,

M. M., Manias, E. and Wilkie, C. A. (2009). Material properties of nanoclay PVC

composites, Polymer, 50(8): 1857–1867.

111. Lepoittevin, B., Pantoustier, N., Devalckenaere, M., Alexandre, M., Calberg, C.,

Je´roˆme, R., Henrist, C., Ulmont, A. and Dubois. P. (2003). Polymer/layered

silicate nanocomposites by combined intercalative polymerization and melt

intercalation: a masterbatch process. Polymer, 44(7): 2033–2040.

182

112. Patil, C. B., Kapadi, U. R., Hundiwale, D. G. and Mahulikar, P. P. (2009).

Preparation and characterization of poly(vinyl chloride) calcium carbonate

nanocomposites via melt intercalation. Journal of Material Science, 44(12): 3118–

3124.

113. Xie, X., Liu, Q., Li, R. K., Zhou, X., Zhang, Q., Yu, Z. and Mai, Y. (2004).

Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared

by in situ polymerization. Polymer, 45(19): 6665–6673.

114. Zhang, L., Chen, X. and Li, C. (2005). Mechanical properties of PVC/nano-

CaCO3 composites. Journal of Material Science, 40(8): 2097 – 2098.

115. Sohn, J.-I., Lee, C. H., Lim, S. T., Kim, T. H., Choi, H. J. and Jhon, M. S. (2003).

Viscoelasticity and relaxation characteristics of polystyrene/clay nanocomposite,

Journal of Material Science, 38(9): 1849 – 1852.

116. Dazhu, C., Haiyang, Y., Pingsheng, H. and Weian, Z. (2005). Rheological and

extrusion behavior of intercalated high-impact polystyrene/organomontmorillonite

nanocomposites. Composites Science and Technology, 65(10): 1593–1600.

117. Akat, H., Tasdelen, M. A., Prez, F. D. and Yagci, Y. (2008). Synthesis and

characterization of polymer/clay nanocomposites by intercalated chain transfer

agent. European Polymer Journal, 44(7): 1949–1954.

118. Thomas, P. S., Thomas, S., Bandyopadhyay, S., Wurm, A. and Schick, C. (2008).

Polystyrene/calcium phosphate nanocomposites: dynamic mechanical and

differential scanning calorimetric studies. Composites Science and Technology,

68(15-16): 3220–3229.

119. Lu, M., Zhou, W. and Mai K. (2006). Effect of nano-CaCO3 on polymorphic

behavior in syndiotactic polystyrene for non-isothermal crystallization. Polymer,

47(5): 1661-1666.

120. Yu, J., Lu, K., Sourty, E., Grossiord, N., Koning, C. E. and Loos, J. (2007).

Characterization of conductive multiwall carbon nanotube/polystyrene composites

prepared by latex technology.Carbon. 45(15): 2897–2903.

121. Pramanik, M., Srivastava, S. K., Samantaray, B. K. and Bhowmick, A. K.

(2003). EVA/clay nanocomposite by solution blending: effect of aluminosilicate

layers on mechanical and thermal properties. Macromolecular Research, 11(4):

260-266.

183

122. Gupta, R. K., Pasanovic-Zujo, V. and Bhattacharya, S.N. (2005). Shear and

extensional rheology of EVA/layered silicate-nanocomposites. Journal of Non-

Newtonian Fluid Mechanics, 128(2-3): 116–125.

123. Kim, B. K., Seo, J. W. and Jeong, H. M. (2003). Morphology and properties of

waterborne polyurethane/clay nanocomposites. European Polymer Journal, 39(1):

85–91.

124. Koerner, H., Liu, W., Alexander, M., Mirau, P., Dowty, H. and Vaia, R. A.

(2005). Deformation–morphology correlations in electrically conductive carbon

nanotube—thermoplastic polyurethane nanocomposites. Polymer, 46(12): 4405–

4420.

125. Ton-That, M.-T., Ngo, T.-D., Ding, P., Fang, G., Cole, K. C. and Hoa, S. V.

(2004). Epoxy nanocomposites: analysis and kinetics of cure. Polymer

Engineering and Science, 44(6):1132–1141.

126. Mohan, T. P., Ramesh Kumar, M. and Velmurugan, R. (2006). Mechanical and

barrier properties of epoxy polymer filled with nanolayered silicate clay particles.

Journal of Material Science, 41(6): 2929–2937.

127. Mascia, L., Prezzi, L. and Haworth, B. (2006). Substantiating the role of phase

bicontinuity and interfacial bonding in epoxy-silica nanocomposites. Journal of

Material Science, 41(4): 1145–1155.

128. Fang, Z., Shi, H., Gu, A. and Feng, Y. (2007). Effect of bentonite on the structure

and mechanical properties of CE/CTBN system, Journal of Material Science,

42(12): 4603–4608.

129. Lucignano, C., Quadrini, F.and Santo, L. (2008). Dynamic mechanical

performances of polyester clay nanocomposite thick films. Journal of Composite

Materials, 42(26): 2841-2852.

130. Kim, Y. H. and Kim, D. S. (2009). Physical properties of polyester-acrylate/clay

nanocomposite films with different organoclays. Polymer Composites, 30(7):

926–931.

131. Maji, P. K., Guchhait, P. K. and Bhowmick, A. K. (2009). Effect of nanoclays on

physico-mechanical properties and adhesion of polyester-based polyurethane

nanocomposites: structure–property correlations. Journal of Material Science,

44(21): 5861–5871.

184

132. Maji, P. K., Das, N. K. and Bhowmick, A. K. (2010). Preparation and properties

of polyurethane nanocomposites of novel architecture as advanced barrier

materials. Polymer, 51(5): 1100–1110.

133. Mishra, S., Sonawane, S. and Chitodkar, V. (2005). Comparative study on

improvement in mechanical and flame retarding properties of epoxy-CaCO3 nano

and commercial composites. Polymer-Plastics Technology and Engineering,

44(3): 463 — 473.

134. Jin, F. and Park, S. (2008). Interfacial toughness properties of trifunctional epoxy

resins/calcium carbonate nanocomposites. Materials Science and Engineering A,

475(1-2): 190–193.

