76
COMMUNICATIONS SETUP FRICK ® QUANTUM™ ACUair ® CONTROL PANEL VERSION 2.1x S90-500 CS/JULY 2002 File: SERVICE MANUAL - SECTION 90 Replaces: S90-500 CS/APR 2001 Dist: 3, 3a, 3b, 3c

FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

COMMUNICATIONS SETUP

FRICK® QUANTUM™ACUair®

CONTROL PANELVERSION 2.1x

S90-500 CS/JULY 2002File: SERVICE MANUAL - SECTION 90Replaces: S90-500 CS/APR 2001Dist: 3, 3a, 3b, 3c

Page 2: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 2 COMMUNICATIONS SETUP

Table of Contents

QUANTUM™ IDENTIFICATION ..........................................................................................................................4Setting Up The Quantum™ For Communication.............................................................................................4

Com-2 Pinouts For Quantum™ 3.............................................................................................................4Com-2 Pinouts For Quantum™ 4.............................................................................................................4

RS-232 Communications ...............................................................................................................................5Quantum™ 3...........................................................................................................................................5Quantum™ 4...........................................................................................................................................5

Converting An RS-232 Serial Port To RS-422 Or RS-485...............................................................................5

“CHANGE COMMUNICATIONS” SCREEN.........................................................................................................6

PROTOCOL DESCRIPTION................................................................................................................................7Quantum™ Protocols.....................................................................................................................................7

Checklist for Setting Up Communication ..................................................................................................7

FRICK® PROTOCOLS.........................................................................................................................................8Quantum’s Protocol Specifications .................................................................................................................8

CONVERSION CHART FOR DECIMAL / HEXADECIMAL / ASCII ....................................................................12

ALLEN-BRADLEY COMMUNICATION .............................................................................................................13SLC-500 - Suggested Setup.........................................................................................................................13

Channel Configuration ...........................................................................................................................13Read Message Setup Example..............................................................................................................13Write Message Setup Example ..............................................................................................................14

PLC-5/30 - Suggested Setup........................................................................................................................14Channel Configuration ...........................................................................................................................14Read Message Setup Example..............................................................................................................14

Allen-Bradley Programming Overview ..........................................................................................................15Channel Configuration ...........................................................................................................................15

General Configuration ..................................................................................................................................15System Configuration...................................................................................................................................15Message Sequence Logic ............................................................................................................................16Message Read Logic ...................................................................................................................................16

Message Read Setup Screen ................................................................................................................17Message Write Logic....................................................................................................................................18

Message Write Setup Screen.................................................................................................................19

MODBUS PROTOCOL ......................................................................................................................................20Port Configuration of The Master..................................................................................................................20Data Packet .................................................................................................................................................20The Query....................................................................................................................................................20The Response..............................................................................................................................................21Data Field ....................................................................................................................................................21Error Checking.............................................................................................................................................21ASCII Framing .............................................................................................................................................21Query (Read) Example ................................................................................................................................21Write Example .............................................................................................................................................23Response Example......................................................................................................................................24Notes...........................................................................................................................................................25

HYPERTERMINAL ............................................................................................................................................26Setting up Hyperterminal ..............................................................................................................................26Testing Communications..............................................................................................................................31General Notes..............................................................................................................................................31

QUANTUM™ DATA TABLE..............................................................................................................................33Allen-Bradley and Modbus Data Access.......................................................................................................33

Modbus Addressing Note.......................................................................................................................33

ALARMS/SHUTDOWNS MESSAGE CODES ....................................................................................................68

Page 3: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 3

QUANTUM™ 3 MAIN BOARD HISTORY AND IDENTIFICATION .................................................................... 69Quantum™ Main Board (Quantum™ 3) ....................................................................................................... 69Quantum™ 3 Communications Jumpers...................................................................................................... 70

Communications Board Jumpers........................................................................................................... 70

QUANTUM™ 4 MAIN BOARD HISTORY AND IDENTIFICATION .................................................................... 71Quantum™ 4 Main Board Photo .................................................................................................................. 71Quantum™ 4 Communications Jumpers...................................................................................................... 72

Communications Board Jumpers........................................................................................................... 72

COMMUNICATIONS WIRING ........................................................................................................................... 72Customer Remote Computer/DCS RS-485 Communications ....................................................................... 73Customer Remote Computer/DCS RS-422 Communications ....................................................................... 73

CONNECTIONS ................................................................................................................................................ 74

INDEX ............................................................................................................................................................... 75

The Quantum™ has the capability of being modified by the user/owner in order to obtain different performance characteristics.Any modification to the standard default settings may have a severe negative impact on the operation and performance of theequipment. Any modification to these control settings is the sole responsibility of the user/owner and Frick® disclaims anyliability for the consequences of these modifications. It is possible that the modification of these settings may cause improperoperation and performance that results in property damage, personal injury or death. It is the responsibility of the user/ownerto evaluate and assess the consequences of their actions prior to modifying the controls for this unit.

WARNING!

Page 4: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 4 COMMUNICATIONS SETUP

Quantum™ IdentificationFrick® Controls has over the years, strived to remain onthe cutting edge of microprocessor technology anddevelopment. Because of the ever-increasing speed,memory, features, and power of microprocessors, Frick®

Controls will continue to introduce the latest advancementin microprocessor control technology.

Our microprocessor family has shared the nameQuantum™, over the past five years. There are currentlyfour controllers within this family. The first two of thesecontrollers (known as Quantum™ 1 and Quantum™ 2) areno longer in production, and as such, will not be furthermentioned in this manual. The two current members inproduction of the Quantum™ family are the Quantum™ 3,and the Quantum™ 4. It is critical to the end user to beable to identify the differences between these controllers.Refer to the section in this manual entitled Quantum™ 3Main Board History and Identification and Quantum™ 4Main Board History and Identification for additionalinformation as to how to identify the particular Quantum™controller that you have.

Throughout this manual, the two different controllers willbe talked about for the most part as one (as they dofunction the same). Where there is a difference betweenthese boards, as in jumpers or wiring, the different modelswill be identified by name. This is why it is important foryou to be aware of which Quantum™ board you have.

Quantum™ 3

Quantum™ 4

Setting Up the Quantum™ forCommunication

Data communication to and from the Quantum™ can bethrough a modem, remote data communications terminal,programmable controller, or master computer via eitherRS-422, RS-232, or RS-485 connections to theQuantum™ Com-2 port. Reference the “Main BoardCommunications” section for the correct jumpering of RS-422, RS-232, or RS-485. Also, reference the drawing ofthe “Quantum™ Main Board” section to identify wiringconfigurations for Com-2.

Com-2 Pinouts for Quantum™ 3

Following is the RS-422, RS-485, and the RS-232 pindescriptions for communications port 2 (also referred to asCom-2 or Comm-2):

RS-422 Pinout(4-Pin Connector)

RS-485 Pinout(4-Pin Connector)

1 - RX (Receive) 1 - RX / - TX2 + RX (Receive) 2 + RX / + TX 3 - TX (Transmit) 4 + TX (Transmit)

RS-232 Pinout(10-Pin Connector)

1 Data Communication Device 2 Data Set Ready 3 Received Data 4 Request to Send 5 Transmit Data 6 Clear to Send 7 Data Terminal Ready 8 Ring Indicator 9 Ground10 Not Used

Com-2 Pinouts for Quantum™ 4

Following is the RS-422, RS-485, and the RS-232 pindescriptions for communications port 2 (also referred to asCom-2 or Comm-2):

RS-422 Pinout(4-Pin Connector)

RS-485 Pinout(4-Pin Connector)

1 - RX (Receive) 1 - RX / - TX2 + RX (Receive) 2 + RX / + TX 3 - TX (Transmit) 4 + TX (Transmit)

RS-232 Pinout(3-Pin Connector)

1 Transmit Data 2 Received Data 3 Ground

Page 5: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5

RS-232 Communications

Following is the pin connections showing how to wire astandard 9-Pin RS-232 connector directly to the 10-PinRS-232 connector on the Quantum™ 3, and the 3-pinconnector on the Quantum™ 4:

Quantum™ 3

Reference the drawing of the main processor board for thelocation and positioning of the 10-Pin RS-232 connector.Following is the pin positions of the 10-Pin connector:

Note: The TX2 and RX2 are I/O communication activitylamps on the Quantum™ Main Processor Board that canbe monitored to see if the Com-2 port is receiving (RX2)and transmitting (TX2) data.

Quantum™ 4

Reference the drawing of the main processor board for thelocation and positioning of the 3-Pin RS-232 connector.Following is the pin positions of the 3-Pin connector:

Converting an RS-232 Serial Port to RS-422or RS-485

In order to communicate to the Quantum™ controller viaRS-422 (or RS-485), you will need to convert the RS-232signal from the source.

One converter that has proven to be effective is the Opto-22 AC7A/B card. This card will allow the conversion from astandard RS-232 signal to either RS-422 or RS-485. TheAC7A card is powered from a 115 VAC source, while theAC7B card is powered from a 220 VAC source. They canbe used in a standalone panel along with an Allen BradleySLC 5/04 or along with an external modem. Keeping thejumpers installed the same way they are received from thefactory, it is easy to wire for either RS-422 or RS-485.

NOTE: Refer to the manual that comes with the AC7A/Bcard for specific jumper information (as the configurationshown is only a suggestion that has worked in mostapplications).

Once jumpers on the converter card have been verified,you will need to verify the jumper settings of theQuantum™ controller. Refer to the following diagrams forthe Quantum™ 3 and Quantum™ 4:

Quantum™ 3

Quantum™ 4

NOTE: Some of these jumpers settings may need to bemodified to ensure optimum communicationsperformance. Typically, the termination jumper should beinstalled in the last Quantum™ in the communicationsdaisy chain only (Link 7 for the Quantum™ 3, Link 1 forthe Quantum™ 4).

RX

3

LK15

LK14

LK18

LK13

LK11

LK12TX

3

12

34

B A

Verify thejumpers in this

location.COM-2RS-422/RS-485

LK17

TX

2R

X2

COM-2RS-232

B ALK

19

COM-1RS-422/RS-4851

23

41

23

4

LK10

LK9

LK8

LK6

LK7

LK5LK4

LK16

LK3

LK2TX

1

LK1

RX

1B A

COM-3(Future Use)

TXD RXD

RXDCOM

9-PinConnector

16 27 38 49

55

3

1

Quantum™ 43-Pin Connector

COM

TXD

RXD RXD

TXD TXD

COM COM

9-PinConnector

16 27 38 49 5

1 2

10

Quantum™ 310-Pin Connector

TB

1T

B2

TB

3

PL1

LK1

LK6

LK5

LK4

LK3

LK17

B A

PL2

O DIP

1 2 3 4 5 6 7 8 SW

1

LK10

LK9

LK8

LK7

LK16

LK11

B A

PL3

PL4

D3

D2

D1

D6

D8

0 1 2 3 4 5 6 7

PO

RT

80H

D4

D5

D7

D8

D10

D11

D12

D13

Verify thejumpers in this

location.

43

21

43

21

3 2 1

COM-1RS-422RS-485

COM-2RS-422RS-485

COM-2RS-232

Page 6: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 6 COMMUNICATIONS SETUP

After verifying both the Converter card and Quantum™jumper settings, the interconnecting wiring must be done.Be sure to use 4-conductor shielded communicationscable (two wires for transmit, two for receive). Refer to thefollowing diagrams for RS-422 and RS-485:

RS-422

RS-485

We have used both an Opto 22 AC7A/B and an Opto 22AC422 adapter card. They can be wired to use either RS-422 or RS-485.

Following is the pin connections showing how to wire aDB9 connector on this adapter card to the Quantum™ forRS-422 communication:

Quantum™ COM-2 DB91 52 43 94 8

Following is the pin connections showing how to wire forRS-485 to the terminal connections on this adapter cardfrom the Quantum™:

Quantum™ Terminal1 (-RX/-TX) FO-2 (+RX/+TX) TO+

The card can be connected RS-232 to another device.Following is the pin connections showing how to wire the25-Pin RS-232 connector on this adapter card to a 9-Pinconnector of the SLC 5/04:

DB9 DB255 72 33 2

“Change Communications” Screen

This screen is accessed by pressing the [ChangeComms.] key on the “Panel Setup” screen.

The following information is shown here:

• ID Number

• Comm. 1 Baud Rate

• Comm. 2 Baud Rate

• Communication Protocol

CTS

RXD

TXD

TO-

TO+

FO-

FO+

2

3

5

RS-232Computer

Port

RXD

TXD

RTS

AC7ARS-422 To RS-232

Converter

3

7

21

2

3

4

Quantum™COM-2

-RX

+RX

-TX

+TX

9-Pin Femaleconnector

25-Pin Maleconnector4-Pin

connectorHardwire

CTS

RXD

TXD

TO-

TO+2

3

5

RS-232Computer

Port

RXD

TXD

RTS

AC7ARS-485 To RS-232

Converter

3

7

21

2

3

4

Quantum™COM-2

-RX/-TX

+RX/+TX

9-Pin Femaleconnector

25-Pin Maleconnector4-Pin

connectorHardwire

FO-

FO+

Page 7: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 7

Protocol DescriptionThe use of communication protocols, permits datatransmission between devices. Protocol determines howcontact is established and how the query (question) andresponse (answer) takes place. The information in amessage command requires an identity of the intendedreceiver (ID #), what the receiver is to do (read or write toa setpoint, etc.), data needed to perform an action (thevalue of a setpoint to be changed), and a means ofchecking for errors (checksum).

When using Com-2 for communication, check whatcommunication protocol, if any has been selected, fromthe Panel Setup – “Change Communications” screen. Forexample, “A-B Comm” should be selected when usingAllen-Bradley’s communication protocol. The baud rate ofCom-2 and the panel ID number are also changed fromthis screen, and should coincide with the setup of theother device.

Note: The data communication protocols are continuouslybeing expanded and improved. Therefore, you shouldconsult Frick Controls for the exact details on yourparticular unit(s) before developing system software tointerface with the panel.

Quantum™ Protocols

The Quantum™ controller has the capability ofcommunicating to the outside world through three softwareprotocols:

• Frick

• Allen-Bradley DF-1 serial• Modbus ASCII serial

Checklist for Setting Up Communication1. Decide which Quantum™ protocol you can

communicate with and want to use.

2. Setup your device’s communication port for theQuantum™ protocol and select a baud rate.

3. Next, setup the Quantum™ for the desiredcommunication protocol. Select the protocol fromthe Panel Setup – “Change Communications”screen. For example, “A-B Comm” should beselected when using Allen-Bradley’scommunication protocol.

4. Setup the baud rate of Com-2 to coincide with thesetup of the your device’s communication port.

5. Enter the Quantum™ ID. This will be used toidentify commands that are sent to it.

6. Wire to the first panel via RS-232, RS-422, orRS-485 connections to the Quantum™ Com-2port.

• If you are communicating to more than onepanel, then you will not be able to use RS-232. You can however, convert RS-232 toeither RS-422 or RS-485 with an adaptercard. Reference the “Converting an RS-232Serial Port to RS-422 or RS-485” section forinformation about an adapter card.

• Reference the drawing of the “Quantum™Main Board” in this manual to identify wiringand jumpering locations for Com-2.

• Reference the “Main Board CommunicationsCom-2” section in this manual for the correctjumpering of RS-232, RS-422, or RS-485.

7. Send a single command to read data from thisQuantum™ using its ID.

8. Check if you received a data response at yourdevice.

9. Troubleshooting when you don’t receive a dataresponse:

• Check that the RX2 I/O communicationactivity lamp on the Quantum™ MainProcessor Board is blinking as it receives theinstruction from your device.

• A steady lit RX2 LED or one that isn’tlighting, are signs of improper wiring.

• If the RX2 LED is properly blinking, thencheck if the TX2 LED is blinking in response.

• If the TX2 is not blinking then check thecommunication protocol setup at the panel,the panel’s ID and the Com-2 baud ratesetting.

• If the TX2 is blinking, then check that theCom-2 communication jumpers are correct.

• If you are sure that the wiring andQuantum™ setup is correct, then select the[Show Comms] key from the “ServiceScreen” to see what is being received andtransmitted from Com-2.

Note: A useful tool for troubleshooting isWindows “Hyperterminal”. Using Hyperterminalcan help you determine if you are wired OK.Reference the “Hyperterminal Setup” section inthis manual.

10. If you properly receive data and you need tocommunicate to more than one panel, then setupand wire to another panel. Reference the wiringdiagram drawings in the back of this manual.Send a single command to read data from thisQuantum™ using it’s ID and troubleshoot asabove, if necessary. To prevent noise feedbackwhich is possible when communicating over along distance, only the last panel should have thetermination for long communications linesjumpered.

Page 8: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 8 COMMUNICATIONS SETUP

Frick® ProtocolsAll commands for Frick® protocols must be in ASCII to berecognized. The data should be setup as an 8 bit Wordwith either no Parity or even Parity, and a Stop Bit. Thecommands can be in upper or lower case letters. AnACUair® panel with an ID code of [00] is considereddisabled. ID codes from [01] through [99] are valid andrecognized by the microprocessor.

Quantum’s Protocol Specifications

Quantum’s (“$”) protocol commands have been addedspecifically for the Quantum. Unless otherwise shown, 9characters are returned from the Quantum for a datavalue. The data value includes two decimal fields and thefirst character position is either; “-“ if the value is negative,or it is “+” if the value is positive. For example, if thedata’s value is 25.5; then the value +00002550 is sent. Alltemperatures are in degrees C and all pressures are inPSIA. A mode such as “Current ACUair Mode” is returnedas an integer value that represents the mode it is in. Forexample, a +00000000 is sent if it is in “Process Mode” ora +00000100 is sent if it is in “Cleanup Mode”. The valuezero +00000000 is used to represent an “OFF” status anda “DISABLED” option. The value one +00000100, whichis received as a 1, is used to represent an “ON” status andan “ENABLED” option. Setpoints are only changed if thevalue sent is within the acceptable range. The checksumis the 2 byte hexadecimal sum of each character within thecommand or returned answer, excluding the commandtype identifier, ”$”. If the command’s checksum isreplaced with “??”, the Quantum returns a responsewithout using checksum error checking on the receivedcommand. If the Quantum detects a checksum error, a“N” (Not Acknowledged), the ACUair® ID code, “02”,Carriage return, and Linefeed are returned.

With the ACUair® control system, all Unit-specific setpointsare stored at the GCU board and are only loaded to theQuantum panel as needed. As a result, delays will beencountered when reading or writing these setpoints asthe values are sent between the Quantum and GCUboard. To properly read or change setpoints it isnecessary to follow certain procedures. First, thecommand should be sent to change the Panel ControlStatus to Remote. The Quantum screen will immediatelymove to the Unit Overview screen and the Panel ControlStatus will be set to Remote. At this point, a commandmay be sent to read or write setpoint values. Expect towait a second or two while the required values aredownloaded from the GCU board. When reading valuesfrom the GCU that may change periodically, such as theAlarm List, send the Refresh Setpoints command beforereading the values to verify that current settings are beingread. Also be aware, if a person presses the "Login toUnit" button on the Quantum, the Panel Control Status willbe set to Manual. This will prevent a remote system fromreading or writing setpoints stored at the GCU board untilthe Panel Control Status is reset to Remote.

The following is a complete list of available “$” commandtypes:

COMMAND CODE and DESCRIPTION

F1 = Alarms/Shutdowns Annunciation Page 1.F2 = Alarms/Shutdowns Annunciation Page 2.F3 = Alarms/Shutdowns Annunciation Page 3.CA= Clear AlarmsT1 = Read a value from the Table.CS = Change a setpoint in the Table.T3 = Change Quantum panel status.T4 = Reload setpoints from ACUair unit.I(x) = Unit's Current StatusZ(x) = Unit's Current Status

The following is a detailed description of each command:

RETURN Alarms & Shutdowns - Page 1 data: $01F1

$ Start of command sequence.01 Quantum ID code.F1 Failure Annunciation command Page 1.1 Unit ID (1-4)

CS ChecksumCR Carriage Return

RETURNED ANSWER,

StartingCharacterPosition

Description of returned data

1 “A” Acknowledge2 “01” Quantum ID code.4 Message Code 17 Date 1 as mm/dd/yy15 Time 1 as hh:mm:ss23 Space24 Message Code 227 Date 2 as mm/dd/yy35 Time 2 as hh:mm:ss43 Space44 Message Code 347 Date 3 as mm/dd/yy55 Time 3 as hh:mm:ss63 Space64 Message Code 467 Date 4 as mm/dd/yy75 Time 4 as hh:mm:ss83 Space84 Message Code 587 Date 5 as mm/dd/yy95 Time 5 as hh:mm:ss

103 Space104 Message Code 6107 Date 6 as mm/dd/yy115 Time 6 as hh:mm:ss123 Space124 CS (Checksum followed by Carriage return,

Line feed. )

Page 9: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 9

RETURN Alarms & Shutdowns - Page 2 data: $01F2

$ Start of command sequence.01 Quantum ID code.F2 Failure Annunciation command Page 2.1 Unit ID (1-4)

CS ChecksumCR Carriage Return

RETURNED ANSWER,

StartingCharacter

PositionDescription of returned data

1 “A” Acknowledge2 “01” Quantum ID code.4 Message Code 77 Date 7 as mm/dd/yy

15 Time 7 as hh:mm:ss23 Space24 Message Code 827 Date 8 as mm/dd/yy35 Time 8 as hh:mm:ss43 Space44 Message Code 947 Date 9 as mm/dd/yy55 Time 9 as hh:mm:ss63 Space64 Message Code 1067 Date 10 as mm/dd/yy75 Time 10 as hh:mm:ss83 Space84 Message Code 1187 Date 11 as mm/dd/yy95 Time 11 as hh:mm:ss103 Space104 Message Code 12107 Date 12 as mm/dd/yy115 Time 12 as hh:mm:ss123 Space124 CS (Checksum followed by Carriage return,

Line feed. )

RETURN Alarms & Shutdowns - Page 3 data: $01F3

$ Start of command sequence.01 Quantum ID code.F3 Failure Annunciation command Page 3.1 Unit ID (1-4)

CS ChecksumCR Carriage Return

RETURNED ANSWER,

StartingCharacterPosition

Description of returned data

1 “A” Acknowledge2 “01” Quantum ID code.4 Message Code 137 Date 13 as mm/dd/yy

15 Time 13 as hh:mm:ss23 Space24 Message Code 1427 Date 14 as mm/dd/yy35 Time 14 as hh:mm:ss43 Space44 Message Code 1547 Date 15 as mm/dd/yy55 Time 15 as hh:mm:ss63 Space64 Message Code 1667 Date 16 as mm/dd/yy75 Time 16 as hh:mm:ss83 Space84 Message Code 1787 Date 17 as mm/dd/yy95 Time 17 as hh:mm:ss103 Space104 Message Code 18107 Date 18 as mm/dd/yy115 Time 18 as hh:mm:ss123 Space124 CS (Checksum followed by Carriage return,

Line feed. )

Page 10: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 10 COMMUNICATIONS SETUP

RETURN DATA VALUE FROM TABLE $IDT1

$ Start of command sequence.ID ACUair ID code.T1 Return the value of a Table address.0000 Frick Address of first data value in Table00 Number of subsequent values to return

(up to 25 values can be requested)CS ChecksumCR Carriage ReturnRETURNED ANSWER,

StartingCharacterPosition

Description of returned data

1 “A” Acknowledge2 “01” Quantum ID code.4 Value(s) of requested data.

CS (Checksum followed by Carriagereturn, Line feed.)

CHANGE SETPOINT COMMAND: $IDCS

$ Start of command sequence.ID ACUair ID code.CS Change Table address’s setpoint value.

0000 Frick Table address of the setpoint.0000000

00New setpoint scaled x100.

CS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,and 1 “CR”, “LF” if successful.and 0 “CR”, “LF” if unsuccessful.

CLEAR ALARMS COMMAND: $IDCA

$ Start of command sequence.ID ACUair ID code.CA Clear Alarms1 Unit ID (1-4)

CS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,and 1 “CR”, “LF” if successful.and 0 “CR”, “LF” if unsuccessful.

CHANGE PANEL STATUS COMMAND: $IDT3$ Start of command sequence.ID Quantum ID code.T3 Change Quantum Panel Status0 Status: 0-Manual, 1-Remote

CS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,and 1 “CR”, “LF” if successful.and 0 “CR”, “LF” if unsuccessful.

REFRESH SETPOINTS COMMAND: $IDT4$ Start of command sequence.ID Quantum ID code.T4 Reload setpoint from GCU board

0000 Frick Table address of the setpoint.CS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,and 1 “CR”, “LF” if successful.and 0 “CR”, “LF” if unsuccessful.

REFRESH ALL SETPOINTS COMMAND: $IDT5$ Start of command sequence.ID Quantum ID code.T5 Force all setpoints to be reloaded from

GCU board, as they are being readCS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,and 1 “CR”, “LF” if successful.and 0 “CR”, “LF” if unsuccessful.

CHANGE STATUS COMMAND: $IDAS$ Start of command sequence.ID Quantum ID code.AS Change Unit Status0 Unit Id (1-4)0 Status Command

0 - Stop 1 - Start

CS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,And 1 “CR”, “LF” if successful.And 0 “CR”, “LF” if unsuccessful.

CHANGE MODE COMMAND: $IDAM$ Start of command sequence.ID Quantum ID code.AM Change Unit Mode0 Unit Id (1-4)0 Mode Command

0 - Process 1 - Cleanup

CS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,And 1 “CR”, “LF” if successful.And 0 “CR”, “LF” if unsuccessful.

CHANGE CONTROL MODE COMMAND: $IDAC$ Start of command sequence.ID Quantum ID code.AC Change Unit Control Mode0 Unit Id (1-4)0 Mode Command

0 - Local 1 - Remote

CS ChecksumCR Carriage Return

RETURNED ANSWER, “A” followed by the “ID”,And 1 “CR”, “LF” if successful.And 0 “CR”, “LF” if unsuccessful.

Page 11: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 11

RETURN Unit Status - Units1-4 data: $01IA$ Start of command sequence.01 Quantum ID code.

I(A-D) Unit Status CommandUnit 1=A; Unit 2=B; Unit 3=C; Unit 4=D

CS ChecksumCR Carriage Return

RETURNED ANSWER,A Acknowledge01 Quantum ID code.

I(A-D) Unit Status CommandF Digital Input Channels 1-4 (right to left)

Bit 0 - Air Flow Switch (1) Bit 1 - Remote Process/Cleanup (2) Bit 2 - Remote Start/Stop (3) Bit 3 - Burner Status (4)

F Digital Input Channels 5-8 (right to left) Bit 0 - Flame Failure (5) Bit 1 - Aux #1 (6) Bit 2 - Aux #2 (7) Bit 3 - Aux #3 (8)

F Digital Output Channels 1-4 (right to left) Bit 0 - Supply Fan Motor (1) Bit 1 - Exhaust Fan #1 (2) Bit 2 - Exhaust Fan #2 (3) Bit 3 - Burner Command (4)

F Digital Output Channels 5-8 (right to left) Bit 0 - Cooling Stage #1 (5) Bit 1 - Cooling Stage #2 (6) Bit 2 - Spare (7) Bit 3 - Spare (8)

F Digital Output Channels 9-12 (right to left) Bit 0 - Alarm (9), Bit 1 - Spare (10) Bit 2 - Spare (11), Bit 3 - Spare (12)

F Digital Output Channels 13-16 (right to left) Bit 0 - Spare (13), Bit 1 - Spare (14) Bit 2 - Spare (15), Bit 3 - Cleanup (16)

000 Analog Output 1- Outside/Return Air Dampers000 Analog Output 2- Exhaust Command000 Analog Output 3- Burner Output000 Analog Output 4- Heat Profile

+000 Analog Input 1 - Outside Air Temperature+000 Analog Input 2 - Discharge Air Temp.+000 Analog Input 3 - Room/Return Air Temp+000 Analog Input 4 - Spare Temperature000 Analog Input 5 - Damper Position000 Analog Input 6 - Exhaust Fan 1 Position000 Analog Input 7 - Exhaust Fan 2 Position

00000 Analog Input 8 - Ammonia Detector000 Analog Input 9 - Humidity

+000 Analog Input 10 - Room Pressure Sensor+000 Analog Input 11 - Pre-Heat Air Temperature

0 Unit Status: 0-Off; 1-Running; 2-Starting0 Unit Air Handling Mode:0-Process; 1-Cleanup0 Unit Control Mode: 0-Local; 1-Remote0 Control Value: 0-None; 1-Return Air; etc.0 Control Setpoint: 0-None; 1-Process; etc.0 Alarm: 0-None; 1-Alarm; 2-Shutdown

CS ChecksumCR Carriage Return

RETURN Unit Status - Units1-4 data: $01Z1$ Start of command sequence.01 Quantum ID code.

Z (1-4) Unit Status CommandUnit 1=1; Units 1,2=2; Unit 1-3=3; Unit 1-4=4

CS ChecksumCR Carriage Return

RETURNED ANSWER,A Acknowledge01 Quantum ID code.

Z(1-4) Unit Status CommandF Digital Input Channels 1-4 (right to left)

Bit 0 - Air Flow Switch (1) Bit 1 - Remote Process/Cleanup (2) Bit 2 - Remote Start/Stop (3) Bit 3 - Burner Status (4)

F Digital Input Channels 5-8 (right to left) Bit 0 - Flame Failure (5) Bit 1 - Aux #1 (6) Bit 2 - Aux #2 (7) Bit 3 - Aux #3 (8)

F Digital Output Channels 1-4 (right to left) Bit 0 - Supply Fan Motor (1) Bit 1 - Exhaust Fan #1 (2) Bit 2 - Exhaust Fan #2 (3) Bit 3 - Burner Command (4)

F Digital Output Channels 5-8 (right to left) Bit 0 - Cooling Stage #1 (5) Bit 1 - Cooling Stage #2 (6) Bit 2 - Spare (7) Bit 3 - Spare (8)

F Digital Output Channels 9-12 (right to left) Bit 0 - Alarm (9), Bit 1 - Spare (10) Bit 2 - Spare (11), Bit 3 - Spare (12)

F Digital Output Channels 13-16 (right to left) Bit 0 - Spare (13), Bit 1 - Spare (14) Bit 2 - Spare (15), Bit 3 - Cleanup (16)

000 Analog Output 1- Outside/Return Air Dampers000 Analog Output 2- Exhaust Command000 Analog Output 3- Burner Output000 Analog Output 4- Heat Profile

+000 Analog Input 1 - Outside Air Temperature+000 Analog Input 2 - Discharge Air Temp.+000 Analog Input 3 - Room/Return Air Temp+000 Analog Input 4 - Spare Temperature000 Analog Input 5 - Damper Position000 Analog Input 6 - Exhaust Fan 1 Position000 Analog Input 7 - Exhaust Fan 2 Position

00000 Analog Input 8 - Ammonia Detector000 Analog Input 9 - Humidity

+000 Analog Input 10 - Room Pressure Sensor+000 Analog Input 11 - Pre-Heat Air Temp.

0 Unit Status: 0-Off; 1-Running; 2-Starting0 Unit Air Handling Mode:0-Process; 1-Cleanup0 Unit Control Mode: 0-Local; 1-Remote0 Control Value: 0-None; 1-Return Air; etc.0 Control Setpoint: 0-None; 1-Process; etc.0 Alarm: 0-None; 1-Alarm; 2-Shutdown… *********

Above Data repeated for Units 2, 3, 4CS ChecksumCR Carriage Return

Page 12: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 12 COMMUNICATIONS SETUP

CONVERSION CHART FOR DECIMAL / HEXADECIMAL / ASCII

Decimal(DEC)

Hexadecimal(HEX) ASCII Decimal

(DEC)Hexadecimal

(HEX) ASCII Decimal(DEC)

Hexadecimal(HEX) ASCII

0 0 ctrl @ NUL 43 2B + 86 56 V1 1 ctrl A SOH 44 2C , 87 57 W2 2 ctrl B STX 45 2D - 88 58 X3 3 ctrl C ETX 46 2E . 89 59 Y4 4 ctrl D EOT 47 2F / 90 5A Z5 5 ctrl E ENQ 48 30 0 91 5B [6 6 ctrl F ACK 49 31 1 92 5C \7 7 ctrl G BEL 50 32 2 93 5D ]8 8 ctrl H BS 51 33 3 94 5E ^9 9 ctrl I HT 52 34 4 95 5F _10 A ctrl J LF 53 35 5 96 60 '11 B ctrl K VT 54 36 6 97 61 a12 C ctrl L FF 55 37 7 98 62 b13 D ctrl M CR 56 38 8 99 63 c14 E ctrl N SO 57 39 9 100 64 d15 F ctrl O SI 58 3A : 101 65 e16 10 ctrl P DLE 59 3B ; 102 66 f17 11 ctrl Q DC1 60 3C < 103 67 g18 12 ctrl R DC2 61 3D = 104 68 h19 13 ctrl S DC3 62 3E > 105 69 i20 14 ctrl T DC4 63 3F ? 106 6A j21 15 ctrl U NAK 64 40 @ 107 6B k22 16 ctrl V SYN 65 41 A 108 6C l23 17 ctrl W ETB 66 42 B 109 6D m24 18 ctrl X CAN 67 43 C 110 6E n25 19 ctrl Y EM 68 44 D 111 6F o26 1A ctrl Z SUB 69 45 E 112 70 p27 1B ctrl [ ESC 70 46 F 113 71 q28 1C ctrl \ FS 71 47 G 114 72 r29 1D ctrl ] GS 72 48 H 115 73 s30 1E ctrl ^ RS 73 49 I 116 74 t31 1F ctrl _ US 74 4A J 117 75 u32 20 SPACE 75 4B K 118 76 v33 21 ! 76 4C L 119 77 w34 22 " 77 4D M 120 78 x35 23 # 78 4E N 121 79 y36 24 $ 79 4F O 122 7A z37 25 % 80 50 P 123 7B {38 26 & 81 51 Q 124 7C |39 27 ' 82 52 R 125 7D }40 28 ( 83 53 S 126 7E ∼41 29 ) 84 54 T 127 7F DEL42 2A * 85 55 U

Page 13: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 13

Allen-Bradley CommunicationTo provide for the reading and writing of data toQuantum™ panels using Allen-Bradley communication,the Quantum has an Allen-Bradley DF1 communicationdriver that recognizes both half-duplex and full duplex SLC500 protected typed logical read and write commands.This is a Master / Slave multi-drop communicationmethod. The Quantum™ talks Allen-Bradley SLC protocoland is programmed to resemble an Allen-Bradley SLC500slave station. The customer’s PLC or DCS must be setupto initiate the reading and writing of data to a Quantum™.The Quantum™ does not initiate any communications.The Quantum™ panels ID number is used as it’s stationaddress and the target node. With the AB PLC, the MSG(Message) instruction is used to send read and writerequests. A DCS (Distributed Control System) will use aSLC 500 DF1 protocol driver to send protected typedlogical read with 3 address fields and protected typedlogical write requests with 3 address fields to aQuantum™. Fifty (50) data elements can be read with oneread. Setpoints are changed by sending a write commandto one element. Be careful not to continuously request asetpoint change. Keeping the Quantum™ busy writing toan individual GCU board will interfere with the Quantum'spolling of all the GCU boards. Control commands are alsosent with a write command. For more detail and a list ofthe data, reference the “Quantum™ Data Table” section.For details about the actual protocol, reference the ABpublication 1770-6.5.16 “DF1 Protocol and Command SetReference Manual”.

The Quantum can be connected to the Data Highway (DH)by wiring the Quantum’s serial port (Com-2) to a serialdevice on the DH such as an internal port of a PLC thatsupports the Data Highway protocol like the SLC 5/04.Quantum's can be on a multi-drop link (wired to otherQuantum's). If RS-422 or RS-485 is used as in a multi-drop link, an adapter card can be used to convert an RS-232 to an RS-422 or RS-485 serial port.Because overrun can occur, the baud rate and commandsshould be setup to produce the most desired throughput.The master station should have the Stop Bit set to 1,Parity set to none, Duplicate Detect disabled, and ErrorDetect set for BCC or CRC.When communication is between either your programmingsoftware and a Quantum™ or an Allen-Bradley PLC and aQuantum™ on a multi-drop link, the devices depend on aDF1 Master to give each of them polling permission totransmit in a timely manner. As the number of Quantum™slaves increase on the link, the time between when theQuantum™ is polled also increases. This increase in timemay become larger if you are using low baud rates. Asthese time periods grow, the timeouts, such as themessage timeout, poll timeout, and reply timeout mayneed to be changed to avoid loss of communication.

ACK Timeout - The amount of time in 20 millisecondsincrements that you want the processor to wait for anacknowledgment to the message it has sent before theprocessor retries the message or the message errors out.

Reply Message Wait Time - Define the amount of time in20 millisecond increments that the master station will waitafter receiving an ACK (to a master-initiate message)before polling the remote station for a reply. Choose atime that is, at minimum, equal to the longest time that aremote station needs to format a reply packet. Some

remote stations can format reply packets faster thanothers.