135. Jain, R., Narula, A. K. and Choudhary, V. (2009). Studies on epoxy/calcium

carbonate nanocomposites. Journal of Applied Polymer Science, 114(4): 2161–

2168.

136. Choi, W. J., Powell, R. L. and Kim, D. S. (2009). Curing behavior and properties

of epoxy nanocomposites with amine functionalized multiwall carbon nanotubes.

Polymer Composites, 30(4): 415–421.

137. Herna´ndez-Pe´rez, A., Avile´s, F., May-Pat, A., Valadez-Gonza´lez, A., Herrera-

Franco, P. J. and Bartolo-Pe´rez, P. (2008). Effective properties of multiwalled

carbon nanotube/epoxy, composites using two different tubes. Composites Science

and Technology, 68(6): 1422–1431.

138. Wang, Q., Dai, J., Li, W., Wei, Z. and Jiang, J. (2008). The effects of CNT

alignment on electrical conductivity and mechanical properties of SWNT/epoxy

nanocomposites. Composites Science and Technology, 68(7-8): 1644–1648.

139. Chen, W., Lu, H. and Nutt, S. R. (2008). The influence of functionalized MWCNT

reinforcement on the thermomechanical properties and morphology of epoxy

nanocomposites. Composites Science and Technology, 68(12): 2535-2542.

140. Yeh, M., Tai, N. and Lin, Y. (2008). Mechanical properties of phenolic-based

nanocomposites reinforced by multi-walled carbon nanotubes and carbon fibers.

Composites Part A: Applied Science and Manufacturing, 39(4): 677–684.

141. Wu, Y., Jia, Q., Yu, D. and Zhang, L. (2004). Modeling Young’s modulus of

rubber–clay nanocomposites using composite theories. Polymer Testing, 23(8):

903–909.

185

142. Okada, A., Fukumori, A., Usuki, A., Kojima, Y., Kuruachi, T. and Kamigaito, O.

(1991). Rubber-clay hybrid synthesis and properties. Polymer Chemistry, 32(2):

540 – 541.

143. Y. Kojima, K. Fukumori, A. Usuki, A. Okada and T. Kurauchi (1993). Gas

permeabilities in rubber-clay hybrid. Journal of Materials Science Letters,

12(12):889–890.

144. Varghese, S., Karger-Kocsis, J. and Gatos, K.G. (2003). Melt compounded

epoxidized natural rubber/layered silicate nanocomposites: structure-properties

relationships. Polymer, 44(14): 3977–3983.

145. Varghese, S. and Karger-Kocsis, J. (2003). Natural rubber-based nanocomposites

by latex compounding with layered silicates. Polymer, 44(17): 4921–4927.

146. Varghese, S. and Karger-Kocsis, J. (2004). Melt-compounded natural rubber

nanocomposites with pristine and organophilic layered silicates of natural and

synthetic origin. Journal of Applied Polymer Science, 91(2): 813–819.

147. Khanlari, S. and Kokabi, M. (2011). Thermal stability, aging properties, and flame

resistance of NR-based nanocomposite. Journal of Applied Polymer Science,

119(2): 855–862.

148. Azlina, H. N., Sahrim, H. A. and Rozaidi, R. (2011). Effect of nanoclay on the

microstructure and the properties of thermoplastic natural rubber (TPNR)/OMMT

nanocomposites, Journal of Thermoplastic Composite Materials, Published online

before print June 13, doi: 10.1177/0892705711408987.

149. Arroyo, M., Lo´pez-Manchado, M. A. and Herrero, B. (2003). Organo-

montmorillonite as substitute of carbon black in natural rubber compounds.

Polymer, 44(8): 2447–2453.

150. Carli, L. N., Roncato, C. R., Zanchet, A., Mauler, R. S., Giovanela, M., Brandalise

R. N. and Crespo, J. S. (2011). Characterization of natural rubber nanocomposites

filled with organoclay as a substitute for silica obtained by the conventional two-

roll mill method. Applied Clay Science, 52(1-2) : 56-61.

151. Jacob, A., Kurian, P. and Aprem, A. S. (2007). Cure characteristics and

mechanical properties of natural rubber-layered clay nanocomposites.

International Journal of Polymeric Materials, 56(6): 593 — 604.

152. Jeon, H. U., Lee, D. H., Choi, D., Kim, M. S., Kim, J. H. and Jeong, H. M. (2007).

Characteristics of rubber/sodium montmorillonite nanocomposites prepared by a

novel method. Journal of Macromolecular Science, Part B, 46(6): 1151 — 1163.

186

153. Avalos, F., Ortiz, J., Zitzumbo, R., Lo´pez-Manchado, M. A., Verdejo, R. and

Arroyo, M. (2008.) Effect of montmorillonite intercalant structure on the cure

parameters of natural rubber. European Polymer Journal, 44(10): 3108–3115.

154. Stephen, R., Varghese, S., Joseph, K., Oommen, Z. and Thomas, S. (2006).

Diffusion and transport through nanocomposites of natural rubber (NR),

carboxylated styrene butadiene rubber (XSBR) and their blends. Journal of

Membrane Science, 282(1-2): 162–170.

155. Stephen, R., Ranganathaiah, C., Varghese, S., Joseph, K. and Thomas, S. (2006).

Gas transport through nano and micro composites of natural rubber (NR) and their

blends with carboxylated styrene butadiene rubber (XSBR). Polymer, 47(3): 858–

870.

156. Jiamjitsiripong, K. and Pattamaprom, C. (2011). Effects of epoxidized natural

rubber on gas barrier and mechanical properties of NR/BIIR composites. Journal

of Elastomers and Plastics, Published online before print March 14, 2011, doi:

10.1177/0095244311400502.

157. Ikeda, Y., Poompradub, S., Morita, Y. and Kohjiya, S. (2008). Preparation of high

performance nanocomposite elastomer: effect of reaction conditions on in situ

silica generation of high content in natural rubber. Journal of Sol-Gel Science and

Technology, 45(3): 299–306.

158. Peng, C., Kong, L. X., Li, S., Chen, Y. and Huang, M. F. (2007). Self-assembled

natural rubber/silica nanocomposites: Its preparation and characterization.

Composites Science and Technology, 67(15-16): 3130–3139.