Message Timeout - Defines the amount of time inseconds that the message will wait for a reply. If this timeelapses without a reply, the error bit is set, indicating thatthe instruction timed out. A timeout of 0 seconds meansthat there is no timer and the message will wait indefinitelyfor a reply. Valid range 0-255 seconds.

Note: Make sure the Allen-Bradley PLC and theprogramming software is the most recent softwarerevision. Some revisions have been made that affectdoing the SLC Typed Logical Read/Write MessageCommand.

SLC-500 - Suggested SetupChannel ConfigurationConfigure the communication channel – Channel 0:Current Communication Mode: SystemCommunication Driver: DF1 Half-Duplex Master or DF1Full-DuplexBaud Rate: 19200 (suggested)Stop Bits: 1Duplicate Detect: DisabledACK Timeout (x20ms): 30Message Retries: 3Parity: NoneStation Address (Source ID): 5 (Master’s DF1 selectedID#)Error Detect: BCC / CRCRTS off Delay (x20ms): 0RTS Send Delay (x20ms): 0Pre-Send Time Delay (x1 ms): 0Control Line: No HandshakingPolling Mode: Message Based (do not allow slave toinitiate messages)Priority Polling Range - Low: 255, High: 0Normal Polling Range - Low: 255, High: 0Normal Poll Group Size: 0Reply Message Wait Time (x20ms): 20System Mode Driver: DF1 Half-Duplex Master or DF1 Full-DuplexUser Mode Driver: Generic ASCIIWrite Protect: DISABLEDMode Changes: DISABLEDMode Attention Character: \0x1b (default)System Mode Character: S (default)User Mode Character: U (default)Edit Resource/File Owner Timeout (Sec): 60Passthru Link ID (decimal): 1

Read Message Setup ExampleRead/Write MessageType: Peer-To-PeerRead/Write: ReadTarget Device: 500 CPULocal/Remote: LocalControl Block: N11:0Control Block Length: 14Channel: 0Target Node: 2 (002) (this is Quantum’s Panel ID)Local File Address: N12:0Target File Address/Offset: N10:0Message Length in Elements: 50Message Time-out (seconds): 15(Refer to the “Allen-Bradley Programming Overview”Section for more information)

Page 14: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 14 COMMUNICATIONS SETUP

Write Message Setup ExampleRead/Write MessageType: Peer-To-PeerRead/Write: WriteTarget Device: 500 CPULocal/Remote: LocalControl Block: N11:0Control Block Length: 14Channel: 0Target Node: 2 (002) (this is Quantum™ Panel ID)Local File Address: N12:0Target File Address/Offset: N55:3Message Length in Elements: 1Message Time-out (seconds): 15

(Refer to the “Allen-Bradley Programming Overview”Section for more information)

PLC-5/30 - Suggested SetupChannel 0 - 25-pin D-shell serial port; supports standardEIA RS-232C and RS-423 and is RS-422A compatible.

NOTE: Channel 0 is optically-coupled (provides highelectrical noise immunity) and can be used with mostRS-422A equipment as long as:

• termination resistors are not used

• the distance and transmission rate are reduced tocomply with RS-423 requirements

The PLC-5’s switch 2 is used to select RS-232C, RS-422A, or RS-423. Channel 0 can be wired for RS-422.

Following is the pin connections showing how to wire thePLC-5 channel 0 connector to the Quantum™ for RS-422communication:

PLC-5 CH0 Quantum Com-2Pin 2 (TXD.OUT+) Pin 1 (-RX)Pin 3 (RXD.IN+) Pin 3 (-TX)Pin 14 (TXD.OUT-) Pin 2 (+RX)Pin 16 (RXD.IN-) Pin 4 (+TX)

Channel 0 Setup:Port Maximum Cable

lengthRS-232C 15 m (50 ft)RS-422A 61 m (200 ft)RS-423 61 m (200 ft)

Important guidelines:

• When channel 0 is configured for RS-422Acompatibility, do not use terminating resistorsanywhere on the link.

• When channel 0 is configured for RS-422A(compatible) and RS-423, do not go beyond 61 m(200 ft). This distance restriction is independentfrom the transmission rate.

Channel ConfigurationChannel 0 = System (Master) for half-duplex or System

(Point-To-Point) for full-duplexRemote Mode Change: DISABLEDMode attention Char: \0x1bSystem mode char: SUser mode char: UBaud rate: 19200 (suggested)Stop bits: 1Parity: NoneStation address: 5 (this devices ID#)Control line: No HandshakingReply Msg Wait (20ms):ACK timeout (20ms):DF1 retries: 3Msg appl timeout(30 secs):2Error detect: BCC / CRCRTS send delay (20ms): 0RTS off delay (20ms): 0Polling mode: Message Based (Do Not Allow Slave to

initiate messages)Master Message Transmit: Between Station Polls

System (Point-To-Point) additional setup:Duplicate Detect: OFFNAK Receive:0DF1 ENQS:0

(Refer to the “Allen-Bradley Programming Overview”Section for more information)

PLC-5 Series and Firmware that support SL C500commands

Model Series Firmware mustbe at least:

C L5/30 D CA MB J5/40C GA MB JC G5/60

E B

Read Message Setup ExampleInstruction Entry for Message Block MG14:0:

Communication Command: SLC Typed Logical ReadPLC-5 Data Table Address: N9:3Size in Elements: 20Local/Remote: LocalLocal Node Address: 004 (Quantum™ Panel’s ID)Destination Data Table Address: N10:1Port Number: 0

(Refer to the “Allen-Bradley Programming Overview”Section for more information)

Page 15: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 15

Allen-Bradley Programming Overview

This section contains programming examples for readingdata from, and writing data to the Frick® Quantum™control panel from an Allen Bradley (AB) SLC500 or PLC5processor. AB RSLogix500 programming software hasbeen used for the following examples, however, theseexamples can also be used for the AB RSLogix5 software.

Channel Configuration

The following are representations of the channelconfiguration screens from the AB RSLogix500programming software for the SLC500. Enter values asshown in order to establish communications via ABProtocol.

General Configuration

System Configuration

Page 16: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 16 COMMUNICATIONS SETUP

Message Sequence Logic

Use the following logic to sequence read and write

message to the Quantum™ panel. This logic preventshang up due to lost communications or message errors.

Message Read Logic

Use the following logic to read data from the Quantum™panel. To read more data or to read data from several

compressors, copy / paste these rungs as needed thenmodify the control block and setup screen parametersaccordingly.

Page 17: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 17

Message Read Setup Screen

The following setup screen is programmed to obtain 28consecutive data files from the Quantum™ (ID#1) N10:1

register and place them into the SLC500’s N10:1 throughN10:28 register.

• This Controller: SLC500

• Data Table Address: Data file location in theSLC500

• Size in Elements: # of data file to read

• Channel: Port location on the SLC processor(Channel 0 is the RS-232 port)

• Target Device: Quantum™ Panel

• Data Table Address: Data file location in theQuantum™ controller.

• Local Node: Quantum™ ID# (Octal)

Page 18: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 18 COMMUNICATIONS SETUP

Message Write Logic

Use the following logic to write data from the Quantum™panel. To write more data or to write data to severalcompressors, copy / paste these rungs as needed then

modify the control block and setup screen parametersaccordingly.

Page 19: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 19

Message Write Setup Screen

The following setup screen is programmed to write the

ACUair® mode to the Quantum™ (ID#1) N55:3 data filefrom the SLC500’s N55:3 data file.

• This Controller: SLC500

• Data Table Address: Data file location in theSLC500

• Size in Elements: # of data file to read• Channel: Port location on the SLC processor

(Channel 0 is the RS232 port)

• Target Device: Quantum™ Panel

• Data Table Address: Data file location in theQuantum™ controller.

• Local Node: Quantum™ ID# (Octal)

Page 20: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 20 COMMUNICATIONS SETUP

MODBUS ProtocolSince Modbus protocol is a messaging structure, it isindependent of the underlying physical layer. It istraditionally implemented using RS-232, RS-422, or RS-485 communications hardware.

The Quantum™ controller is setup to communicate onstandard Modbus networks using ASCII (AmericanStandard Code for Information Interchange).

NOTE: With the Quantum™ Controller, ONLY ModbusASCII (7 data bits) is recognized, and all references toModbus protocol in this document will be as they relate toASCII. The mode and serial parameters must be the samefor all devices on a Modbus network, therefore, ensurethat your network is utilizing the Modbus ASCII protocolbefore attempting to try to communicate to the Quantum™portion of the network. Additionally, typical Modbusprotocols allow for network broadcasting, whereby a singlemessage can be sent to all devices simultaneously. ThisBroadcasting is NOT allowed or supported by theQuantum™ Controller.

The Quantum™ provides the capability to interface withother devices that support serial data communicationsusing the Modbus ASCII protocol. This is a Master / Slavemulti-drop communication method whereby theQuantum™ is setup to be a Modbus ASCII Slave. Thecustomer’s PLC (Programmable Logic Controller) or DCS(Data Communications System, such as a desktop orlaptop computer) must be setup as a Modbus ASCIIMaster. The Master initiates the reading and writing ofdata (queries) to a Quantum™. The Quantum™ does notgenerate its own data, it will only reply from a request bythe Master.

The Quantum™ ID number is used as the Modbus Slaveaddress. The Master uses Function Code 3 (Read HoldingRegisters) to send a request to read data from theQuantum™. The Master uses Function Code 6 (LoadRegister) to request to change a setpoint or to send acommand such as starting the compressor. Up to fifty (50)data elements can be read with one read request.

Address references are numbered relative to the Frick

addresses in the Quantum™ Data Table (see “MODBUSAddressing Note” in the “Quantum™ Data Table” sectionof this manual for additional information). The Quantum™only accepts one value with a Load Register request.Changing a setpoint causes the Quantum™ to save thenew setpoint to nonvolatile memory. Be careful not tocontinuously request a setpoint change. Keeping theQuantum™ busy writing to memory will interfere with theQuantum™ communicating to its I/O boards. Acommunication failure to an I/O board will cause thecompressor to shutdown. For more detail and a list of thedata, reference the “Quantum™ Data Table” section ofthis manual. For details and information about the actualprotocol, reference the Modicon website athttp://www.modicon.com.

The read (query) and write examples on the followingpages are executed using a terminal emulation packageknown as Hyperterminal. For more information onHyperterminal, refer to the Hyperterminal section in thismanual. When using Hyperterminal, use the Frickaddresses listed in the address tables, rather than theModbus addresses. This is because Hyperterminal does

not use a Modbus driver as a protocol, but rather a pureASCII data packet. The Quantum™ however, does needto be set to Modbus protocol to properly interpret theASCII data.

Port Configuration of The Master

7 Bits per Character (Data Bits)No Parity1 Stop BitNo Handshake

Data Packet

The Modbus protocol establishes the format for theMaster's query by creating a message (data packet) asfollows:

• Assign the device address (Quantum™ panel ID#). The address field of a message framecontains two characters (ASCII). ValidQuantum™ device addresses are in the range of01 – 99 decimal. A master addresses aQuantum™ by placing the Quantum™ address inthe address field of the message. When theQuantum™ sends its response, it places its ownaddress in this address field of the response tolet the Master know which Quantum™ isresponding.

• A function code defining the requested action(Query):

• Function Code 3 - to read holding registers(sends a request to read data from theQuantum™).

- OR -

• Function Code 6 to load a register (to request tochange a setpoint or to send a command such asstarting the compressor).

• Any data to be sent (Response). The data field isconstructed using sets of two hexadecimal digits,in the range of 00 to FF hexadecimal. These areto be made from a pair of ASCII characters. Thedata field of messages sent from a Master to theQuantum™ devices contains additionalinformation which the Quantum™ must use totake the action defined by the function code. Thiscan include items like discrete and registeraddresses, the quantity of items to be handled,and the count of actual data bytes in the field. Ifno error occurs, the data field of a response froma Quantum™ to a Master contains the datarequested. If an error occurs, the field containsan exception code that the Master applicationcan use to determine the next action to be taken.

• An error-checking field.

The Query

The function code in the query tells the addressedQuantum™ what kind of action to perform. The data bytescontain any additional information that the Quantum™ willneed to perform the function. For example, function code03 will query the Quantum™ to read holding registers andrespond with their contents. The data field must containthe information telling the Quantum™ which register to

Page 21: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 21

start at and how many registers to read. The error checkfield provides a method for the Quantum™ to validate theintegrity of the message contents.

The Response

If the Quantum™ makes a normal response, the functioncode in the response is an echo of the function code in thequery. The data bytes contain the data collected by theQuantum™, such as register values or status. If an erroroccurs, the function code is modified to indicate that theresponse is an error response, and the data bytes containa code that describes the error. The error check fieldallows the master to confirm that the message contentsare valid.

Data Field

The data field is constructed using sets of twohexadecimal digits, in the range of 00 to FF hexadecimal.These can be made from a pair of ASCII characters.

The data field of messages sent from a master to theQuantum™ devices contains additional information whichthe Quantum™ must use to take the action defined by thefunction code. This can include items like discrete andregister addresses, the quantity of items to be handled,and the count of actual data bytes in the field.

For example, if the master requests a Quantum™ to reada group of holding registers (function code 03), the datafield specifies the starting register and how many registersare to be read.

If no error occurs, the data field of a response from aQuantum™ to a Master contains the data requested. If anerror occurs, the field contains an exception code that theMaster application can use to determine the next action tobe taken.

Error Checking

When data is transmitted to and from the Quantum™Controller, each message has an Error Checking valueappended to the end of the message. Because theQuantum™ utilizes Modbus ASCII protocol, LongitudinalRedundancy Check, or LRC, is used as the method forverifying that the message sent from the transmittingdevice, was properly received by the receiving device.

The Longitudinal Redundancy Check (LRC) field is onebyte, containing an eight-bit binary value. The LRC valueis calculated by the transmitting device, by adding togethersuccessive eight-bit bytes of the message, discarding anycarries, and then two's complementing the result. It isperformed on the ASCII message field contents excludingthe colon character that begins the message, andexcluding the CRLF pair at the end of the message. TheLRC is then appended to the message as the last fieldpreceding the CRLF (Carriage – Line Feed) characters.Each new addition of a character that would result in avalue higher than 255 decimal simply rolls over the field'svalue through zero. Because there is no ninth bit, the carryis discarded automatically.

The receiving device recalculates an LRC during receipt ofthe message, and compares the calculated value to theactual value it received in the LRC field. If the two valuesare not equal, an error results.

ASCII Framing

In ASCII mode, messages start with a colon ( : ) character(3A hex), and end with a carriage return-line feed (CRLF)pair (0D and 0A hex).

The allowable characters transmitted for all other fields arehexadecimal 0 - 9, A - F.

All Quantum™ panels connected to the network monitorthe network bus continuously for the colon character.When one is received, each Quantum™ decodes the nextfield (the address field) to find out if it is the addresseddevice.

A Modbus message is placed by the transmitting deviceinto a frame that has a known beginning and ending point.This allows receiving devices to begin at the start of themessage, read the address portion and determine whichdevice is addressed, and to know when the message iscompleted. Partial messages can be detected and errorscan be set as a result.

A typical message frame as sent by the Master is shownbelow.

START ADDRESS FUNCTION DATA LRC CHECK END

: 01 03 009E0001 5D CRLF

1 CHAR 2 CHAR 2 CHAR 8 CHAR 2 CHAR 2 CHAR

Where: = Start of Message01 = Quantum™ ID03 = Read Function00 = H.O. address (hex)9E = L.O. address (hex)00 = H.O. # of Data Registers01 = L.O. # of Data Registers5D = Error Correction CodeCRLF = Carriage Return – Line Feed

Query (Read) Example:

To demonstrate how an address within the Quantum™may be read, the following test can be performed usingWindows HyperTerminal:

As an example, a Modbus command will be created, andsent to obtain the actual Outside Air Temperature value ofAir Handling Unit #1. Using the address tables found laterin this manual, locate the address for Unit 1 Outside AirTemperature Analog Input. In this case, it would be Frick

Address 158 (decimal). Since this is the only address weare interested in obtaining the value of, send the followingmessage:

Look at this message on a more basic level, to understandhow the address that we are requesting is arrived at.

Page 22: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 22 COMMUNICATIONS SETUP

The first part of the message will be a Colon ( : ). Thisrepresents a “heads up” alert that data is coming “downthe line”.

Any time that a message is sent, all of the Quantum™panels that are on the Modbus network will become active, communications wise, once the Colon appears. Next, allpanels will look at the first byte following the Colon ( : ). Ifthis byte equals the Panel ID # of the particularQuantum™ being queried, it will immediately finishreading the remainder of the message. If the byte does notequal its ID #, the message will be ignored.

In this particular example, we are strictly looking to requestto view a data value, so we will be performing a readfunction (03):

158 decimal equals 9E hex. Looking at our example, wesee that we need a H.O. (High Order) address and a L.O.(Low Order) address. Since all data sent and received is inASCII Hex Byte format, we need to look at 9E Hex as theLow Order portion of the address. The High Order portionis 00. Now our decimal 158 is formatted as 009E Hex.

Since we are only looking for this one address, and noother, we can say that we are only looking for one DataAddress. Our Data Address part of the data packet is alsolooking for a High and a Low Order value. Fortunately, thenumber one (1) is the same in decimal as it is in Hex,therefore, the Low Order Address is 01 (hex). The HighOrder Address is 00 (hex), so our decimal 1 is formattedas 0001 (hex).

In order to ensure that the Quantum™ in questionreceives the data request accurately, we must append anError Check byte to the end of the message. This isaccomplished by adding each of the byte pairs (hex) thatwe have generated thus far:

01 + 03 + 00 + 9E + 00 + 01 = A3 hex

Next, subtract A3 (hex) from 100 (hex):100 (hex) – A3 (hex) = 5D (hex)

}: 01 03 00 9E 00 01 5D CRLF

Where:Start of MessageQuantum™ ID #Read FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data RegistersL.O. # of Data RegistersError Correction CodeCarriage Return – Line Feed

}

: 01 03 00 9E 00 01 5D CRLF

Where:Start of MessageQuantum™ ID #Read FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data RegistersL.O. # of Data RegistersError Correction CodeCarriage Return – Line Feed

}

: 01 03 00 9E 00 01 5D CRLF

Where:Start of MessageQuantum™ ID #Read FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data RegistersL.O. # of Data RegistersError Correction CodeCarriage Return – Line Feed

}

: 01 03 00 9E 00 01 5D CRLF

Where:Start of MessageQuantum™ ID #Read FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data RegistersL.O. # of Data RegistersError Correction CodeCarriage Return – Line Feed

}

: 01 03 00 9E 00 01 5D CRLF

Where:Start of MessageQuantum™ ID #Read FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data RegistersL.O. # of Data RegistersError Correction CodeCarriage Return – Line Feed

Where:Start of MessageQuantum™ ID #Read FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data RegistersL.O. # of Data RegistersError Correction CodeCarriage Return – Line Feed

}

: 01 03 00 9E 00 01 5D CRLF

Page 23: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 23

After the entire data packet has been created, simplypress the [Enter] key, a Line Feed will automatically besent also.

Write Example:

NOTE: To perform write functions to the ACUair®

Quantum™, the Panel Control Status (Frick® address 31)must be set to Remote. This can be done at the panel, orthrough communications. The Panel Control Status is theonly ACUair® address that can be written to without thepanel having to already be in remote.

To demonstrate how an address within the Quantum™may be written to, the following test can be performedusing Windows HyperTerminal:

As an example, a Modbus command will be created, andsent to set the Quantum™ to set the “Unit 1 ProcessControl Setpoint” to 25.0° C. First, be aware that data sentto and received by the Quantum™ has one decimal placeassumed. This means that to send the value of 25.0, youactually need to send 250. Using the address tables foundlater in this manual, locate the address for the “Unit 1Process Control Setpoint”. In this case, it would be Frick

Address (decimal). Since this is the only address we areinterested in writing to, send the following message:

Look at this message on a more basic level, to understandhow the address that we are writing to is arrived at. Wewant to send the value of 250 (25.0) to the Unit 1 ProcessControl Setpoint, Frick Address 309 (decimal).

The first part of the message will be a Colon ( : ). Thisrepresents a “heads up” alert that data is coming “downthe line”.

Any time that a message is sent, all of the Quantum™panels that are on the Modbus network will become active,communications wise, once the Colon appears. Next, allpanels will look at the first byte following the Colon ( : ). Ifthis byte equals the Panel ID # of the particularQuantum™ being queried, it will immediately finishreading the remainder of the message. If the byte does notequal its ID #, the message will be ignored.

In this particular example, we are strictly looking to write adata value, so we will be performing a write function (06):

309 decimal equals 135 hex. Looking at our example, wesee that we need a H.O. (High Order) address and a L.O.(Low Order) address. Since all data sent and received is inASCII Hex Byte format, we need to look at 35 Hex as theLow Order portion of the address. The High Order portionis 01. Now our decimal 309 is formatted as 0135 Hex.

}

: 01 03 00 9E 00 01 5D CRLF

Where:Start of MessageQuantum™ ID #Read FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data RegistersL.O. # of Data RegistersError Correction CodeCarriage

: 01 06 01 35 00 FA C9 CRLF

Where:Start of MessageQuantum™ ID #Write FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data ValueL.O. # of Data ValueError Correction CodeCarriage Return – Line Feed

}

: 01 06 01 35 00 FA C9 CRLF

Where:Start of MessageQuantum™ ID #Write FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data ValueL.O. # of Data ValueError Correction CodeCarriage Return – Line Feed

}: 01 06 01 35 00 FA C9 CRLF

Where:Start of MessageQuantum™ ID #Write FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data ValueL.O. # of Data ValueError Correction CodeCarriage Return – Line Feed

}

: 01 06 01 35 00 FA C9 CRLF

Where:Start of MessageQuantum™ ID #Write FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data ValueL.O. # of Data ValueError Correction CodeCarriage Return – Line Feed

Page 24: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 24 COMMUNICATIONS SETUP

The value that we wish to send is 25.0 (250). Our DataValue part of the data packet is looking for a High and aLow Order value. The number 250 (dec) must beconverted to hexadecimal. This conversion results in 03FA(hex). Separating 00FA into two bytes results in the LowOrder Value of FA (hex) and the High Order Value of 00(hex):

In order to ensure that the Quantum™ in questionreceives the data request accurately, we must append anError Check byte to the end of the message. This isaccomplished by adding each of the byte pairs (hex) thatwe have generated thus far:

01 + 06 + 01 + 35 + 00 + FA = 137 hex

Normally, we would subtract 137 (hex) from 100 (hex), asin the previous read example. However, in this case wesee that 137 hex is greater than 100 hex. Since the mathin this particular example would yield a negative number(FFFFFFC9), we need to modify the value of 137 in orderto provide a positive result. This is accomplished quitesimply by dropping the most left hand digit (137 becomes37):

100 (hex) - 37 (hex) = C9 (hex)

After the entire data packet has been created, simplypress the [Enter] key, a Line Feed will automatically besent also.

Response Example:

Using the Query (Read) Message example used earlier, ifthe packet was properly received by the Quantum™, youshould see an immediate response in HyperTerminal. Inthe Query Response (read function) example used earlier,a response of :01030200DC1E (hex) was received.

Once again, the first part of the message will be a Colon( : ). This represents a “heads up” alert that data is coming“down the line”, but since the data is coming from theQuantum™ to the Master this time, the Master will acceptit.

After having received the Colon ( : ), the Master will look atthe two bytes that follows it, so that it may determine fromwhich Quantum™ the message is coming from.

}: 01 03 02 00 DC 1E

Where:Start of MessageQuantum™ ID #Read FunctionNumber of Bytes ReturnedData

Error Correction Code

}

: 01 03 02 00 DC 1E

Where:Start of MessageQuantum™ ID #Read FunctionNumber of Bytes ReturnedData

Error Correction Code

}

: 01 06 01 35 00 FA C9 CRLF

Where:Start of MessageQuantum™ ID #Write FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data ValueL.O. # of Data ValueError Correction CodeCarriage Return – Line Feed

}

: 01 06 01 35 00 FA C9 CRLF

Where:Start of MessageQuantum™ ID #Write FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data ValueL.O. # of Data ValueError Correction CodeCarriage Return – Line Feed

}

: 01 06 01 35 00 FA C9 CRLF

Where:Start of MessageQuantum™ ID #Write FunctionH.O. address (hex)L.O. address (hex)H.O. # of Data ValueL.O. # of Data ValueError Correction CodeCarriage Return – Line Feed

Page 25: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 25

Now that the Master knows which panel is responding, itneeds to known which function the panel is responding to.In this case, it sees that it is a read function, and theQuantum™ is merely returning a value that was previouslyrequested.

The next byte tells the Master how many bytes ofinformation are being returned as a response. In this case,there are two (2) bytes of valid data.

The next two bytes (in this case) are the actual data inresponse to our original request.

We need to know what this value means. To break itdown, we must convert the pair of bytes from Hex toDecimal:

00DC (hex) = 220 (decimal)

Data to and from the Quantum™ are integer values withone decimal field assumed unless shown otherwise or thecommand is sent to select two decimal fields.

From the previous paragraph, we can assume that there isone decimal place to be applied to the data value that wasreturned. Therefore:

220 (decimal) = 22.0 (decimal)

All temperatures are in degrees C and all pressures are inPSIA unless the command is sent to select the units of thepanel. Therefore:

22.0 (decimal) = 22.0 C

Therefore, the value of the Outside Air Temperature forUnit 1 is 22.0° C.

NOTES:

This has been an example of how the Quantum™Controller uses the Modbus Protocol. It is hoped that theinformation provided here will assist the end user in writingapplications that will allow the Quantum™ to beimplemented into networks that the customer may alreadyhave in use.

This information is subject to change at any time, and isprovided as a reference only. Not all areas of the ModbusProtocol can be handled in this document. Someadditional information regarding Modbus Protocol that theend user should be aware of:

• There are many versions of Modbus Protocol thatis available, and an application that worksproperly on one system, may not functionidentically on another.

• Some versions of Modbus Protocol may requirethe user to increment any referenced addressesby “1” (one). For instance, if you wanted to lookat Frick Address 135, you may need to actuallylook at address 136. The Quantum™ addressingbegins at 0 (zero), whereas some ModbusProtocols begin at 1 (one), therefore, you mayneed to compensate.

• DO use Modbus ASCII. DO NOT use ModbusRTU.

• Use 7 Data bits.

• Follow the Frick specifications for datacommunications requirements.

: 01 03 02 00 DC 1E

{

Where:Start of MessageQuantum™ ID #Read FunctionNumber of Bytes ReturnedData

Error Correction Code

: 01 03 02 00 DC 1E

{

Where:Start of MessageQuantum™ ID #Read FunctionNumber of Bytes ReturnedData

Error Correction Code

: 01 03 02 00 DC 1E

Where:Start of MessageQuantum™ ID #Read FunctionNumber of Bytes ReturnedData

Error Correction Code

Page 26: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 26 COMMUNICATIONS SETUP

HYPERTERMINALHyperTerminal is a terminal emulation program whichresides in the MicroSoft Windows environment, and assuch, will normally be found on any computer that isrunning Windows 95 or NT. HyperTerminal provides amethod by which the end user may verify conclusively thattheir Quantum™ controller is functioning properly, and asdesigned, with respect to external communications toremote devices.

Many times, the Quantum™ controller will be installed intoan environment whereby the end user wishes tocommunicate to it, either through a PLC (ProgrammableLogic Controller), a desktop computer for the purpose ofmonitoring/controlling plant operations through HMI(Human Machine Interface), or any number of othercommunications applications.

The purpose of this desired communications typicallyinvolves viewing and changing setpoints, starting andstopping a compressor, viewing alarm and shutdowninformation, and viewing current operating conditions.

When first connecting a Quantum™ panel to acommunications network, it would be highly desirable todetermine that all necessary parameters (jumper settings,panel setup, and cabling) are properly met so thatcommunications may be established quickly with theQuantum™, so that time is not lost in trying totroubleshoot a potentially simple problem.

A modem or direct connection from a Comm port of acomputer running Windows 95, or NT can be used toconnect to Com-2 of the Quantum™.

Setting up Hyperterminal

You will need to locate either a lap top or desktopcomputer, that has Hyperterminal installed.

• Turn on the power for the lap top.

• After the laptop has fully booted, locate theHyperterminal program. (Hyperterminal is usuallyfound in the “Accessories” folder). IfHyperterminal can't be found there, try using the“Find File” command, and search the entire harddrive.

• Be aware that the screens that are actuallyshown on the test computer may or may notappear exactly as shown here. Various versionsof Windows, can affect the appearance, as wellas whether or not the screen has been“maximized”, or if it has been scaled to a smallersize. Regardless of how the screen workappears, the function of the screen work is whatis important, and that function is not affected bythe way the screen looks.

• Once Hyperterminal has been located, execute it.A dialog box will appear. You will be prompted toenter a name for the “New Connection”. Type inwhatever name you would like to use, “Frick”was used in this example. This name will alsocreate a file once you are finished, saving all ofthe setup parameters for future use. It isrecommended that a name be chosen to reflectthe type of Protocol that you will be using as youmay wish to setup for various protocols. Onceyou have entered a name, click [OK].

Page 27: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 27

A new dialog box will be shown asking to select a Comport (choose the Com port that your communications cable

is attached to, this will normally be Com-1). The phonenumber box should be blank. Click on [OK].

The Com-1 properties dialog box will now appear. Theparameters in this box must match the requirements of theprotocol that you are wishing to use. The one box thatnormally would need to be changed from one protocol tothe next is the “Data Bits ” box. For Modbus, you wouldwant to use 7 data bits, for Frick and Quantum™protocols, use 8 data bits.

NOTE: Allen-Bradley protocol cannot be tested usingHyperterminal.

For the purpose of this document, Frick “#” protocol willbe used. Refer to the Modbus section of this manual forinformation on Modbus.

Set the five boxes as follows, then click [OK].

• Bits per second: 9600 (must match theQuantum™)

• Data bits: 8

• Parity: None

• Stop Bits: 1

• Flow Control: None

Page 28: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 28 COMMUNICATIONS SETUP

The following screen will appear. This is the screenwhereby all communications (out of the computer, and intoit) will be shown. When valid data is typed in here, then

sent, the connected device recognizes and responds tothat data, and a response will be shown below the sentdata. Click on [File].

A pull down menu will appear. From this menu, locate andclick on [Properties]. You will once again see the

following screen. This time, click on the [Settings] tab.

Page 29: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 29

The computer will need to be set up to match thedocumentation as presented here, for everything to look

and work as shown later. To do this, click on the [ASCIISetup…] button.

On the ASCII Setup screen, for best results, check theboxes according to the following chart:

For Modbus:

• Send line ends with line feeds• Echo typed characters locally• Append line feeds to incoming line ends• Wrap lines that exceed terminal width

For Frick® protocols (# and $):

• Echo typed characters locally• Append line feeds to incoming line ends• Wrap lines that exceed terminal width

Leave everything else on this dialog box unchanged, thenclick on [OK].

Page 30: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 30 COMMUNICATIONS SETUP

The Properties screen will once again be shown. Click onthe [OK] button to proceed.

You will now be back to the main Hyperterminalcommunications screen. This screen will be blank. Allcommunications, both from the computer, and to the

computer (from the Quantum™), will appear on thisscreen. Proceed to the “Testing Communications” section.

Page 31: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 31

Testing Communications

Set the keyboard for “CAPS” (so that all capital letters will

be typed). Type in the following command: #01I, thenpress [ENTER]. (This command will request theQuantum™ with ID 01 to send a packet of Information.)

If the communications is working properly, there should bean immediate response from the first Quantum™. Theresponse should look something (but not necessarilyexactly) like “#01I000AOMN609”

Go to the first Quantum™ in line, and check the "ShowComms" screen that was described earlier. You shouldsee your message (and the Quantum™ reply) displayedthere.

If this portion of the test has passed, you can try tocommunicate to the next (or any Quantum™, by changingthe value that you type into the HyperTerminal screen asfollows:

Instead of [#01], replace the “01” portion with the IDthat you would like to access. For instance, if youwanted to talk to a fourth Quantum™ (ID 4), type in[#04]. This should return a message from thatQuantum™.

This has been just a brief description of how to check yourcommunications and verify that it is working. Greater detailcan be found by consulting tables for each of the protocolsin this manual.

General Notes:

Ensure that the Quantum™ is set for the correct IDnumber, BAUD rate and type of communications protocolthat is to be used. This setup can be found by pressing the[Menu] key on the keypad, then pressing the [PanelSetup] key that will appear at the right side of the display.When the panel setup appears, look at the information atthe “CHANGE COMMS” line of the screen. This info mustmatch the communications that you are trying to establishat the other end.

There are two red LED’s associated with the Com-2 porton the Quantum™ (TX2 & RX2). Ensure that neither ofthese LED’s are on continuously. If one or the other (orboth) are on constantly, disconnect the Com cable. If thestatus of the LED’s does not change, check the wiringconnections to the communications port. Ensure that thewiring is not backwards. If the wiring is correct, power theQuantum™ down, then back up. If either or both of theLED’s is still on, a bad driver chip may be suspected onthe Quantum™, and the board should be replaced.

Once everything has been inspected (cables, jumpers,and setup), try to develop communications from themaster. You should see the LED’s on the Com-2 portflickering as the Quantum™ “talks” to the master. Ifnothing happens, it would be best to consult the“HyperTerminal” section of this memo for more detailedtroubleshooting.

If you do see the LED’s flickering, but data at the masterdevice does not look correct, you can verify what is beingsent and received at the Quantum™ by:

Pressing the [Menu] key on the keypad, then whenthe "Main Menu" screen appears, find and press the[MORE…] button.

A second "Main Menu" screen will appear. Find andpress the [Service Screen] key

Page 32: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 32 COMMUNICATIONS SETUP

The “Service Screen” will appear. Press the [ShowComms] key at the top right of the screen to view thecommunications information.

You will now be viewing all of the communicationsinformation that Com-2 is receiving and transmitting. Thisscreen will require you to update it manually be pressingthe [Show Comms] key periodically.

This screen will display all data that is coming through theCom ports. At the left of each line, you should see whetherthe data is “IN” or “OUT” (Receive or Send). Followed by“COMM X” (which com port of the Quantum™ is doing the“talking”). And lastly, the actual data (in Hexadecimalformat).

Ensure that this Hex data matched the data at the master.Refer to the “Conversion Chart For Decimal / Hexadecimal/ ASCII” in this manual for assistance in decoding thecommunications data.

If no data appears, or if the data does not match thespecific protocol requirements that you are using, then oneof the following things can be the problem:

• Wiring problem. (verify that the wiring matchesthat shown in the

• Quantum™ Panel Setup is wrong. Access thePanel Setup screen and verify that theQuantum™ ID is set to the same value that youare trying to access. Also, check that the baudrate matches that of the setup in the propertiessection of the Hyperterminal example.

• Quantum™ jumpers. Verify the position of thejumpers by comparing them with the sectionentitled “Quantum™ 3 Communications Jumpers”for the Quantum™ 3, or entitled “Quantum™ 4Communications Jumpers”, for the Quantum™ 4.

• Incorrect data is being entered in Hyperterminal.Ensure that the data that you have entered,exactly matches the example. Use capital letters.

• Go back through the “Setting up Hyperterminal”section, and ensure that it has been followedexactly. Repeat the process if necessary.

• If you are using a converter card (to convert theRS-232 signal from the computer to RS-422 orRS-485), then either verify that the converter cardis working properly with a different piece ofknown functioning equipment, or eliminate itcompletely by tying into the Quantum™ directlythrough RS-232.

• The Communications port on the computer isbad. Try to verify this by communicating to adifferent piece of known good equipment.

• The Communications port on the Quantum™ isbad.

Page 33: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 33

Quantum™ Data Table

Allen-Bradley and Modbus Data Access

Data passed to and from the Quantum™ are integervalues with one decimal field assumed unless shownotherwise or the command is sent to select two decimalfields. For example, if the data’s value is 25.5 then thevalue 255 is sent. All temperatures are in degree C and allpressures are in PSIA unless the command is sent toselect the units of the panel. . A mode such as “CurrentACUair Mode” is sent as an integer value that representsthe mode it is in. For example, a 0 is sent if it is in“Process Mode”, or a 10 is sent if it is in “Cleanup Mode”.The value zero (0) is used to represent an “OFF” statusand a “DISABLED” option. The value one (1), which isreceived as a 10, is used to represent an “ON” status andan “ENABLED” option. Only data values that aredesignated as setpoints are modifiable. “Read Only” isused to help identify what data is not modifiable. Thesetpoint range is checked to see if it is an allowed setting.If it is not allowed, the setting is not changed. Referencethe “Frick ACUair Quantum™ Control PanelMaintenance” S90-500 M for the setpoints default settingsand ranges. Reference the “Quantum™ Data Table” in thismanual for the address listing and description of data.

A command has been provided that selects whether datato and from the Quantum™ will be integer values witheither one or two decimal fields assumed. Anothercommand has been provided that selects whether data toand from the Quantum™ will be returned in the units thatare the default (pressure in PSIA and temperature inDegree C) or in the units that are selected to display at thepanel.