159. Lorenz, H., Fritzsche, J., Das, A., Stöckelhuber, K. W., Jurk, R., Heinrich, G. and

Klüppel, M. (2009). Advanced elastomer nano-composites based on CNT-hybrid

filler systems. Composites Science and Technology, 69(13): 2135–2143.

160. Atieh, M. A., Girun, N., Mahdi, E., Tahir, H., Guan, C. T., Alkhatib, M. F.,

Ahmadun, F. and Baik, D. R. (2006). Effect of multi-wall carbon nanotubes on the

mechanical properties of natural rubber, fullerenes. Nanotubes and Carbon

Nanostructures, 14(4): 641 — 649.

161. Tarawneh, M. A., Ahmad, S. H., Rasid, R., Yahya, S.Y., Lau, K., Kong, I., Noum,

S. Y. E. (2011). Thermal behavior of MWNT-reinforced thermoplastic natural

rubber nanocomposites. Journal of Reinforced Plastics and Composites, 30(3):

216-221.

187

162. Jiang, M., Dang, Z., Yao, S. and Bai, J. (2008). Effects of surface modification of

carbon nanotubes on the microstructure and electrical properties of carbon

nanotubes/rubber nanocomposites. Chemical Physics Letters, 457(4-6): 352–356.

163. Morton, M. (1999). Rubber Technology, 3rd edition, Kluver Academic Publishers,

Dordrecht.

164. Hofmann, W. (1989). Rubber Technology Handbook, Hanser Gardner

Publications, Dordrecht.

165. Kim, J., Oh, T. and Lee, D. (2003). Preparation and characteristics of nitrile

rubber (NBR) nanocomposites based on organophilic layered clay. Polymer

International, 52(7): 1058-1063.

166. Kim, J., Oh, T. and Lee, D. (2003). Morphology and rheological properties of

nanocomposites based on nitrile rubber and organophilic layered silicates.

Polymer International, 52(7): 1203 – 1208.

167. Kader, M. A., Kim, K., Lee, Y.-S. and Nah, C. (2006). Preparation and properties

of nitrile rubber/montmorillonite nanocomposites via latex blending. Journal of

Material Science, 41(22): 7341–7352.

168. Wu, Y., Jia, Q., Yu, D. and Zhang, L. (2003). Structure and Properties of nitrile

rubber (NBR)–clay nanocomposites by co-coagulating NBR latex and clay

aqueous suspension. Journal of Applied Polymer Science, 89(14): 3855–3858.

169. Yu, Y., Gu, Z., Song, G., Li, P., Li, H. and Liu, W. (2011). Structure and

properties of organo-montmorillonite/nitrile butadiene rubber nanocomposites

prepared from latex dispersions. Applied Clay Science, 52(4): 381-385

170. Hwang, W., Wei, K. and Wu, C. (2004). Preparation and mechanical properties of

nitrile butadiene rubber/silicate nanocomposites. Polymer, 45(16): 5729–5734.

171. Hwang, W., Wei, K. and Wu, C. (2004). Mechanical, thermal, and barrier

properties of NBR/organosilicate nanocomposites. Polymer Engineering and

Science, 44(11): 2117–2124.

172. Sadhu, S. and Bhowmick, A. K. (2004). Preparation and properties of

nanocomposites based on acrylonitrile–butadiene rubber, styrene–butadiene

rubber, and polybutadiene rubber. Journal of Polymer Science Part B: Polymer

Physics, 42(9): 1573–1585.

173. Sadhu, S. and Bhowmick, A. K. (2005). Morphology study of rubber based

nanocomposites by transmission electron microscopy and atomic force

microscopy. Journal of Material Science, 40(7): 1633 – 1642.

188

174. Sadhu, S. and Bhowmick, A. K. (2005). Unique rheological behavior of rubber

based nanocomposites. Journal of Polymer Science Part B: Polymer Physics,

43(14): 1854–1864.

175. Nah, C., Ryu, H.J., Kim, W.D. and Chang, Y.W. (2003). Preparation and

properties of acrylonitrile–butadiene copolymer hybrid nanocomposites with

organoclays. Polymer International, 52(8): 1359-1364.

176. Chung, J. W., Han, S. J. and Kwak, S. (2009). Application of strain–time

correspondence as a tool for structural analysis of acrylonitrile–butadiene

copolymer nanocomposites with various organoclay loadings. European Polymer

Journal, 45(1): 79–87.

177. Soares, B. G., Oliveira, M., Zaioncz, S., Gomes, A. C. O., Silva, A. A., Santos,

K. S. and Mauler, R. S. (2011). Nitrile rubber/organomontmorillonite

nanocomposites produced by solution and melt compounding: effect of the

polarity of the quaternary ammonium intercalants. Journal of Applied Polymer

Science, 119(1): 505–514.

178. Chung, J. W., Han, S. J. and Kwak, S. (2008). Dynamic viscoelastic behavior and

molecular mobility of acrylonitrile–butadiene copolymer nanocomposites with

various organoclay loadings. Composites Science and Technology, 68(6): 1555–

1561.

179. Thomas, P.C., Tomlal Jose, E., Selvin, T. P., Thomas, S. and Joseph, K. (2010).

High-performance nanocomposites based on arcylonitrile-butadiene rubber with

fillers of different particle size: mechanical and morphological studies. Polymer

Composites, 31(9): 1515–1524.

180. Das, A., Jurk, R., Stöckelhuber, K. W. and Heinrich, G. (2007). Rubber curing

chemistry governing the orientation of layered silicate. eXPRESS Polymer Letters,

1(11): 717–723.

181. Kim, J., Lee, D., Oh, T. and Lee, D. (2003). Characteristics of nitrile–butadiene

rubber layered silicate nanocomposites with silane coupling agent. Journal of

Applied Polymer Science, 89(10): 2633–2640.

182. Rajasekar, R., Pal, K., Heinrich G., Das, A. and Das, C. K. (2009). Development

of nitrile butadiene rubber–nanoclay composites with epoxidized natural rubber as

compatibilizer. Materials and Design, 30(9): 3839–3845.

183. Janowska, G., Kucharska-Jastrząbek A. and Rybiński, P. (2011). Thermal

stability, flammability and fire hazard of butadiene-acrylonitrile rubber

189

nanocomposites. Journal of Thermal Analysis and Calorimetry, 103(3): 1039-

1046.

184. Schutzius, T. M., Tiwari, M. K., Bayer, I. S. and Megaridis, C. M. (2011). High

strain sustaining, nitrile rubber based, large-area, superhydrophobic,

nanostructured composite coatings. Composites Part A: Applied Science and

Manufacturing, 42(8): 979-985.

185. Verge, P., Peeterbroeck, S., Bonnaud, L. and Dubois, P. (2010). Investigation on

the dispersion of carbon nanotubes in nitrile butadiene rubber: role of polymer-to-

filler grafting reaction. Composites Science and Technology, 70(10): 1453-1459.

186. Likozar, B. and Major, Z. (2010). Morphology, mechanical, cross-linking,

thermal, and tribological properties of nitrile and hydrogenated nitrile

rubber/multi-walled carbon nanotubes. Applied Surface Science, 257(2): 565–573.

187. Lapa, V. L. C., Suarez, J. C. M., Visconte, L. L. Y. and Nunes, R. C. R. (2007).

Fracture behavior of nitrile rubber-cellulose II nanocomposites. Journal of

Material Science, 42(24): 9934–9939.

188. Choudhury, A., Bhowmick, A. K. and Soddemann, M. (2010). Effect of organo-

modified clay on accelerated aging resistance of hydrogenated nitrile rubber

nanocomposites and their life time prediction. Polymer Degradation and Stability,

95(12): 2555 – 2562.

189. Gatos, K. G. and Karger-Kocsis, J. (2007). Effect of the aspect ratio of silicate

platelets on the mechanical and barrier properties of hydrogenated acrylonitrile

butadiene rubber (HNBR)/layered silicate nanocomposites. European Polymer

Journal, 43(4): 1097–1104.

190. Guan, Y., Zhang, L., Zhang, L. and Lu, Y. (2011). Study on ablative properties

and mechanisms of hydrogenated nitrile butadiene rubber (HNBR) composites

containing different fillers. Polymer Degradation and Stability, 96(5): 808-817.

191. Liu, Q., Ren, W., Zhang, Y. and Zhang, Y. (2011). Hydrogenated carboxylated

nitrile rubber/modified zinc carbonate basic composites with photoluminescence

properties. European Polymer Journal, 47(5): 1135-1141.

192. Le, H. H., Ali, Z., Ilisch, S.and Radusch, H.-J. (2010). Time-dependent

reinforcement effect of nanoclay in rubber nanocomposites. Journal of Materials

Science, 46(6): 1685-1696.

190

193. Zhang, L., Wang, Y., Wang, Y., Sui, Y. and Yu, D. (2000). Morphology and

mechanical properties of clay/styrene- butadiene rubber nanocomposites. Journal

of Applied Polymer Science, 78(11): 1873–1878.

194. Zhang, Z., Zhang, L., Li, Y. and Xu, H. (2005). New fabricate of styrene–

butadiene rubber/montmorillonite nanocomposites by anionic polymerization.

Polymer, 46(1): 129–136.

195. Chakraborty, S., Kar, S., Dasgupta, S., Mukhopadhyay, R., Bandyopadhyay, S.,

Joshi, M. and Ameta, S. C. (2010). Study of the properties of in-situ sodium

activated and organomodified bentonite clay – SBR rubber nanocomposites – Part

I: characterization and rheometric properties. Polymer Testing, 29(2): 181–187.

196. Jia, Q., Wu, Y., Wang, Y., Lu, M. and Zhang, L. (2008). Enhanced interfacial

interaction of rubber/clay nanocomposites by a novel two-step method.

Composites Science and Technology, 68(3-4): 1050–1056.

197. Bhattacharya, M., Maiti, M. and Bhowmick, A. K. (2009). Tailoring properties of

styrene butadiene rubber nanocomposite by various nanofillers and their

dispersion. Polymer Engineering and Science, 49(1): 81–98.

198. Praveen, S., Chattopadhyay, P. K., Albert, P., Dalvi, V. G., Chakraborty B. C. and

Chattopadhyay, S. (2009). Synergistic effect of carbon black and nanoclay fillers

in styrene butadiene rubber matrix: Development of dual structure, Composites

Part A: Applied Science and Manufacturing, 40(3): 309–316.

199. Mishra, S. and Shimpi, N. G. (2005). Comparison of nano CaCO3 and fly ash

filled with stryrene butadiene on mechanical and thermal properties. Journal of

Scientific and Industrial Research, 64(10): 744-751.

200. Mishra, S., Shimpi, N. G. and Patil, U. D. (2007). Effect of nano CaCO3 on

thermal properties of styrene butadiene rubber (SBR). Journal of Polymer

Research, 14(6): 449–459.

201. Atieh, M. A. (2011). Effect of functionalized carbon nanotubes with amine

functional group on the mechanical and thermal properties of styrene butadiene

rubber. Journal of Thermoplastic Composite Materials, Published online before

print February 23, 2011, doi: 10.1177/0892705710397456.

202. Zhou, X., Zhu, Y., Liang, J. and Yu, S. (2010). New fabrication and mechanical

properties of styrene-butadiene rubber/carbon nanotubes nanocomposite. Journal

of Materials Sciences and Technology, 26(12): 1127-1132.

191

203. Tian, M., Cheng, L., Liang, W. and Zhang, L. (2006). Overall properties of

fibrillar silicate/styrene–butadiene rubber nanocomposites. Journal of Applied

Polymer Science 101(5): 2725–2731.

204. Jincheng, W., Xiaoyu, Z., Yuehui, C., Zhijun, L.and Zengliang, Z. (2009).

Properties and mechanism research on polybutadiene styrene rubber (SBR)

composites containing nano-BaSO4. Journal of Elastomers and Plastics, 41(3):

263 – 276.

205. Chang, Y., Yang, Y., Ryu, S.and Nah, C. (2002). Preparation and properties of

EPDM/ organomontmorillonite hybrid nanocomposites. Polymer International,

51(4): 319-324.

206. Acharya, H. and Srivastava, S. K. (2006). Influence of nanodispersed organoclay

on rheological and swelling properties of ethylene propylene diene terpolymer.

Macromolecular Research, 14(2): 132-139.