With the ACUair® control system, all unit-specific setpointsare stored at the GCU board and are only loaded to theQuantum panel as needed. As a result, delays will beencountered when reading or writing these setpoints asthe values are transferred between the Quantum and GCUboard. Setpoints whose Frick® addresses are in the

following ranges should be considered unit-specific: 200-569, 700-1069, 1200-1569 and 1700-2069.

To properly read or change the unit-specific setpointsstored at the GCU, it is necessary to follow certainprocedures. First, a command should be sent to changethe Panel Control Status to “Remote”. The Quantumscreen will immediately move to the Unit Overview displayand the Panel Control Status will be set to Remote. At thispoint, a command may be sent to read or write setpointvalues.

When using the Modbus protocol, expect to wait a up toseveral seconds while the required values are downloadedfrom the GCU board. With the Allen-Bradley protocol, thefirst time a value or set of values are requested, no data isreturned, but the data is downloaded from the GCU board.The same data request should be sent several secondslater, and the downloaded data will now be returned.When setpoints are changed, the Quantum will reply to theAllen-Bradley or Modbus command and then write thechange to the GCU board. After sending a writecommand, wait approximately a second before sendingthe next command. These operational methods, whenused properly, allow a person to make a large number ofsetpoint changes without stalling communications.

When reading values from the GCU board that maychange periodically, such as the Alarm List, send theRefresh Setpoints command before reading the values toverify that current settings are being read. Also be aware,if a person presses the "Login to Unit" button at theQuantum, the Panel Control Status setting will be set toManual. This will prevent a remote system from reading orwriting the setpoints until the Panel Control Status is resetto Remote.

Modbus Addressing Note:

When using Modbus protocol (other than theHyperterminal example shown earlier), it is necessary touse the Modbus Address as shown in the following tables.These addresses should work for most applications.

Page 34: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 34 COMMUNICATIONS SETUP

Calculated/Status:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

5 N10:5 40006 X Language 0 = English1 = Spanish

6 N10:6 40007 X Temperature 0 = Fahrenheit1 = Celsius

7 N10:7 40008 X Pressure 0 = PSIA1 = PSIG2 = BarA3 = KPAA4 = Bar

8 N10:8 40009 X Baud rate for Comm1 0 = 12001 = 24002 = 48003 = 96004 = 192005 = 384006 = 576007 = 115200

9 N10:9 40010 X Baud rate for Comm2 0 = 12001 = 24002 = 48003 = 96004 = 192005 = 384006 = 576007 = 115200

13 N10:13 40014 X Program Version ####.## x100

15 N10:15 40016 X Board Temperature

21 N10:21 40022 X Screen Saver on / off22 N10:22 40023 Number of minutes before Screen Saver

enabled25 N10:25 40026 X External Communications through Comm 1 0 = Frick®

1 = AB2 = Modbus

26 N10:26 40027 X External Communications through Comm 2 0 = Frick®

1 = AB2 = Modbus

27 N10:27 40028 ID Number

28 N10:28 40029 X Month Version was released

29 N10:29 40030 X Day Version was released

30 N10:30 40031 X Year Version was released31 N10:31 40032 X Panel Control Status 0 = Manual

1 = Remote32 N10:32 40033 History Trending Interval

33 N10:33 40034 Real Time Trending Interval

34 N10:34 40035 X Screen Blink on Shutdown (Enable/Disable)

80 N10:80 40081 X Unit Id Number 1 - 4

Page 35: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 35

Unit 1 Settings:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

100 N10:100 40101 X Unit 1 ID 1114 N10:114 40115 X Unit 1 Cooling Demand 0 - 100%115 N10:115 40116 X Unit 1 Dehumidification Demand 0 - 100%116 N10:116 40117 X Unit 1 Exhaust Demand 0 - 100%117 N10:117 40118 X Unit 1 Room Pressure Demand 0 - 100%118 N10:118 40119 X Unit 1 Economizer Demand 0 - 100%119 N10:119 40120 X Unit 1 Mechanical Cooling Demand 0 - 100%120 N10:120 40121 X Unit 1 Supply Fan Motor Digital Output 0 = Off

1 = On121 N10:121 40122 X Unit 1 Exhaust Fan 1 Digital Output 0 = Off

1 = On122 N10:122 40123 X Unit 1 Exhaust Fan 2 Digital Output 0 = Off

1 = On123 N10:123 40124 X Unit 1 Burner Command Digital Output 0 = Off

1 = On124 N10:124 40125 X Unit 1 Cooling Stage 1 Digital Output 0 = Off

1 = On125 N10:125 40126 X Unit 1 Cooling Stage 2 Digital Output 0 = Off

1 = On126 N10:126 40127 X Unit 1 Cooling Stage 3 Digital Output 0 = Off

1 = On127 N10:127 40128 X Unit 1 Cooling Stage 4 Digital Output 0 = Off

1 = On128 N10:128 40129 X Unit 1 Alarm Digital Output 0 = Off

1 = On129 N10:129 40130 X Unit 1 Pre-Heat Digital Output 0 = Off

1 = On130 N10:130 40131 X Unit 1 Suction Digital Output 0 = Off

1 = On131 N10:131 40132 X Unit 1 Hot Gas Digital Output 0 = Off

1 = On132 N10:132 40133 X Unit 1 Bleed Digital Output 0 = Off

1 = On133 N10:133 40134 X Unit 1 Spare 14 Digital Output 0 = Off

1 = On134 N10:134 40135 X Unit 1 Spare 15 Digital Output 0 = Off

1 = On135 N10:135 40136 X Unit 1 Cleanup Digital Output 0 = Off

1 = On140 N10:140 40141 X Unit 1 Air Flow Digital Input 0 = Off

1 = On141 N10:141 40142 X Unit 1 Mode Select Digital Input 0 = Process

1 = Cleanup142 N10:142 40143 X Unit 1 On/Off Select Digital Input 0 = Off

1 = On143 N10:143 40144 X Unit 1 Burner Status Digital Input 0 = Off

1 = On144 N10:144 40145 X Unit 1 Flame Failure Digital Input 0 = Off

1 = On145 N10:145 40146 X Unit 1 Demand Defrost Digital Input 0 = Off

1 = On146 N10:146 40147 X Unit 1 Auxiliary 1 Digital Input 0 = Off

1 = On147 N10:147 40148 X Unit 1 Auxiliary 2 Digital Input 0 = Off

1 = On150 N10:150 40151 X Unit 1 Outside Air Dampers Analog Output 0 - 100%151 N10:151 40152 X Unit 1 Exhaust Dampers Analog Output 0 - 100%151 N10:151 40152 X Unit 1 Exhaust Dampers Analog Output 0 - 100%

Page 36: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 36 COMMUNICATIONS SETUP

Unit 1 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

152 N10:152 40153 X Unit 1 Burner Analog Output 0 - 100%153 N10:153 40154 X Unit 1 Heat Profile Analog Output 0 - 100%154 N10:154 40155 X Unit 1 Pre-Heat Analog Output 0 - 100%155 N10:155 40156 X Unit 1 Cooling Analog Output 0 - 100%156 N10:156 40157 X Unit 1 Variable Speed Fan Analog Output 0 - 100%157 N10:157 40158 X Unit 1 Humidification Analog Output 0 - 100%158 N10:158 40159 X Unit 1 Outside Air Temp. Analog Input159 N10:159 40160 X Unit 1 Discharge Air Temp. Analog Input160 N10:160 40161 X Unit 1 Return Air Temperature Analog Input161 N10:161 40162 X Unit 1 Spare Temperature Analog Input162 N10:162 40163 X Unit 1 Damper Position Analog Input163 N10:163 40164 X Unit 1 Exhaust Fan 1 Position Analog Input164 N10:164 40165 X Unit 1 Exhaust Fan 2 Position Analog Input165 N10:165 40166 X Unit 1 Ammonia Detector Analog Input166 N10:166 40167 X Unit 1 Ret. Air Rel. Humidity Analog Input167 N10:167 40168 X Unit 1 Ret. Air Press. Sensor Analog Input168 N10:168 40169 X Unit 1 Coil Air Temperature Analog Input260 N15:10 40261 X Unit 1 Status 0 = Off

1 = Running2 = Starting

261 N15:11 40262 X Unit 1 Air Handling Mode 0 = Process1 = Cleanup

262 N15:12 40263 X Unit 1 Control Mode 0 = Local1 = Remote

263 N15:13 40264 X Unit 1 Control Value 0 = (none)1 = Return Air Temp2 = Discharge Air Temp3 = Humidity

264 N15:14 40265 X Unit 1 Control Setpoint 0 = (none)1 = Process Control2 = Cleanup Control3 = Dehumidification4 = Economizer Switchover5 = Cleanup Heating

265 N15:15 40266 X Unit 1 Economizer Enabled 0 = Disabled1 = Enabled

266 N15:16 40267 X Unit 1 Cooling Lockout 0 = Disabled1 = Enabled

267 N15:17 40268 X Unit 1 Alarm 0 = (none)1 = Alarm2 = Shutdown

268 N15:18 40269 X Unit 1 Defrost269 N15:19 40270 X Unit 1 Defrost Stage 0 = Off

1 = Pump Out2 = Hot Gas3 = Bleed4 = Fan Delay

270 N15:20 40271 X Unit 1 Defrost Initiated By 0 = (none)1 = Defrost Button2 = Digital Input3 = Defrost Schedule4 = Liquid Counter

279 N15:29 40280 X Unit 1 Type 0 = Mixed Air1 = Make Up Air

Page 37: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 37

Unit 1 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

280 N15:30 40281 X Unit 1 Cooling Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Three Stage4 = Four Stage5 = Flooded Single Stage6 = Pos. Valve with Mod. Out.7 = Single Modulated Valve

281 N15:31 40282 X Unit 1 Heating Setup 0 = Disabled1 = Single Stage2 = Direct Fire3 = Indirect Fire4 = Single Modulated Valve5 = Two-Pos. Valve with Mod. Out

282 N15:32 40283 X Unit 1 Pre-Heat Setup 0 = Disabled1 = Single Stage2 = Direct Fire3 = Indirect Fire4 = Single Modulated Valve5 = Two-Pos. Valve with Mod. Out

283 N15:33 40284 X Unit 1 Dehumidification Setup 0 = Disabled1 = Ret. Air Dehumidification Cont.

284 N15:34 40285 X Unit 1 Supply Fan Setup 0 = No Motor1 = Variable Air Volume2 = Constant Air Volume

285 N15:35 40286 X Unit 1 Exhaust Fan Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Single Stage w/Mod. Dampers4 = Two Stage w/Mod. Dampers

286 N15:36 40287 X Unit 1 Temperature Control Setup 0 = Room/Return Air Control1 = Discharge Air Control2 = Discharge Air Cont., Room Temp

View3 = Room Temp Control4 = Room Temp Cont., Discharge Temp

View287 N15:37 40288 X Unit 1 Damper Control Setup 0 = 100% Outside Air

1 = Mixed Air w/Dry Bulb Eco & Cleanup288 N15:38 40289 X Unit 1 Humidification Setup 0 = Disabled

1 = Room/Return Air Humid. Cont.289 N15:39 40290 X Unit 1 Suction Setup 0 = Process Mode Always

1 = Process Mode with Liquid2 = Flooded Coil

290 N15:40 40291 X Unit 1 Ammonia Sensor Setup 0 = Disabled1 = Enabled

291 N15:41 40292 X Unit 1 Room Pressure Setup 0 = Disabled1 = Room Pressure High Limit2 = Room Pressure Control

292 N15:42 40293 X Unit 1 Process Heating Setup 0 = Disabled1 = Enabled

293 N15:43 40294 X Unit 1 Process Pre-Heat Setup 0 = Disabled1 = Enabled

294 N15:44 40295 X Unit 1 Defrost Setup 0 = Disabled1 = Basic Defrost2 = Time of Day3 = Time with Liquid Override4 = Liquid Counter

295 N15:45 40296 X Unit 1 Discharge Temp. Alarm Setup

Page 38: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 38 COMMUNICATIONS SETUP

Unit 1 Setpoints:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

309 N15:59 40310 Unit 1 Process Control Setpoint311 N15:61 30312 Unit 1 Cooling Command Proportional Band312 N15:62 40313 Unit 1 Cooling Command Dead Band313 N15:63 40314 Unit 1 Cooling Command Integration Time314 N15:64 40315 Unit 1 Cooling Differential315 N15:65 40316 Unit 1 Cooling CV Maximum316 N15:66 40317 Unit 1 Cooling CV Minimum317 N15:67 40318 Unit 1 Process Cooling Lockout318 N15:68 40319 Unit 1 Cleanup Cooling Temperature319 N15:69 40320 Unit 1 Cleanup Cooling Lockout320 N15:70 40321 Unit 1 Cooling Stage #1 Demand Setpoint321 N15:71 40322 Unit 1 Cooling Stage #1 Minimum On Time322 N15:72 40323 Unit 1 Cooling Stage #1 Minimum Off Time323 N15:73 40324 Unit 1 Cooling Stage #2 Demand Setpoint324 N15:74 40325 Unit 1 Cooling Stage #2 Minimum On Time325 N15:75 40236 Unit 1 Cooling Stage #2 Minimum Off Time326 N15:76 40327 Unit 1 Cooling Stage #3 Demand Setpoint327 N15:77 40328 Unit 1 Cooling Stage #3 Minimum On Time328 N15:78 40329 Unit 1 Cooling Stage #3 Minimum Off Time329 N15:79 40330 Unit 1 Cooling Stage #4 Demand Setpoint330 N15:80 40331 Unit 1 Cooling Stage #4 Minimum On Time331 N15:81 40332 Unit 1 Cooling Stage #4 Minimum Off Time332 N15:82 40333 Unit 1 Cooling Interstage Delay336 N15:86 40337 Unit 1 Heating Command Proportional Band337 N15:87 40338 Unit 1 Heating Command Dead Band338 N15:88 40339 Unit 1 Heating Command Integration Time340 N15:90 40341 Unit 1 Process Heating Lockout341 N15:91 40342 Unit 1 Process Heating CV Maximum342 N15:92 40343 Unit 1 Process Heating CV Minimum343 N15:93 40344 Unit 1 Heating Differential344 N15:94 40345 Unit 1 Cleanup Heating Temperature345 N15:95 40346 Unit 1 Cleanup Heating Lockout346 N15:96 40348 Unit 1 Cleanup Heating CV Maximum347 N15:97 40349 Unit 1 Cleanup Heating CV Minimum350 N15:100 40351 Unit 1 Heating Minimum On Time351 N15:101 40352 Unit 1 Heating Minimum Off Time370 N15:120 40371 Unit 1 Pre-Heat Proportional Band371 N15:121 40372 Unit 1 Pre-Heat Dead Band372 N15:122 40373 Unit 1 Pre-Heat Integration Time373 N15:123 40374 Unit 1 Process Pre-Heat Lockout374 N15:124 40375 Unit 1 Process Pre-Heat Setpoint375 N15:125 40376 Unit 1 Process Pre-Heat CV Maximum376 N15:126 40377 Unit 1 Process Pre-Heat CV Minimum377 N15:127 40378 Unit 1 Pre-Heat Differential378 N15:128 40379 Unit 1 Pre-Heat Minimum On Time379 N15:129 40380 Unit 1 Pre-Heat Minimum Off Time380 N15:130 40381 Unit 1 Cleanup Pre-Heat Lockout

381 N15:131 40382 Unit 1 Cleanup Pre-Heat CV Maximum

382 N15:132 40383 Unit 1 Cleanup Pre-Heat CV Minimum

396 N15:146 40397 Unit 1 Dehumidification Setpoint

Page 39: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 39

Unit 1 Setpoints (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

397 N15:147 40398 Unit 1 Dehumidification Proportional Band

398 N15:148 40399 Unit 1 Dehumidification Dead Band

399 N15:149 40406 Unit 1 Dehumidification Integration Time

406 N15:156 40407 Unit 1 Humidification Setpoint

407 N15:157 40408 Unit 1 Humidification Proportional Band

408 N15:158 40409 Unit 1 Humidification Dead Band

409 N15:159 40410 Unit 1 Humidification Integration Time

434 N15:184 40435 Unit 1 Exhaust Fan Stage 1 Start Enable

435 N15:185 40436 Unit 1 Exhaust Fan Stage 2 Start Enable

436 N15:186 40437 Unit 1 Exhaust Fan Stage 1 Start

437 N15:187 40438 Unit 1 Exhaust Fan Stage 2 Start

438 N15:188 40439 Unit 1 Exhaust Fan Stage 1 Differential

439 N15:189 40440 Unit 1 Exhaust Fan Stage 2 Differential

446 N15:196 40447 Unit 1 Economizer Lockout

447 N15:197 40448 Unit 1 Room Pressure CV Maximum

448 N15:198 40449 Unit 1 Room Pressure Alarm

449 N15:199 40450 Unit 1 Room Pressure Alarm Delay

450 N15:200 40451 Unit 1 Room Pressure Shutdown

451 N15:201 40452 Unit 1 Room Pressure Shutdown Delay

452 N15:202 40453 Unit 1 Minimum Outside Air Damper Position

453 N15:203 40454 Unit 1 Economizer Switchover

454 N15:204 40455 Unit 1 Economizer Proportional Band

455 N15:205 40456 Unit 1 Economizer Dead Band

456 N15:206 40457 Unit 1 Economizer Integration Time

457 N15:207 40458 Unit 1 Cleanup Outside Air Damper Position

458 N15:208 40465 Unit 1 Economizer Differential

465 N15:215 40466 Unit 1 Room Pressure Setpoint

466 N15:216 40467 Unit 1 Room Pressure Proportional Band

467 N15:217 40468 Unit 1 Room Pressure Dead Band

468 N15:218 40469 Unit 1 Room Pressure Integration Time

469 N15:219 40470 Unit 1 Cleanup Coil Purge Time

470 N15:220 40471 Unit 1 Heat Profile Minimum Damper Position

471 N15:221 40472 Unit 1 Heat Profile CV Minimum

472 N15:222 40473 Unit 1 Heat Profile CV Maximum

475 N15:225 40476 Unit 1 Ammonia Alarm Setpoint

476 N15:226 40477 Unit 1 Ammonia Alarm Delay

477 N15:227 40478 Unit 1 Ammonia Shutdown Setpoint

478 N15:228 40479 Unit 1 Ammonia Shutdown Delay

479 N15:229 40480 Unit 1 Digital Auxiliary 1 Delay

480 N15:230 40481 Unit 1 Digital Auxiliary 2 Delay

481 N15:231 40482 X Unit 1 Digital Auxiliary 1

482 N15:232 40483 X Unit 1 Digital Auxiliary 2

483 N15:233 40484 X Unit 1 Auxiliary Analog 1

484 N15:234 40485 X Unit 1 Auxiliary Analog Input 1

485 N15:235 40486 X Unit 1 Auxiliary Analog Input 2

486 N15:236 40487 X Unit 1 Auxiliary Analog Input 3

Page 40: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 40 COMMUNICATIONS SETUP