207. Li, P., Yin, L., Song, G., Sun, J., Wang, L. and Wang, H. (2008). High-

performance EPDM/organoclay nanocomposites by melt extrusion. Applied Clay

Science, 40(1-4): 38–44.

208. Acharya, H., Pramanik, M., Srivastava, S. K. and Bhowmick, A. K. (2004).

Synthesis and evaluation of high-performance ethylene– propylene–diene

terpolymer/organoclay nanoscale composites. Journal of Applied Polymer

Science, 93(5): 2429–2436.

209. Zheng, H., Zhang, Y., Peng, Z. and Zhang, Y. (2004). Influence of clay

modification on the structure and mechanical properties of

EPDM/montmorillonite nanocomposites. Polymer Testing, 23(2): 217–223.

210. Gatos, K. G. and Karger-Kocsis, J. (2005). Effects of primary and quaternary

amine intercalants on the organoclay dispersion in a sulfur-cured EPDM rubber.

Polymer, 46(9): 3069–3076.

211. Ahmadi, S. J., Yudong, H. and Li, W. (2004). Synthesis of EPDM/organoclay

nanocomposites: effect of the clay exfoliation on structure and physical properties.

Iranian Polymer Journal, 13(5): 415-422.

212. Mohammadpour, Y. and Katbab, A. A. (2011). Effects of the compatibilizer

structural parameters on microstructural formation in ethylene–propylene–diene

monomer rubber/ethylene–propylene–diene monomer rubber-g-maleic

anhydride/organoclay nanocomposites. Journal of Applied Polymer Science,

120(6): 3133–3140.

192

213. Su, L., Zhang, L., Yin, S. and Tian, M. (2011). Structure and mechanical

properties of nanodispersed fibrous silicate-reinforced ethylene–propylene–diene

monomer nanocomposites. Journal of Applied Polymer Science, 120(4): 1926–

1933.

214. Ismail, H. and Shaari, S. M. (2010). Curing characteristics, tensile properties and

morphology of palm ash/halloysite nanotubes/ethylene-propylene-diene monomer

(EPDM) hybrid composites. Polymer Testing, 29(7): 872-878.

215. Zhou, Y., Wang, S., Zhang, Y. and Zhang, Y. (2006). Reinforcement effect of

MAA on nano-CaCO3-filled EPDM vulcanizates and possible mechanism.

Journal of Polymer Science Part B: Polymer Physics, 44(8): 1226–1236.

216. Das, A., Costa, F. R., Wagenknecht, U. and Heinrich, G. (2008). Nanocomposites

based on chloroprene rubber: Effect of chemical nature and organic modification

of nanoclay on the vulcanizate properties. European Polymer Journal, 44(11):

3456–3465.

217. Mohomane, M., Djokovic, V., Thomas, S. and Luyt, A. S. (2011).

Polychloroprene nanocomposites filled with different organically modified clays:

Morphology, thermal degradation and stress relaxation behaviour. Polymer

Testing, 30(5): 585-593.

218. Maiti, M. and Bhowmick, A. K. (2007). Dynamic viscoelastic properties of

fluoroelastomer/ clay nanocomposites. Polymer Engineering and Science, 47(11):

1777–1787.

219. Simon, M. W., Stafford, K. T. and Ou, D. L. (2008). Nanoclay reinforcement of

liquid silicone rubber, Journal of Inorganic and Organometallic Polymers and

Materials. 18(3): 364–373.

220. Wang, J., Chen, Y. and Jin, Q. (2006). Preparation and characteristics of a novel

silicone rubber nanocomposite based on organophilic montmorillonite. High

Performance Polymers, 18(3): 325–340.

221. Gacitua, W. E., Ballerini, A. A. and Zhang, J. (2005). Polymer nanocomposites:

synthetic and natural fillers: a review. Maderas Ciencia y tecnologia, 7(3): 159–

178.

222. Feeney, C.A., Goldberg, H.A., Farrell, M., Karim, D. P. and Oree K. R. (2006).

Barrier coating of a non-butyl elastomer and a dispersed layered filler in a liquid

carrier and coated articles. US Patent 10741251, to InMat Inc., Hillsborough, US.

193

223. Ou, Y. C., Yu, Z. Z., Vidal, A., and Donnet, J. B. (1996). Effects of alkylation of

silicas on interfacial interaction and molecular motions between silicas and

rubbers. Journal of Applied Polymer Science, 59(8):1321–1325.

224. Wang, M., Kutsovsky, Y., Reznek, S.R., and Mahmud, K. (2002). Elastomeric

compounds with improved wet skid resistance and methods to improve wet skid

resistance. US Patent 6469089, to Cabot Corp.

225. Kresge, E.N. and Lohse, D.J. (1996). Composite tire innerliners and inner tubes.

US Patent US5576372 to Exxon Chemical Patents Inc., USA

226. Usuki, A., Tukigase, A., and Kato, M. (2002). Preparation and properties of

EPDM-clay hybrids. Polymer, 43(8): 2185–2189.

227. http://www.rapra.net/research/past-projects/nanorub.asp. Accessed 18 June 2011.

228. Liff, S. M., Kumar N. and McKinley, G. H. (2007). High-performance elastomeric

nanocomposites via solvent-exchange processing. Nature Materials, 6(1): 76 – 83.

229. Yang, J., Tian, M., Jia, Q.-X., Shi, J.-H. Zhang, L-Q., Lim, S-H., Yu, Z-Z. and

Mai, Y-W. (2007). Improved mechanical and functional properties of

elastomer/graphite nanocomposites. Acta Materialia, 55(18): 6372–6382.

230. Karger-Kocsis, J. (2006). Dry friction and sliding behavior of organoclay

reinforced thermoplastic polyurethane rubbers. Kautschuk Gummi Kunststoffe,

59(10): 537–543.

231. Anmin, H., Xiaoping,W., Demin, J., and Yanmei, L. (2007). Thermal stability and

aging characteristics of HNBR/ clay nanocomposites in air, water and oil at

elevated temperature. e-Polymers, 051(2007).