Unit 1 Setpoints (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

487 N15:237 40488 X Unit 1 Auxiliary Analog Input 4

488 N15:238 40489 X Unit 1 Analog Auxiliary Output 1

489 N15:239 40490 X Unit 1 Analog Auxiliary Output 2

490 N15:240 40491 X Unit 1 Analog Auxiliary Output 3

491 N15:241 40492 X Unit 1 Analog Auxiliary Output 4

492 N15:242 40493 Unit 1 Discharge Temperature Alarm

493 N15:243 40494 Unit 1 Discharge Temperature Alarm Delay

494 N15:244 40495 Unit 1 Discharge Temperature Shutdown

495 N15:245 40496 Unit 1 Discharge Temperature Shutdown Delay

501 N16:1 40502 X Unit 1 GCU's Comm 2 Enable/Disable

502 N16:2 40503 X Unit 1 GCU's Comm 2 Active/Failed

504 N16:4 40505 X Unit 1 Refrigeration Counter

505 N16:5 40506 Unit 1 Defrost Time 1

506 N16:6 40507 Unit 1 Defrost Time 2

507 N16:7 40508 Unit 1 Defrost Time 3

508 N16:8 40509 Unit 1 Defrost Time 4

509 N16:9 40510 Unit 1 Defrost Time 5

510 N16:10 40511 Unit 1 Defrost Time 6

511 N16:11 40512 Unit 1 Defrost Time 7

512 N16:12 40513 Unit 1 Defrost Time 8

513 N16:13 40514 Unit 1 Defrost Pump Out

514 N16:14 40515 Unit 1 Defrost Hot Gas

515 N16:15 40516 Unit 1 Defrost Bleed

516 N16:16 40517 Unit 1 Defrost Fan Delay

517 N16:17 40518 Unit 1 Refrigeration Counter Setpoint

518 N16:18 40519 Unit 1 Max Days between Defrosts

519 N16:19 40520 Unit 1 Max Consecutive Defrosts

520 N16:20 40521 X Unit 1 Defrost Stage Time Remaining

521 N16:21 40522 X Unit 1 Purge Time Remaining

Page 41: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 41

Unit 2 Settings:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

600 N16:100 40601 X Unit 2 Id 2614 N16:114 40615 X Unit 2 Cooling Demand 0 - 100%615 N16:115 40616 X Unit 2 Dehumidification Demand 0 - 100%616 N16:116 40617 X Unit 2 Exhaust Demand 0 - 100%617 N16:117 40618 X Unit 2 Room Pressure Demand 0 - 100%618 N16:118 40619 X Unit 2 Economizer Demand 0 - 100%619 N16:119 40620 X Unit 2 Mechanical Cooling Demand 0 - 100%620 N16:120 40621 X Unit 2 Supply Fan Motor Digital Output 0 = Off

1 = On621 N16:121 40622 X Unit 2 Exhaust Fan 1 Digital Output 0 = Off

1 = On622 N16:122 40623 X Unit 2 Exhaust Fan 2 Digital Output 0 = Off

1 = On623 N16:123 40624 X Unit 2 Burner Command Digital Output 0 = Off

1 = On624 N16:124 40625 X Unit 2 Cooling Stage 1 Digital Output 0 = Off

1 = On625 N16:125 40626 X Unit 2 Cooling Stage 2 Digital Output 0 = Off

1 = On626 N16:126 40627 X Unit 2 Cooling Stage 3 Digital Output 0 = Off

1 = On627 N16:127 40628 X Unit 2 Cooling Stage 4 Digital Output 0 = Off

1 = On628 N16:128 40629 X Unit 2 Alarm Digital Output 0 = Off

1 = On629 N16:129 40630 X Unit 2 Pre-Heat Digital Output 0 = Off

1 = On630 N16:130 40631 X Unit 2 Suction Digital Output 0 = Off

1 = On631 N16:131 40632 X Unit 2 Hot Gas Digital Output 0 = Off

1 = On632 N16:132 40633 X Unit 2 Bleed Digital Output 0 = Off

1 = On633 N16:133 40634 X Unit 2 Spare 14 Digital Output 0 = Off

1 = On634 N16:134 40635 X Unit 2 Spare 15 Digital Output 0 = Off

1 = On635 N16:135 40636 X Unit 2 Cleanup Digital Output 0 = Off

1 = On640 N16:140 40641 X Unit 2 Air Flow Digital Input 0 = Off

1 = On641 N16:141 40642 X Unit 2 Mode Select Digital Input 0 = Process

1 = Cleanup642 N16:142 40643 X Unit 2 On/Off Select Digital Input 0 = Off

1 = On643 N16:143 40644 X Unit 2 Burner Status Digital Input 0 = Off

1 = On644 N16:144 40645 X Unit 2 Flame Failure Digital Input 0 = Off

1 = On645 N16:145 40646 X Unit 2 Demand Defrost Digital Input 0 = Off

1 = On646 N16:146 40647 X Unit 2 Auxiliary 1 Digital Input 0 = Off

1 = On647 N16:147 40648 X Unit 2 Auxiliary 2 Digital Input 0 = Off

1 = On650 N16:150 40651 X Unit 2 Outside Air Dampers Analog Output 0 - 100%651 N16:151 40652 X Unit 2 Exhaust Dampers Analog Output 0 - 100%652 N16:152 40653 X Unit 2 Burner Analog Output 0 - 100%653 N16:153 40654 X Unit 2 Heat Profile Analog Output 0 - 100%654 N16:154 40655 X Unit 2 Pre-Heat Analog Output 0 - 100%655 N16:155 40656 X Unit 2 Cooling Analog Output 0 - 100%

Page 42: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 42 COMMUNICATIONS SETUP

Unit 2 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

656 N16:156 40657 X Unit 2 Variable Speed Fan Analog Output 0 - 100%657 N16:157 40658 X Unit 2 Humidification Analog Output 0 - 100%658 N16:158 40659 X Unit 2 Outside Air Temp. Analog Input659 N16:159 40660 X Unit 2 Discharge Air Temp. Analog Input660 N16:160 40661 X Unit 2 Return Air Temperature Analog Input661 N16:161 40662 X Unit 2 Spare Temperature Analog Input662 N16:162 40663 X Unit 2 Damper Position Analog Input663 N16:163 40664 X Unit 2 Exhaust Fan 1 Position Analog Input664 N16:164 40665 X Unit 2 Exhaust Fan 2 Position Analog Input665 N16:165 40666 X Unit 2 Ammonia Detector Analog Input666 N16:166 40667 X Unit 2 Ret. Air Rel. Humidity Analog Input667 N16:167 40668 X Unit 2 Ret. Air Press. Sensor Analog Input668 N16:168 40669 X Unit 2 Coil Air Temperature Analog Input760 N17:10 40761 X Unit 2 Status 0 = Off

1 = Running2 = Starting

761 N17:11 40762 X Unit 2 Air Handling Mode 0 = Process1 = Cleanup

762 N17:12 40763 X Unit 2 Control Mode 0 = Local1 = Remote

763 N17:13 40764 X Unit 2 Control Value 0 = (none)1 = Return Air Temp2 = Discharge Air Temp3 = Humidity

764 N17:14 40765 X Unit 2 Control Setpoint 0 = (none)1 = Process Control2 = Cleanup Control3 = Dehumidification4 = Economizer Switchover5 = Cleanup Heating

765 N17:15 40766 X Unit 2 Economizer Enabled 0 = Disabled1 = Enabled

766 N17:16 40767 X Unit 2 Cooling Lockout 0 = Disabled1 = Enabled

767 N17:17 40768 X Unit 2 Alarm 0 = (none)1 = Alarm2 = Shutdown

768 N17:18 40769 X Unit 2 Defrost769 N17:19 40770 X Unit 2 Defrost Stage 0 = Off

1 = Pump Out2 = Hot Gas3 = Bleed4 = Fan Delay

770 N17:20 40771 X Unit 2 Defrost Initiated By 0 = (none)1 = Defrost Button2 = Digital Input3 = Defrost Schedule4 = Liquid Counter

779 N17:29 40780 X Unit 1 Type 0 = Mixed Air1 = Make Up Air

780 N17:30 40781 X Unit 2 Cooling Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Three Stage4 = Four Stage5 = Flooded Single Stage6 = Position Valve w/Mod. Out.7 = Single Modulated Valve

Page 43: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 43

Unit 2 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

781 N17:31 40782 X Unit 2 Heating Setup 0 = Disabled1 = Single Stage2 = Direct Fire3 = Indirect Fire4 = Single Modulated Valve5 = Two-Pos. Valve w/Mod. Out.

782 N17:32 40783 X Unit 2 Pre-Heat Setup 0 = Disabled1 = Single Stage2 = Direct Fire3 = Indirect Fire4 = Single Modulated Valve5 = Two-Pos. Valve w/Mod. Out.

783 N17:33 40784 X Unit 2 Dehumidification Setup 0 = Disabled1 = Ret. Air Dehumidification Cont.

784 N17:34 40785 X Unit 2 Supply Fan Setup 0 = No Motor1 = Variable Air Volume2 = Constant Air Volume

785 N17:35 40786 X Unit 2 Exhaust Fan Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Single Stage w/Mod. Dampers4 = Two Stage w/Mod. Dampers

786 N17:36 40787 X Unit 2 Temperature Control Setup 0 = Room/Return Air Control1 = Discharge Air Control2 = Discharge Air Control, Room Temp.

View3 = Room Temp Control4 = Room Temp Control, Discharge

Temp View787 N17:37 40788 X Unit 2 Damper Control Setup 0 = 100% Outside Air

1 = Mixed Air w/Dry Bulb Eco & Cleanup788 N17:38 40789 X Unit 2 Humidification Setup 0 = Disabled

1 = Return Air Humidification Control789 N17:39 40790 X Unit 2 Suction Setup 0 = Process Mode Always

1 = Process Mode with Liquid2 = Flooded Coil

790 N17:40 40791 X Unit 2 Ammonia Sensor Setup 0 = Disabled1 = Enabled

791 N17:41 40792 X Unit 2 Room Pressure Setup 0 = Disabled1 = Room Pressure High Limit2 = Room Pressure Control

792 N17:42 40793 X Unit 2 Process Heating Setup 0 = Disabled1 = Enabled

793 N17:43 40794 X Unit 2 Process Pre-Heat Setup 0 = Disabled1 = Enabled

794 N17:44 40795 X Unit 2 Defrost Setup 0 = Disabled1 = Basic Defrost2 = Time of Day3 = Time with Liquid Override4 = Liquid Counter

795 N15:45 40796 X Unit 2 Discharge Temp Alarm Setup

Page 44: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 44 COMMUNICATIONS SETUP

Unit 2 Setpoints:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

809 N17:59 40810 Unit 2 Process Control Setpoint

811 N17:61 40812 Unit 2 Cooling Command Proportional Band

812 N17:62 40813 Unit 2 Cooling Command Dead Band

813 N17:63 40814 Unit 2 Cooling Command Integration Time

814 N17:64 40815 Unit 2 Cooling Differential

815 N17:65 40816 Unit 2 Cooling CV Maximum

816 N17:66 40817 Unit 2 Cooling CV Minimum

817 N17:67 40818 Unit 2 Process Cooling Lockout

818 N17:68 40819 Unit 2 Cleanup Cooling Temperature

819 N17:69 40820 Unit 2 Cleanup Cooling Lockout

820 N17:70 40821 Unit 2 Cooling Stage #1 Demand Setpoint

821 N17:71 40822 Unit 2 Cooling Stage #1 Minimum On Time

822 N17:72 40823 Unit 2 Cooling Stage #1 Minimum Off Time

823 N17:73 40824 Unit 2 Cooling Stage #2 Demand Setpoint

824 N17:74 40825 Unit 2 Cooling Stage #2 Minimum On Time

825 N17:75 40826 Unit 2 Cooling Stage #2 Minimum Off Time

826 N17:76 40827 Unit 2 Cooling Stage #3 Demand Setpoint

827 N17:77 40828 Unit 2 Cooling Stage #3 Minimum On Time

828 N17:78 40829 Unit 2 Cooling Stage #3 Minimum Off Time

829 N17:79 40830 Unit 2 Cooling Stage #4 Demand Setpoint

830 N17:80 40831 Unit 2 Cooling Stage #4 Minimum On Time

831 N17:81 40832 Unit 2 Cooling Stage #4 Minimum Off Time

832 N17:82 40833 Unit 2 Cooling Interstage Delay

836 N17:86 40837 Unit 2 Heating Command Proportional Band

837 N17:87 40838 Unit 2 Heating Command Dead Band

838 N17:88 40839 Unit 2 Heating Command Integration Time

840 N17:90 40841 Unit 2 Process Heating Lockout

841 N17:91 40842 Unit 2 Process Heating CV Maximum

842 N17:92 40843 Unit 2 Process Heating CV Minimum

843 N17:93 40844 Unit 2 Heating Differential

844 N17:94 40845 Unit 2 Cleanup Heating Temperature

845 N17:95 40846 Unit 2 Cleanup Heating Lockout

846 N17:96 40847 Unit 2 Cleanup Heating CV Maximum

847 N17:97 40848 Unit 2 Cleanup Heating CV Minimum

850 N17:100 40849 Unit 2 Heating Minimum On Time

851 N17:101 40852 Unit 2 Heating Minimum Off Time

870 N17:110 40871 Unit 2 Pre-Heat Proportional Band

871 N17:111 40872 Unit 2 Pre-Heat Dead Band

872 N17:112 40873 Unit 2 Pre-Heat Integration Time

873 N17:113 40874 Unit 2 Process Pre-Heat Lockout

874 N17:114 40875 Unit 2 Process Pre-Heat Setpoint

875 N17:115 40876 Unit 2 Process Pre-Heat CV Maximum

876 N17:116 40877 Unit 2 Process Pre-Heat CV Minimum

877 N17:117 40878 Unit 2 Pre-Heat Differential

878 N17:118 40879 Unit 2 Pre-Heat Minimum On Time

879 N17:119 40880 Unit 2 Pre-Heat Minimum Off Time

Page 45: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 45

Unit 2 Setpoints (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

880 N17:120 40881 Unit 2 Cleanup Pre-Heat Lockout

881 N17:121 40882 Unit 2 Cleanup Pre-Heat CV Maximum

882 N17:122 40883 Unit 2 Cleanup Pre-Heat CV Minimum

896 N17:146 40897 Unit 2 Dehumidification Setpoint

897 N17:147 40898 Unit 2 Dehumidification Proportional Band

898 N17:148 40899 Unit 2 Dehumidification Dead Band

899 N17:149 40900 Unit 2 Dehumidification Integration Time

906 N17:156 40907 Unit 2 Humidification Setpoint

907 N17:157 40908 Unit 2 Humidification Proportional Band

908 N17:158 40909 Unit 2 Humidification Dead Band

909 N17:159 40910 Unit 2 Humidification Integration Time

934 N17:184 40935 Unit 2 Exhaust Fan Stage 1 Start Enable

935 N17:185 40936 Unit 2 Exhaust Fan Stage 2 Start Enable

936 N17:186 40937 Unit 2 Exhaust Fan Stage 1 Start

937 N17:187 40938 Unit 2 Exhaust Fan Stage 2 Start

938 N17:188 40939 Unit 2 Exhaust Fan Stage 1 Differential

939 N17:189 40940 Unit 2 Exhaust Fan Stage 2 Differential

946 N17:196 40947 Unit 2 Economizer Lockout

947 N17:197 40948 Unit 2 Room Pressure CV Maximum

948 N17198 40949 Unit 2 Room Pressure Alarm

949 N17:199 40950 Unit 2 Room Pressure Alarm Delay

950 N17:200 40951 Unit 2 Room Pressure Shutdown

951 N17:201 40952 Unit 2 Room Pressure Shutdown Delay

952 N17:202 40953 Unit 2 Minimum Outside Air Damper Position

953 N17:203 40954 Unit 2 Economizer Switchover

954 N17:204 40955 Unit 2 Economizer Proportional Band

955 N17:205 40956 Unit 2 Economizer Dead Band

956 N17:206 40957 Unit 2 Economizer Integration Time

957 N17:207 40958 Unit 2 Cleanup Outside Air Damper Position

958 N17:208 40959 Unit 2 Economizer Differential

965 N17:215 40966 Unit 2 Room Pressure Setpoint

966 N17:216 40967 Unit 2 Room Pressure Proportional Band

967 N17:217 40968 Unit 2 Room Pressure Dead Band

968 N17:218 40969 Unit 2 Room Pressure Integration Time

969 N17:219 40970 Unit 2 Cleanup Coil Purge Time

970 N17:220 40971 Unit 2 Heat Profile Minimum Damper Position

971 N17:221 40972 Unit 2 Heat Profile CV Minimum

972 N17:222 40973 Unit 2 Heat Profile CV Maximum

975 N17:225 40976 Unit 2 Ammonia Alarm Setpoint

976 N17:226 40977 Unit 2 Ammonia Alarm Delay

977 N17:227 40978 Unit 2 Ammonia Shutdown Setpoint

978 N17:228 40979 Unit 2 Ammonia Shutdown Delay

979 N17:229 40980 Unit 2 Digital Auxiliary 1 Delay

980 N17:230 40981 Unit 2 Digital Auxiliary 2 Delay

981 N17:231 40982 X Unit 2 Digital Auxiliary 1

982 N17:232 40982 X Unit 2 Digital Auxiliary 2

Page 46: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 46 COMMUNICATIONS SETUP