232. Claus, R.O., Zeng, T., and Liu, Y. (2002). Electrostrictive and piezoelectric thin

film assemblies and method of fabrication therefore. US Patent 6447887 to

Virginia Tech Intellectual Properties Inc., USA

233. Webb, A. R., Kumar V. A. and Ameer, G. A. (2007). Biodegradable poly(diol

citrate) nanocomposite elastomers for soft tissue engineering. Journal of Materials

Chemistry, 17(9): 900-906.

234. http://spie.org/documents/Newsroom/Imported/003518/003518_10.pdf. Accessed

18 June 2011.

235. Antimicrobial Rubber Technology (2008). http://www.milliken2.com. Accessed

18 June 2011.

194

236. Valavala P. K. and Odegard, G. M. (2005). Modeling techniques for

determination of mechanical properties of polymer nanocomposites. Reviews on

Advanced Materials Science, 9(1): 34-44.

237. Fuchs, C., Bhattacharyya, D.and Fakirov, S. (2005). Microfibril reinforced

polymer–polymer composites: Application of Tsai-Hill equation to PP/PET

composites. Composites Science and Technology, 66(16): 3161-3171.

238. Jayanarayanan, K., Thomas, S. and Joseph, K. (2008). Morphology, static and

dynamic mechanical properties of in situ microfibrillar composites based on

polypropylene/poly (ethylene terephthalate) blends. Composites Part A: Applied

Science and Manufacturing, 39(2): 164–175.

239. Fisher, F. T. and Brinson, L. C. Nanomechanics of nanoreinforced polymers. In:

Rieth, M. and Schommers, W., Editors. (2006). Handbook of theoretical and

computational nanoscience, American Scientific Publishers, California, 253–360.

240. Kalaitzidou, K., Fukushima, H., Miyagawa, H. and Drzal, L.T. (2007). Flexural

and tensile moduli of polypropylene nanocomposites and comparison of

experimental data to Halpin-Tsai and Tandon-Weng models. Polymer

Engineering and Science, 47(11): 1796–1803.

241. Yung, K. C., Wang, J. and Yue, T. M. (2006). Modeling Young’s modulus of

polymer-layered silicate nanocomposites using a modified Halpin–Tsai

micromechanical model. Journal of Reinforced Plastics and Composites, 25(8):

847–861.

242. Liu, H. and Brinson, L. C. (2008). Reinforcing efficiency of nanoparticles: A

simple comparison for polymer nanocomposites. Composites Science and

Technology, 68(6): 1502-1512.

243. Shia, D., Hui, C.Y., Burnside, S. D. and Giannelis, E. P. (1998). An interface

model for the prediction of Young’s modulus of layered siiicate-elastomer

nanocomposites. Polymer Composites, 19(5): 608 – 617.

244. Chen, J., Wang, G., Yu, Z., Huang, Z. and Mai, Y. (2010). Critical particle size

for interfacial debonding in polymer/nanoparticle composites. Composites Science

and Technology, 70(5): 861–872.

245. Mallick, K. and Paul C. (2004). Elastic Parameters of Nanoclay-Reinforced

Polymers for Space and Launch Vehicles. Proceedings of Aerospace Conference,

2004 IEEE, 4: 2740 – 2744.

195

246. Brune, D.A. and Bicerano J. (2002). Micromechanics of nanocomposites:

comparison of tensile and compressive elastic moduli, and prediction of effects of

incomplete exfoliation and imperfect alignment on modulus. Polymer, 43(2):

369-387.

247. Suter, J. L., Coveney, P.V., Greenwell, H. C. and Thyveetil, M. A. (2007). Large-

scale molecular dynamics study of montmorillonite clay: emergence of undulatory

fluctuations and determination of material properties. Journal of Physical

Chemistry C, 111(23): 8248–8259.

248. Minisini, B. and Tsobnang, F. (2005). Molecular dynamics study of specific

interactions in grafted polypropylene organomodified clay nanocomposite.

Composites Part A: Applied Science and Manufacturing, 36(4): 539–544.

249. Zhu, R., Pan, E. and Roy, A. K. (2007). Molecular dynamics study of the stress-

strain behavior of carbonnanotube reinforced Epon 862 composites. Materials

Science and Engineering A, 447(1-2): 51-57.

250. Mokashi, V. V., Qian, D. and Liu, Y. J. (2007). A study on the tensile response

and fracture in carbon nanotube-based composites using molecular mechanics.

Composite Science and Technology, 67(3-4): 530–540.

251. Patel, R. R., Mohanraj, R. and, Pittman, C. U. (2006). Properties of polystyrene

and polymethyl methacrylate copolymers of polyhedral oligomeric

silsesquioxanes: a molecular dynamics study. Journal of Polymer Science Part B:

Polymer Physics, 44(1): 234–248.

252. Sen, T. Z., Sharaf, M. A., Mark, J. E. and Kloczkowski, A. (2005). Modeling the

elastomeric properties of stereoregular polypropylenes in nanocomposites with

spherical fillers. Polymer, 46(18): 7301–7308.

253. Dong, Y., Bhattacharyya, D. and Hunter, P.J. (2008). Experimental

characterisation and object-oriented finite element modelling of

polypropylene/organoclay nanocomposites. Composites Science and Technology,

68(14): 2864–2875.

254. Saadatfar, M., Afaghi Khatibi, A. and Mortazavi, B. (2011). Effective Parameters

on the stress–strain curve of nylon 66/clay nanocomposite using FEM. Strain,

47(s1): e442–e446.

255. Wan, H., Delale, F. and Shen, L. (2005). Effect of CNT length and CNT-matrix

interphase in carbon nanotube (CNT) reinforced composites. Mechanics Research

Communications, 32(5): 481-489.

196

256. Takahashi, S., Goldberg, H. A., Feeney, C. A., Karim, D. P., Farrell, M., O’Leary,

K. and Paul, D.R. (2006). Gas barrier properties of butyl rubber/vermiculite

nanocomposite coatings, Polymer, 47(9): 3083–3093.

257. Lape, N. K., Nuxoll, E. E. and Cussler, E. L. (2004). Polydisperse flakes in barrier

films. Journal of Membrane Science, 236(1-2): 29–37.

258. Gusev, A. A. and Lusti, H. R. (2001). Rational design of nanocomposites for

barrier applications. Advanced Materials, 13(21): 1641–1643.

259. Montgomery, D.C. (1996). Design and analysis of experiments, John Wiley, New

York.

260. Anderson, M. J and Whitcomb, P. J. (2004). RSM Simplified, Optimizing

Processes Using Response Surface Methods for Design of Experiments,

Productivity Press, New York.

261. Gunst, R.F., Mason, R. L. and James, L. H. (1989). Statistical design and analysis

of experiments with applications to engineering and science, John Wiley, New

York.

262. Cheremesinoff, N.P. (1990). Product design and testing of polymeric materials,

Marcel Dekker, New York, pp 438-511.

263. Derringer, G.C. (1990). Statistical methods in rubber research and development.

Rubber Chemistry and Technology, 61(3): 377-417.

264. Wu, C. F. J. and Hamad, M. (2000). Experiments planning, analysis and

parameter design optimization, John Wiley, New York.

265. Araujo, P.W. and Brereton RG. (1996). Experimental design II. Optimization.

Trends in Analytical Chemistry, 15(2): 63–70.

266. Bhagawan, S. S. Statistical Design in Polymer Processing. In: Gupta BR, Editor.

(2008). Polymer Processing Technology, Asian Books, New Delhi, 16.1-16.37.

267. Sridhar, V., Prasad, K., Choe, S. and Kundu, P. P. (2001). Optimization of

physical and mechanical properties of rubber compounds by a response surface

methodological approach . Journal of Applied Polymer Science, 82(4): 997–1005.

268. MINITAB software package, Statguide www.Minitab.com. Accessed 18 June

2011.

269. Box, G. E. P. and Draper N. R. (1987). Empirical model building and response

surfaces, John Wiley and Sons, New York.

197

270. Mittal, V. (2008). Modeling the behavior of polymer-layered silicate

nanocomposites using factorial and mixture designs. Journal of Thermoplastic

Composite Materials, 21(1): 9 – 26.

271. Mirmohseni, A. and Zavareh, S. (2010). Modeling and optimization of a new

impact-toughened epoxy nanocomposite using response surface methodology.

Journal of Polymer Research, 18(4): 509 - 517.

272. Chow, W. S. and Yap, Y. P. (2008). Optimization of process variables on flexural

properties of epoxy/organo-montmorillonite nanocomposite by response surface

methodology. eXPRESS Polymer Letters, 2(1): 2–11.

273. Cloisite and Nanofil Additives. http://www.nanoclay.com/keyproperties.asp.

Accessed 18 May 2011.

274. Ganter, M., Gronski, W., Reichert, P. and M¨ulhaupt, R. (2001). Rubber

nanocomposites: morphology and mechanical properties of BR and SBR

vulcanizates reinforced by organophilic layered silicates. Rubber Chemistry and

Technology, 74(2): 221– 235.

275. Mathew, G., Rhee, J.M., Lee, Y.S., Park, D.H. and Nah, C. (2008). Cure kinetics

of ethylene acrylate rubber/clay nanocomposites. Journal of Industrial and

Engineering Chemistry, 14(1): 60–65.

276. Dritis, V.A. and Tchoubar, C. (1990). X-Ray Diffraction by Disordered Lamellar

Structures, Springer- Verlag, New York.

277. Morgan, A.B. and Gilman, J.W. (2003). Characterization of polymer-layered

silicate (clay) nanocomposites by transmission electron microscopy and X-ray

diffraction: a comparative study. Journal of Applied Polymer Science, 87(8):

1329–1338.

278. Sheng, N., Boyce, M.C., Parks, D.M., Rutledge, G.C., Abes, J.I. and Cohen, R.E.

(2004). Multiscale micromechanical modeling of polymer/clay nanocomposites

and the effective clay particle. Polymer, 45(2): 487–506.

279. Bhattacharya, M. and Bhowmick, A.K. (2008). Polymer–Filler Interaction in

Nanocomposites: New Interface Area Function to Investigate Swelling Behavior

and Young’s Modulus. Polymer, 49(22): 4808–4818.

280. Moly, K.A., Bhagawan, S.S., Groeninckx, G. and Thomas, S. (2006). Correlation

between the morphology and dynamic mechanical properties of ethylene vinyl

acetate/linear low-density polyethylene blends: effects of the blend ratio and

compatibilization. Journal of Applied Polymer Science, 100(6): 4526–4538

198

281. Idicula, M., Malhotra, S. K., Joseph, K. and Thomas, S. (2005). Dynamic

mechanical analysis of randomly oriented intimately mixed short banana/sisal

hybrid fibre reinforced polyester composites. Composites Science and

Technology, 65(7-8): 1077 - 1087.

282. Maruyama, T. (1978). Dynamic Mechanical Analysis of Polymeric Materials, 2nd

Edition, Elsevier, Amsterdam.

283. Choi, J.S., Lim, S.T., Choi, H.J., Pozsgay, A., Sz´Azdi, L. and Pukanszky, B.

(2006). Viscoelastic properties of exfoliated polyamide-6/layered silicate

nanocomposite. Journal of Materials Science, 41(6): 1843-1846.

284. Manoj, K. C., Kumari, P., Rajesh, C. and Unnikrishnan, G. (2010). Aromatic

liquid transport through filled EPDM/NBR blends. Journal of Polymer Research,

17(1): 1-9.

285. Brydson, J. A. (1999). Plastics materials, Butterworth-Heinemann, Oxford.

286. Moly, K. A., Bhagawan, S. S., George, S. C. and Thomas, S. (2007). Sorption and

diffusion of aromatic solvents through linear low density polyethylene–ethylene

vinyl acetate blend membranes. Journal of Material Science, 42(12): 4552–4561.

287. Maiti, M. and Bhowmick, A. K. (2007). Effect of polymer–clay interaction on

solvent transport behavior of fluoroelastomer–clay nanocomposites and prediction

of aspect ratio of nanoclay. Journal of Applied Polymer Science, 105(2): 435–445.

288. Tang, C. Y., Chen, D. Z., Yue, T. M., Chan, K. C., Tsui, C. P. and Yu, P. H. F.

(2008). Water absorption and solubility of PHBHV/HA nanocomposites.

Composite Science and Technology, 68(7-8): 1927–1934.

289. Sreekala, M. S., Kumaran, M. S. and Thomas, S. (2002). Water sorption in oil palm

fiber reinforced phenol formaldehyde composites. Composites Part A: Applied

Science and Manufacturing, 33(6): 763 – 777.