Unit 2 Setpoints (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

983 N17:233 40984 X Unit 2 Auxiliary Analog 1

984 N17:234 40985 X Unit 2 Auxiliary Analog Input 1

985 N17:235 40986 X Unit 2 Auxiliary Analog Input 2

986 N17:236 40987 X Unit 2 Auxiliary Analog Input 3

987 N17:237 40988 X Unit 2 Auxiliary Analog Input 4

988 N17:238 40989 X Unit 2 Analog Auxiliary Output 1

989 N17:239 40990 X Unit 2 Analog Auxiliary Output 2

990 N17:240 40991 X Unit 2 Analog Auxiliary Output 3

991 N17:241 40992 X Unit 2 Analog Auxiliary Output 4

992 N17:242 40993 X Unit 2 Discharge Temperature Alarm

993 N17:243 40994 X Unit 2 Discharge Temperature Alarm Delay

994 N17:244 40995 X Unit 2 Discharge Temperature Shutdown

995 N17:245 40996 X Unit 2 Discharge Temperature Shutdown Delay

1001 N18:1 41002 X Unit 2 GCU's Comm 2 Enable/Disable

1002 N18:2 41003 X Unit 2 GCU's Comm 2 Active/Failed

1004 N18:4 41005 X Unit 2 Refrigeration Counter

1005 N18:5 41006 Unit 2 Defrost Time 1

1006 N18:6 41007 Unit 2 Defrost Time 2

1007 N18:7 41008 Unit 2 Defrost Time 3

1008 N18:8 41009 Unit 2 Defrost Time 4

1009 N18:9 41010 Unit 2 Defrost Time 5

1010 N18:10 41011 Unit 2 Defrost Time 6

1011 N18:11 41012 Unit 2 Defrost Time 7

1012 N18:12 41013 Unit 2 Defrost Time 8

1013 N18:13 41014 Unit 2 Defrost Pump Out

1014 N18:14 41015 Unit 2 Defrost Hot Gas

1015 N18:15 41016 Unit 2 Defrost Bleed

1016 N18:16 41017 Unit 2 Defrost Fan Delay

1017 N18:17 41018 Unit 2 Refrigeration Counter Setpoint

1018 N18:18 41019 Unit 2 Max Days between Defrosts

1019 N18:19 41020 Unit 2 Max Consecutive Defrosts

1020 N18:20 41021 X Unit 2 Defrost Stage Time Remaining

1021 N18:21 41022 X Unit 2 Purge Time Remaining

Page 47: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 47

Unit 3 Settings:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

1100 N18:100 41099 X Unit 3 Id 31114 N18:114 41115 X Unit 3 Cooling Demand 0 - 100%1115 N18:115 41116 X Unit 3 Dehumidification Demand 0 - 100%1116 N18:116 41117 X Unit 3 Exhaust Demand 0 - 100%1117 N18:117 41118 X Unit 3 Room Pressure Demand 0 - 100%1118 N18:118 41119 X Unit 3 Economizer Demand 0 - 100%1119 N18:119 41120 X Unit 3 Mechanical Cooling Demand 0 - 100%1120 N18:120 41121 X Unit 3 Supply Fan Motor Digital Output 0 = Off

1 = On1121 N18:121 41122 X Unit 3 Exhaust Fan 1 Digital Output 0 = Off

1 = On1122 N18:122 41123 X Unit 3 Exhaust Fan 2 Digital Output 0 = Off

1 = On1123 N18:123 41124 X Unit 3 Burner Command Digital Output 0 = Off

1 = On1124 N18:124 41125 X Unit 3 Cooling Stage 1 Digital Output 0 = Off

1 = On1125 N18:125 41126 X Unit 3 Cooling Stage 2 Digital Output 0 = Off

1 = On1126 N18:126 41127 X Unit 3 Cooling Stage 3 Digital Output 0 = Off

1 = On1127 N18:127 41128 X Unit 3 Cooling Stage 4 Digital Output 0 = Off

1 = On1128 N18:128 41129 X Unit 3 Alarm Digital Output 0 = Off

1 = On1129 N18:129 41130 X Unit 3 Pre-Heat Digital Output 0 = Off

1 = On1130 N18:130 41131 X Unit 3 Suction Digital Output 0 = Off

1 = On1131 N18:131 41132 X Unit 3 Hot Gas Digital Output 0 = Off

1 = On1132 N18:132 41133 X Unit 3 Bleed Digital Output 0 = Off

1 = On1133 N18:133 41134 X Unit 3 Spare 14 Digital Output 0 = Off

1 = On1134 N18:134 41135 X Unit 3 Spare 15 Digital Output 0 = Off

1 = On1135 N18:135 41136 X Unit 3 Cleanup Digital Output 0 = Off

1 = On1140 N18:140 41141 X Unit 3 Air Flow Digital Input 0 = Off

1 = On1141 N18:141 41142 X Unit 3 Mode Select Digital Input 0 = Process

1 = Cleanup1142 N18:142 41143 X Unit 3 On/Off Select Digital Input 0 = Off

1 = On1143 N18:143 41144 X Unit 3 Burner Status Digital Input 0 = Off

1 = On1144 N18:144 41145 X Unit 3 Flame Failure Digital Input 0 = Off

1 = On1145 N18:145 41146 X Unit 3 Demand Defrost Digital Input 0 = Off

1 = On1146 N18:146 41147 X Unit 3 Auxiliary 1 Digital Input 0 = Off

1 = On1147 N18:147 41148 X Unit 3 Auxiliary 2 Digital Input 0 = Off

1 = On1150 N18:150 41151 X Unit 3 Outside Air Dampers Analog Output 0 - 100%1151 N18:151 41152 X Unit 3 Exhaust Dampers Analog Output 0 - 100%1152 N18:152 41153 X Unit 3 Burner Analog Output 0 - 100%

Page 48: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 48 COMMUNICATIONS SETUP

Unit 3 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

1153 N18:153 41154 X Unit 3 Heat Profile Analog Output 0 - 100%

1154 N18:154 41155 X Unit 3 Pre-Heat Analog Output 0 - 100%

1155 N18:155 41156 X Unit 3 Cooling Analog Output 0 - 100%

1156 N18:156 41157 X Unit 3 Spare 1 Analog Output 0 - 100%

1157 N18:157 41158 X Unit 3 Humidification Analog Output 0 - 100%

1158 N18:158 41159 X Unit 3 Outside Air Temp. Analog Input

1159 N18:159 41160 X Unit 3 Discharge Air Temp. Analog Input

1160 N18:160 41161 X Unit 3 Return Air Temperature Analog Input

1161 N18:161 41162 X Unit 3 Spare Temperature Analog Input

1162 N18:162 41163 X Unit 3 Damper Position Analog Input

1163 N18:163 41164 X Unit 3 Exhaust Fan 1 Position Analog Input

1164 N18:164 41165 X Unit 3 Exhaust Fan 2 Position Analog Input

1165 N18:165 41166 X Unit 3 Ammonia Detector Analog Input

1166 N18:166 41167 X Unit 3 Ret. Air Rel. Humidity Analog Input

1167 N18:167 41168 X Unit 3 Ret. Air Press. Sensor Analog Input

1168 N18:168 41169 X Unit 3 Coil Air Temperature Analog Input1260 N19:10 41261 X Unit 3 Status 0 = Off

1 = Running2 = Starting

1261 N19:11 41262 X Unit 3 Air Handling Mode 0 = Process1 = Cleanup

1262 N19:12 41263 X Unit 3 Control Mode 0 = Local1 = Remote

1263 N19:13 41264 X Unit 3 Control Value 0 = (none)1 = Return Air Temp2 = Discharge Air Temp3 = Humidity

1264 N19:14 41265 X Unit 3 Control Setpoint 0 = (none)1 = Process Control2 = Cleanup Control3 = Dehumidification4 = Economizer Switchover5 = Cleanup Heating

1265 N19:15 41266 X Unit 3 Economizer Enabled 0 = Disabled1 = Enabled

1266 N19:16 41267 X Unit 3 Cooling Lockout 0 = Disabled1 = Enabled

1267 N19:17 41268 X Unit 3 Alarm 0 = (none)1 = Alarm2 = Shutdown

1268 N19:18 41269 X Unit 3 Defrost1269 N19:19 41270 X Unit 3 Defrost Stage 0 = Off

1 = Pump Out2 = Hot Gas3 = Bleed4 = Fan Delay

1270 N19:20 41271 X Unit 3 Defrost Initiated By 0 = (none)1 = Defrost Button2 = Digital Input3 = Defrost Schedule4 = Liquid Counter

1279 N19:29 41280 X Unit 3 Type 0 = Mixed Air1 = Make Up Air

Page 49: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 49

Unit 3 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

1280 N19:30 41281 X Unit 3 Cooling Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Three Stage4 = Four Stage5 = Flooded Single Stage6 = Position Valve w/Mod. Out.7 = Single Modulated Valve

1281 N19:31 41282 X Unit 3 Heating Setup 0 – Disabled1 - Single Stage2 - Direct Fire3 - Indirect Fire4 - Single Modulated Valve5 - Two-Pos. Valve w/Mod. Out.

1282 N19:32 41283 X Unit 3 Pre-Heat Setup 0 – Disabled1 - Single Stage2 - Direct Fire3 - Indirect Fire4 - Single Modulated Valve5 - Two-Pos. Valve w/Mod. Out.

1283 N19:33 41284 X Unit 3 Dehumidification Setup 0 – Disabled1 - Return Air Dehumidification Control

1284 N19:34 41285 X Unit 3 Supply Fan Setup 0 - No Motor1 - Variable Air Volume2 - Constant Air Volume

1285 N19:35 41286 X Unit 3 Exhaust Fan Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Single Stage w/Mod. Dampers4 = Two Stage w/Mod. Dampers

1286 N19:36 41287 X Unit 3 Temperature Control Setup 0 = Return Air Control1287 N19:37 41288 X Unit 3 Damper Control Setup 0 = 100% Outside Air

1 = Mixed Air with Dry Bulb Economizerand Cleanup

1288 N19:38 41289 X Unit 3 Humidification Setup 0 = Disabled1 = Room/Return Air Humidification

Control1289 N19:39 41290 X Unit 3 Suction Setup 0 = Process Mode Always

1 = Process Mode with Liquid2 = Flooded Coil

1290 N19:40 41291 X Unit 3 Ammonia Sensor Setup 0 = Disabled1 = Enabled

1291 N19:41 41292 X Unit 3 Room Pressure Setup 0 = Disabled1 = Room Pressure High Limit2 = Room Pressure Control

1292 N19:42 41293 X Unit 3 Process Heating Setup 0 = Disabled1 = Enabled

1293 N19:43 41294 X Unit 3 Process Pre-Heat Setup 0 = Disabled1 = Enabled

1294 N19:44 41295 X Unit 3 Defrost Setup 0 = Disabled1 = Basic Defrost2 = Time of Day3 = Time with Liquid Override4 = Liquid Counter

1295 N19:45 41296 X Unit 3 Discharge Temp. Alarm Setup

Page 50: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 50 COMMUNICATIONS SETUP

Unit 3 Setpoints:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

1309 N19:59 41310 Unit 3 Process Control Setpoint

1311 N19:61 41312 Unit 3 Cooling Command Proportional Band

1312 N19:62 41313 Unit 3 Cooling Command Dead Band

1313 N19:63 41314 Unit 3 Cooling Command Integration Time

1314 N19:64 41315 Unit 3 Cooling Differential

1315 N19:65 41316 Unit 3 Cooling CV Maximum

1316 N19:66 41317 Unit 3 Cooling CV Minimum

1317 N19:67 41318 Unit 3 Process Cooling Lockout

1318 N19:68 41319 Unit 3 Cleanup Cooling Temperature

1319 N19:69 41320 Unit 3 Cleanup Cooling Lockout

1320 N19:70 41321 Unit 3 Cooling Stage #1 Demand Setpoint

1321 N19:71 41322 Unit 3 Cooling Stage #1 Minimum On Time

1322 N19:72 41323 Unit 3 Cooling Stage #1 Minimum Off Time

1323 N19:73 41324 Unit 3 Cooling Stage #2 Demand Setpoint

1324 N19:74 41325 Unit 3 Cooling Stage #2 Minimum On Time

1325 N19:75 41326 Unit 3 Cooling Stage #2 Minimum Off Time

1326 N19:76 41327 Unit 3 Cooling Stage #3 Demand Setpoint

1327 N19:77 41328 Unit 3 Cooling Stage #3 Minimum On Time

1328 N19:78 41329 Unit 3 Cooling Stage #3 Minimum Off Time

1329 N19:79 41330 Unit 3 Cooling Stage #4 Demand Setpoint

1330 N19:80 41331 Unit 3 Cooling Stage #4 Minimum On Time

1331 N19:81 41332 Unit 3 Cooling Stage #4 Minimum Off Time

1332 N19:82 41333 Unit 3 Cooling Interstage Delay

1336 N19:86 41337 Unit 3 Heating Command Proportional Band

1337 N19:87 41338 Unit 3 Heating Command Dead Band

1338 N19:88 41339 Unit 3 Heating Command Integration Time

1340 N19:90 41341 Unit 3 Process Heating Lockout

1341 N19:91 41342 Unit 3 Process Heating CV Maximum

1342 N19:92 41343 Unit 3 Process Heating CV Minimum

1343 N19:93 41344 Unit 3 Heating Differential

1344 N19:94 41345 Unit 3 Cleanup Heating Temperature

1345 N19:95 41346 Unit 3 Cleanup Heating Lockout

1346 N19:96 41347 Unit 3 Cleanup Heating CV Maximum

1347 N19:97 41348 Unit 3 Cleanup Heating CV Minimum

1350 N19:100 41351 Unit 3 Heating Minimum On Time

1351 N19:101 41352 Unit 3 Heating Minimum Off Time

1370 N19:110 41371 Unit 3 Pre-Heat Proportional Band

1371 N19:111 41372 Unit 3 Pre-Heat Dead Band

1372 N19:112 41373 Unit 3 Pre-Heat Integration Time

1373 N19:113 41374 Unit 3 Process Pre-Heat Lockout

1374 N19:114 41375 Unit 3 Process Pre-Heat Setpoint

1375 N19:115 41376 Unit 3 Process Pre-Heat CV Maximum

1376 N19:116 41377 Unit 3 Process Pre-Heat CV Minimum

1377 N19:117 41378 Unit 3 Pre-Heat Differential

1378 N19:118 41379 Unit 3 Pre-Heat Minimum On Time

1379 N19:119 41380 Unit 3 Pre-Heat Minimum Off Time

Page 51: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 51

Unit 3 Setpoints:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

1380 N19:120 41381 Unit 3 Cleanup Pre-Heat Lockout

1381 N19:121 41382 Unit 3 Cleanup Pre-Heat CV Maximum

1382 N19:122 41383 Unit 3 Cleanup Pre-Heat CV Minimum

1396 N19:146 41397 Unit 3 Dehumidification Setpoint

1397 N19:147 41398 Unit 3 Dehumidification Proportional Band

1398 N19:148 41399 Unit 3 Dehumidification Dead Band

1399 N19:149 41400 Unit 3 Dehumidification Integration Time

1406 N19:156 41407 Unit 3 Humidification Setpoint

1407 N19:157 41408 Unit 3 Humidification Proportional Band

1408 N19:158 41409 Unit 3 Humidification Dead Band

1409 N19:159 41410 Unit 3 Humidification Integration Time

1434 N19:184 41435 Unit 3 Exhaust Fan Stage 1 Start Enable

1435 N19:185 41436 Unit 3 Exhaust Fan Stage 2 Start Enable

1436 N19:186 41437 Unit 3 Exhaust Fan Stage 1 Start

1437 N19:187 41438 Unit 3 Exhaust Fan Stage 2 Start

1438 N19:188 41439 Unit 3 Exhaust Fan Stage 1 Differential

1439 N19:189 41440 Unit 3 Exhaust Fan Stage 2 Differential

1446 N19:196 41447 Unit 3 Economizer Lockout

1447 N19:197 41448 Unit 3 Room Pressure CV Maximum

1448 N19:198 41449 Unit 3 Room Pressure Alarm

1449 N19:199 41450 Unit 3 Room Pressure Alarm Delay

1450 N19:200 41451 Unit 3 Room Pressure Shutdown

1451 N19:201 41452 Unit 3 Room Pressure Shutdown Delay

1452 N19:202 41453 Unit 3 Minimum Outside Air Damper Position

1453 N19:203 41454 Unit 3 Economizer Switchover

1454 N19:204 41455 Unit 3 Economizer Proportional Band

1455 N19:205 41456 Unit 3 Economizer Dead Band

1456 N19:206 41457 Unit 3 Economizer Integration Time

1457 N19:207 41458 Unit 3 Cleanup Outside Air Damper Position

1458 N19:208 41459 Unit 3 Economizer Differential

1465 N19:215 41466 Unit 3 Room Pressure Setpoint

1466 N19:216 41467 Unit 3 Room Pressure Proportional Band

1467 N19:217 41468 Unit 3 Room Pressure Dead Band

1468 N19:218 41469 Unit 3 Room Pressure Integration Time

1469 N19:219 41470 Unit 3 Cleanup Coil Purge Time

1470 N19:220 41471 Unit 3 Heat Profile Minimum Damper Position

1471 N19:221 41472 Unit 3 Heat Profile CV Minimum

1472 N19:222 41473 Unit 3 Heat Profile CV Maximum

1473 N19:223 41474 Unit 3 Room Pressure CV Maximum

1475 N19:225 41474 Unit 3 Ammonia Alarm Setpoint

1476 N19:226 41475 Unit 3 Ammonia Alarm Delay

1477 N19:227 41478 Unit 3 Ammonia Shutdown Setpoint

1478 N19:228 41479 Unit 3 Ammonia Shutdown Delay

1479 N19:229 41480 Unit 3 Digital Auxiliary 1 Delay

1480 N19:230 41481 Unit 3 Digital Auxiliary 2 Delay

1481 N19:231 41482 X Unit 3 Digital Auxiliary 1

Page 52: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 52 COMMUNICATIONS SETUP

Unit 3 Setpoints:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

1482 N19:232 41483 X Unit 3 Digital Auxiliary 2

1483 N19:233 41484 X Unit 3 Analog Auxiliary 1

1484 N19:234 41485 X Unit 3 Analog Auxiliary Input 1

1485 N19:235 41486 X Unit 3 Analog Auxiliary Input 2

1486 N19:236 41487 X Unit 3 Analog Auxiliary Input 3

1487 N19:237 41488 X Unit 3 Analog Auxiliary Input 4

1488 N19:238 41489 X Unit 3 Analog Auxiliary Output 1

1489 N19:239 41490 X Unit 3 Analog Auxiliary Output 2

1490 N19:240 41491 X Unit 3 Analog Auxiliary Output 3

1491 N19:241 41492 X Unit 3 Analog Auxiliary Output 4

1492 N19:242 41493 X Unit 3 Discharge Temperature Alarm

1493 N19:243 41494 X Unit 3 Discharge Temperature Alarm Delay

1494 N19:244 41495 X Unit 3 Discharge Temperature Shutdown

1495 N19:245 41496 X Unit 3 Discharge Temperature Shutdown Delay

1501 N19:1 41502 X Unit 3 GCU's Comm 2 Enable/Disable

1502 N19:2 41503 X Unit 3 GCU's Comm 2 Active/Failed

1504 N19:4 41505 X Unit 3 Refrigeration Counter

1505 N19:5 41506 Unit 3 Defrost Time 1

1506 N19:6 41507 Unit 3 Defrost Time 2

1507 N19:7 41508 Unit 3 Defrost Time 3

1508 N19:8 41509 Unit 3 Defrost Time 4

1509 N19:9 41510 Unit 3 Defrost Time 5

1510 N19:10 41511 Unit 3 Defrost Time 6

1511 N19:11 41512 Unit 3 Defrost Time 7

1512 N19:12 41513 Unit 3 Defrost Time 8

1513 N19:13 41514 Unit 3 Defrost Pump Out

1514 N19:14 41515 Unit 3 Defrost Hot Gas

1515 N19:15 41516 Unit 3 Defrost Bleed

1516 N19:16 41517 Unit 3 Defrost Fan Delay

1517 N19:17 41518 Unit 3 Refrigeration Counter Setpoint

1518 N19:18 41519 Unit 3 Max Days between Defrosts

1519 N19:19 41520 Unit 3 Max Consecutive Defrosts

1520 N19:20 41521 X Unit 3 Defrost Stage Time Remaining

1521 N19:21 42522 X Unit 3 Purge Time Remaining

Page 53: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 53

Unit 4 Settings:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

1600 N20:100 41601 X Unit 4 Id 11614 N20:114 41611 X Unit 4 Cooling Demand 0 - 100%1615 N20:115 41613 X Unit 4 Dehumidification Demand 0 - 100%1616 N20:116 41615 X Unit 4 Exhaust Demand 0 - 100%1617 N20:117 41617 X Unit 4 Room Pressure Demand 0 - 100%1618 N20:118 41619 X Unit 4 Economizer Demand 0 - 100%1619 N20:119 41620 X Unit 4 Mechanical Cooling Demand 0 - 100%1620 N20:120 41621 X Unit 4 Supply Fan Motor Digital Output 0 = Off