290. Crank, J. (1975). The mathematics of diffusion, 2nd Eition. Oxford University

Press, Great Britain.

291. Maged, S., El-Nashar, D. E. and Maziad, N. A. (2003). Cure characteristics and

physicomechanical properties of calcium carbonate reinforcement rubber

composites. Egyptian Journal of Solids, 26(2): 241 – 257.

292. Cai, H., Li, S., Tian, G., Wang, H. and Wang, J. (2003). Reinforcement of natural

rubber latex film by ultrafine calcium carbonate. Journal of Applied Polymer

Science 87(6): 982–985.

199

293. Deng, C., Chen, M., Ao, N., Yan, D. and Zheng, Z. (2006). CaCO3/natural rubber

latex nanometer composite and its properties. Journal of Applied Polymer Science,

101(5): 3442–3447.

294. Jin, F. and Park, S. (2008). Thermo-mechanical behaviors of butadiene rubber

reinforced with nano-sized calcium carbonate. Materials Science and Engineering

A, 478(1-2): 406 – 408.

295. Mishra, S.; Sonawane, S. H.; Badgujar, N.; Gurav, K.; Patil, D. (2005).

Comparative study of the mechanical and flame-retarding properties of

polybutadiene rubber filled with nanoparticles and fly ash. Journal of Applied

Polymer Science, 96(1): 6-9.

296. Chakravarty, S. N. and Chakravarty, A. (2007). Reinforcement of rubber

compounds with nano- filler. Elastomers and plastics. 60(11): 619 – 622.

297. Narayanan, E., Bhagawan, S.S., John, B. and Bhaskaran, A. K. (1998). Space

quality rubber products: Case study with nitrile/butadiene rubber based engine

gimbal control system bladder. Plastics, Rubber and Composites:

Macromolecular Engineering, 27(7): 337–340.

298. Scocchi, G., Posocco, P., Handgraaf, J. W., Jfraaije, G. E. M., Fermeglia, M. and

Pricl, S. A. (2009). Complete multiscale modelling approach for polymer-clay

nanocomposites. Chemistry - A European Journal, 15(31):7586–7592.

200

Publications based on the work

International Journal Publications:

1. Meera Balachandran, Lisha P Stanly, R. Mulaleekrishnan and S.S. Bhagawan.

(2010). Modeling NBR- layered silicate nanocomposites: A DoE approach, Journal of

Applied Polymer Science (Wiley Publications), 118(6): 3300–3310. doi:

10.1002/app.32147

2. Meera Balachandran and S.S. Bhagawan. (2011). Studies on acrylonitrile-butadiene

copolymer (NBR) – Layered silicate composites: mechanical and viscoelastic

properties, Journal of Composite Materials (Sage Publications), 45(19): 2011-2022.

doi: 10.1177/0021998311399484

3. Meera Balachandran, Sriram Devanathan, R. Muraleekrishnan and S.S. Bhagawan.

Optimizing properties of nanoclay - nitrile rubber (NBR) composites using face

centered central composite design, Materials and Design (Elsevier Publications),

Available online 8 April 2011, doi:10.1016/j.matdes.2011.03.077

4. Meera Balachandran, R. Muraleekrishnan and S.S. Bhagawan, Modeling And

optimizing properties of nanoclay - nitrile rubber (NBR) composites using Box-

Behnken design, Rubber Chemistry and Technology (American Chemical Society),

(in press).

5. Meera Balachandran and S.S. Bhagawan, Mechanical, Thermal and transport

properties of nitrile rubber (NBR) - nanocalcium carbonate composites, Journal of

Applied Polymer Science (Wiley Publications), (in press).

6. Meera Balachandran, S.S. Bhagawan, Mechanical, thermal and transport properties

of nitrile rubber (NBR) – nanoclay composites, Journal of Polymer Research

(Springer), (accepted).

International Conference Publications

7. Meera Balachandran, T. Mythili, M. Smitha and S. S. Bhagawan, Mechanical

behaviour of nanoclay- NBR composites, Proceedings of International Conference

Asia Rub Tech Expo. Kochi, India, November 2006, p. 64.

8. Meera Balachandran, Lisha P Stanly, R. Muraleekrishnan, S.S. Bhagawan, Design

of experiments for optimizing NBR nanocomposite formulations, Proceedings of

201

International conference on Advances in Polymer Technology. Kochi, India,

September 24-27, 2008, p. 82.

9. S.S. Bhagawan and Meera B. Sasikumar, Approaches in modeling properties of

polymer nanocomposites, Proceedings of Second international Conference on Natural

Polymers, Bio-polymers, Bio-Materials, their composites, Blends, IPNs and Gels

Polyelectrolytes and Gels: Macro to Nano Scales, ICNP-2010. Centre for

Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, India,

September 24-26, 2010, pp. 35-36.

10. S.S. Bhagawan and Meera Balachandran, Elastomer based composites, Proceedings

of International Conference on Latest in Polymers – 2010. J.J Murphy Research

Centre, Rubber Park India (P) Ltd., Kochi, India, 12-13 August, 2010. p. 11

11. S.S. Bhagawan and Meera B. Sasikumar, Role of DoE [Design of Experiments] in

development of nanoclay – nitrile rubber composites. Proceedings of International

Conference on Manufacturing Science and Technology (ICMST 2010), jointly

organized by Indian Institute of Space Science and Technology and Materials

Research Society of India, Thiruvananthapuram, India, October 29-31, 2010. pp 8.4 –

8.5

National Conference Publications

12. Meera Balachandran, R. Muraleekrishnan, S.S. Bhagawan, Optimizing the

properties of nanoclay – nitrile rubber composites using Box-Behnken design,

Proceedings of ISAMPE National Conference 2009(INCCOM-8) “Emerging Trends

in Composite Materials and Technology”. Thiruvananthapuram, December 4-5,

2009. pp. 147-153.

13. Dr. S. S. Bhagawan and Meera Balachandran, Elastomer-based nanocomposites:

Trends and Challenges, Proceedings of the National conference on "Frontiers in

Polymer Nanomaterials and Composites. B S Abdur Rahman University, Chennai,

India, March 18-19, 2010.