1 = On1621 N20:121 41622 X Unit 4 Exhaust Fan 1 Digital Output 0 = Off

1 = On1622 N20:122 41623 X Unit 4 Exhaust Fan 2 Digital Output 0 = Off

1 = On1623 N20:123 41624 X Unit 4 Burner Command Digital Output 0 = Off

1 = On1624 N20:124 41625 X Unit 4 Cooling Stage 1 Digital Output 0 = Off

1 = On1625 N20:125 41626 X Unit 4 Cooling Stage 2 Digital Output 0 = Off

1 = On1626 N20:126 41627 X Unit 4 Cooling Stage 3 Digital Output 0 = Off

1 = On1627 N20:127 41628 X Unit 4 Cooling Stage 4 Digital Output 0 = Off

1 = On1628 N20:128 41629 X Unit 4 Alarm Digital Output 0 = Off

1 = On1629 N20:129 41630 X Unit 4 Pre-Heat Digital Output 0 = Off

1 = On1630 N20:130 41631 X Unit 4 Suction Digital Output 0 = Off

1 = On1631 N20:131 41632 X Unit 4 Hot Gas Digital Output 0 = Off

1 = On1632 N20:132 41633 X Unit 4 Bleed Digital Output 0 = Off

1 = On1633 N20:133 41634 X Unit 4 Spare 14 Digital Output 0 = Off

1 = On1634 N20:134 41635 X Unit 4 Spare 15 Digital Output 0 = Off

1 = On1635 N20:135 41636 X Unit 4 Cleanup Digital Output 0 = Off

1 = On1640 N20:140 41641 X Unit 4 Air Flow Digital Input 0 = Off

1 = On1641 N20:141 41642 X Unit 4 Mode Select Digital Input 0 = Process

1 = Cleanup1642 N20:142 41643 X Unit 4 On/Off Select Digital Input 0 = Off

1 = On1643 N20:143 41644 X Unit 4 Burner Status Digital Input 0 = Off

1 = On1644 N20:144 41645 X Unit 4 Flame Failure Digital Input 0 = Off

1 = On1645 N20:145 41646 X Unit 4 Demand Defrost Digital Input 0 = Off

1 = On1646 N20:146 41647 X Unit 4 Auxiliary 1 Digital Input 0 = Off

1 = On1647 N20:147 41648 X Unit 4 Auxiliary 2 Digital Input 0 = Off

1 = On1650 N20:150 41651 X Unit 4 Outside Air Dampers Analog Output 0 - 100%1651 N20:151 41652 X Unit 4 Exhaust Dampers Analog Output 0 - 100%1652 N20:152 41653 X Unit 4 Burner Analog Output 0 - 100%

Page 54: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 54 COMMUNICATIONS SETUP

Unit 4 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

1653 N20:153 41654 X Unit 4 Heat Profile Analog Output 0 - 100%1654 N20:154 41655 X Unit 4 Pre-Heat Analog Output 0 - 100%1655 N20:155 41656 X Unit 4 Cooling Analog Output 0 - 100%1656 N20:156 41657 X Unit 4 Variable Speed Fan Output 0 - 100%1657 N20:157 41658 X Unit 4 Humidification Analog Output 0 - 100%1658 N20:158 41659 X Unit 4 Outside Air Temp. Analog Input1659 N20:159 41660 X Unit 4 Discharge Air Temp. Analog Input1660 N20:160 41661 X Unit 4 Return Air Temperature Analog Input1661 N20:161 41662 X Unit 4 Spare Temperature Analog Input1662 N20:162 41663 X Unit 4 Damper Position Analog Input1663 N20:163 41664 X Unit 4 Exhaust Fan 1 Position Analog Input1664 N20:164 41665 X Unit 4 Exhaust Fan 2 Position Analog Input1665 N20:165 41666 X Unit 4 Ammonia Detector Analog Input1666 N20:166 41667 X Unit 4 Ret. Air Rel. Humidity Analog Input1667 N20:167 41668 X Unit 4 Ret. Air Press. Sensor Analog Input1668 N20:168 41669 X Unit 4 Coil Air Temperature Analog Input1760 N21:10 41761 X Unit 4 Status 0 = Off

1 = Running2 = Starting

1761 N21:11 41762 X Unit 4 Air Handling Mode 0 = Process1 = Cleanup

1762 N21:12 41763 X Unit 4 Control Mode 0 = Local1 = Remote

1763 N21:13 41764 X Unit 4 Control Value 0 = (none)1 = Return Air Temp2 = Discharge Air Temp3 = Humidity

1764 N21:14 41765 X Unit 4 Control Setpoint 0 = (none)1 = Process Control2 = Cleanup Control3 = Dehumidification4 = Economizer Switchover5 = Cleanup Heating

1765 N21:15 41766 X Unit 4 Economizer Enabled 0 = Disabled1 = Enabled

1766 N21:16 41767 X Unit 4 Cooling Lockout 0 = Disabled1 = Enabled

1767 N21:17 41768 X Unit 4 Alarm 0 = (none)1 = Alarm2 = Shutdown

1768 N21:18 41769 X Unit 4 Defrost1769 N21:19 41770 X Unit 4 Defrost Stage 0 = Off

1 = Pump Out2 = Hot Gas3 = Bleed4 = Fan Delay

1770 N21:20 41771 X Unit 4 Defrost Initiated By 0 = (none)1 = Defrost Button2 = Digital Input3 = Defrost Schedule4 = Liquid Counter

1779 N21:29 41780 X Unit 4 Type 0 = Mixed Air1 = Make Up Air

Page 55: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 55

Unit 4 Settings (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data Value Codes

1780 N21:30 41781 X Unit 4 Cooling Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Three Stage4 = Four Stage5 = Flooded Single Stage6 = Position Valve w/Mod. Output7 = Single Modulated Valve

1781 N21:31 41782 X Unit 4 Heating Setup 0 = Disabled1 = Single Stage2 = Direct Fire3 = Indirect Fire4 = Single Modulated Valve5 = Two-Pos. Valve w/Mod. Out.

1782 N21:32 41783 X Unit 4 Pre-Heat Setup 0 = Disabled1 = Single Stage2 = Direct Fire3 = Indirect Fire4 = Single Modulated Valve5 = Two-Pos. Valve w/Mod. Out.

1783 N21:33 41784 X Unit 4 Dehumidification Setup 0 = Disabled1 = Return Air Dehumidification Control

1784 N21:34 41785 X Unit 4 Supply Fan Setup 0 = No Motor1 = Variable Air Volume2 = Constant Air Volume

1785 N21:35 41786 X Unit 4 Exhaust Fan Setup 0 = Disabled1 = Single Stage2 = Two Stage3 = Single Stage w/Mod. Dampers4 = Two Stage w/Mod. Dampers

1786 N21:36 41787 X Unit 4 Temperature Control Setup 0 = Room/Return Air Control1 = Discharge Air Control2 = Discharge Air Control, Room Temp

View3 = Room Temp Control4 = Room Temp Control, Discharge

Temp View1787 N21:37 41788 X Unit 4 Damper Control Setup 0 = 100% Outside Air

1 = Mixed Air with Dry Bulb Economizerand Cleanup

1788 N21:38 41789 X Unit 4 Humidification Setup 0 = Disabled1 = Room/Return Air Humid. Control

1789 N21:39 41790 X Unit 4 Suction Setup 0 = Process Mode Always1 = Process Mode with Liquid2 = Flooded Coil

1790 N21:40 41791 X Unit 4 Ammonia Sensor Setup 0 = Disabled1 = Enabled

1791 N21:41 41792 X Unit 4 Room Pressure Setup 0 = Disabled1 = Room Pressure High Limit2 = Room Pressure Control

1792 N21:42 41793 X Unit 4 Process Heating Setup 0 = Disabled1 = Enabled

1794 N21:44 41795 X Unit 4 Defrost Setup 0 = Disabled1 = Basic Defrost2 = Time of Day3 = Time with Liquid Override4 = Liquid Counter

1795 Unit 4 Discharge Temperature AlarmSelect

Page 56: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 56 COMMUNICATIONS SETUP

Unit 4 Setpoints:Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

1809 N21:59 41810 Unit 4 Process Control Setpoint1811 N21:61 41812 Unit 4 Cooling Command Proportional Band1812 N21:62 41813 Unit 4 Cooling Command Dead Band1813 N21:63 41814 Unit 4 Cooling Command Integration Time1814 N21:64 41815 Unit 4 Cooling Differential1815 N21:65 41816 Unit 4 Cooling CV Maximum1816 N21:66 41817 Unit 4 Cooling CV Minimum1817 N21:67 41818 Unit 4 Process Cooling Lockout1818 N21:68 41819 Unit 4 Cleanup Cooling Temperature1819 N21:69 41820 Unit 4 Cleanup Cooling Lockout1820 N21:70 41821 Unit 4 Cooling Stage #1 Demand Setpoint1821 N21:71 41822 Unit 4 Cooling Stage #1 Minimum On Time1822 N21:72 41823 Unit 4 Cooling Stage #1 Minimum Off Time1823 N21:73 41824 Unit 4 Cooling Stage #2 Demand Setpoint1824 N21:74 41825 Unit 4 Cooling Stage #2 Minimum On Time1825 N21:75 41826 Unit 4 Cooling Stage #2 Minimum Off Time1826 N21:76 41827 Unit 4 Cooling Stage #3 Demand Setpoint1827 N21:77 41828 Unit 4 Cooling Stage #3 Minimum On Time1828 N21:78 41829 Unit 4 Cooling Stage #3 Minimum Off Time1829 N21:79 41830 Unit 4 Cooling Stage #4 Demand Setpoint1830 N21:80 41831 Unit 4 Cooling Stage #4 Minimum On Time1831 N21:81 41832 Unit 4 Cooling Stage #4 Minimum Off Time1832 N21:82 41833 Unit 4 Cooling Interstage Delay1836 N21:86 41837 Unit 4 Heating Command Proportional Band1837 N21:87 41838 Unit 4 Heating Command Dead Band1838 N21:88 41839 Unit 4 Heating Command Integration Time1840 N21:90 41841 Unit 4 Process Heating Lockout1841 N21:91 41842 Unit 4 Process Heating CV Maximum1842 N21:92 41843 Unit 4 Process Heating CV Minimum1843 N21:93 41844 Unit 4 Heating Differential1844 N21:94 41845 Unit 4 Cleanup Heating Temperature1845 N21:95 41846 Unit 4 Cleanup Heating Lockout1846 N21:96 41847 Unit 4 Cleanup Heating CV Maximum

1847 N21:97 41848 Unit 4 Cleanup Heating CV Minimum

1850 N21:100 41849 Unit 4 Heating Minimum On Time

1851 N21:101 41850 Unit 4 Heating Minimum Off Time

1870 N21:110 41871 Unit 4 Pre-Heat Proportional Band

1871 N21:111 41872 Unit 4 Pre-Heat Dead Band

1872 N21:112 41873 Unit 4 Pre-Heat Integration Time

1873 N21:113 41874 Unit 4 Process Pre-Heat Lockout

1874 N21:114 41875 Unit 4 Process Pre-Heat Setpoint

1875 N21:115 41876 Unit 4 Process Pre-Heat CV Maximum

1876 N21:116 41877 Unit 4 Process Pre-Heat CV Minimum

1877 N21:117 41878 Unit 4 Pre-Heat Differential

1878 N21:118 41879 Unit 4 Pre-Heat Minimum On Time

1879 N21:119 41880 Unit 4 Pre-Heat Minimum Off Time

Page 57: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 57

Unit 4 Setpoints (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

1880 N21:120 41881 Unit 4 Cleanup Pre-Heat Lockout

1881 N21:121 41882 Unit 4 Cleanup Pre-Heat CV Maximum

1882 N21:122 41883 Unit 4 Cleanup Pre-Heat CV Minimum

1896 N21:146 41897 Unit 4 Dehumidification Setpoint

1897 N21:147 41898 Unit 4 Dehumidification Proportional Band

1898 N21:148 41899 Unit 4 Dehumidification Dead Band

1899 N21:149 41900 Unit 4 Dehumidification Integration Time

1906 N21:156 41907 Unit 4 Humidification Setpoint

1907 N21:157 41908 Unit 4 Humidification Proportional Band

1908 N21:158 41909 Unit 4 Humidification Dead Band

1909 N21:159 41910 Unit 4 Humidification Integration Time

1934 N21:184 41935 Unit 4 Exhaust Fan Stage 1 Start Enable

1935 N21:185 41936 Unit 4 Exhaust Fan Stage 2 Start Enable

1936 N21:186 41937 Unit 4 Exhaust Fan Stage 1 Start

1937 N21:187 41938 Unit 4 Exhaust Fan Stage 2 Start

1938 N21:188 41939 Unit 4 Exhaust Fan Stage 1 Differential

1939 N21:189 41940 Unit 4 Exhaust Fan Stage 2 Differential

1946 N21:196 41947 Unit 4 Economizer Lockout

1947 N21:197 41948 Unit 4 Room Pressure CV Maximum

1948 N21:198 41949 Unit 4 Room Pressure Alarm

1949 N21:199 41950 Unit 4 Room Pressure Alarm Delay

1950 N21:200 41951 Unit 4 Room Pressure Shutdown

1951 N21:201 41952 Unit 4 Room Pressure Shutdown Delay

1952 N21:202 41953 Unit 4 Minimum Outside Air Damper Position

1953 N21:203 41954 Unit 4 Economizer Switchover

1954 N21:204 41955 Unit 4 Economizer Proportional Band

1955 N21:205 41956 Unit 4 Economizer Dead Band

1956 N21:206 41957 Unit 4 Economizer Integration Time

1957 N21:207 41958 Unit 4 Cleanup Outside Air Damper Position

1958 N21:208 41959 Unit 4 Economizer Differential

1965 N21:215 41966 Unit 4 Room Pressure Setpoint

1966 N21:216 41967 Unit 4 Room Pressure Proportional Band

1967 N21:217 41968 Unit 4 Room Pressure Dead Band

1968 N21:218 41969 Unit 4 Room Pressure Integration Time

1969 N21:219 41970 Unit 4 Cleanup Coil Purge Time

1970 N21:220 41971 Unit 4 Heat Profile Minimum Damper Position

1971 N21:221 41972 Unit 4 Heat Profile CV Minimum

1972 N21:222 41973 Unit 4 Heat Profile CV Maximum

1973 N21:223 41974 Unit 4 Room Pressure CV Maximum

1975 N21:225 41976 Unit 4 Ammonia Alarm Setpoint

1976 N21:226 41977 Unit 4 Ammonia Alarm Delay

1977 N21:227 41978 Unit 4 Ammonia Shutdown Setpoint

1978 N21:228 41979 Unit 4 Ammonia Shutdown Delay

1979 N21:229 41980 Unit 4 Digital Auxiliary 1 Delay

1980 N21:230 41981 Unit 4 Digital Auxiliary 2 Delay

1981 N21:231 41982 X Unit 4 Digital Auxiliary 1 Type

Page 58: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 58 COMMUNICATIONS SETUP

Unit 4 Setpoints (Continued):Frick®

AddressAB

AddressModbusAddress

ReadOnly

Description of Data

1982 N21:232 41983 X Unit 4 Digital Auxiliary 2 Type

1983 N21:233 41984 X Unit 4 Auxiliary Analog 1 Type

1984 N21:234 41985 X Unit 4 Analog Auxiliary Input 1 Selection

1985 N21:235 41986 X Unit 4 Analog Auxiliary Input 2 Selection

1986 N21:236 41987 X Unit 4 Analog Auxiliary Input 3 Selection

1987 N21:237 41988 X Unit 4 Analog Auxiliary Input 4 Selection

1988 N21:238 41989 X Unit 4 Analog Auxiliary Output 1 Selection

1989 N21:239 41990 X Unit 4 Analog Auxiliary Output 2 Selection

1990 N21:240 41991 X Unit 4 Analog Auxiliary Output 3 Selection

1991 N21:241 41992 X Unit 4 Analog Auxiliary Output 4 Selection

1992 N21:242 41993 X Unit 4 Discharge Temperature Alarm

1993 N21:243 41994 X Unit 4 Discharge Temperature Alarm Delay

1994 N21:244 41995 X Unit 4 Discharge Temperature Shutdown

1995 N21:245 41996 X Unit 4 Discharge Temperature Shutdown Delay

2001 N22:1 42002 X Unit 4 GCU's Comm 2 Enable/Disable

2002 N22:2 42003 X Unit 4 GCU's Comm 2 Active/Failed

2004 N22:4 42005 X Unit 4 Refrigeration Counter

2005 N22:5 42006 Unit 4 Defrost Time 1

2006 N22:6 42007 Unit 4 Defrost Time 2

2007 N22:7 42008 Unit 4 Defrost Time 3

2008 N22:8 42009 Unit 4 Defrost Time 4

2009 N22:9 42010 Unit 4 Defrost Time 5

2010 N22:10 42011 Unit 4 Defrost Time 6

2011 N22:11 42012 Unit 4 Defrost Time 7

2012 N22:12 42013 Unit 4 Defrost Time 8

2013 N22:13 42014 Unit 4 Defrost Pump Out

2014 N22:14 42015 Unit 4 Defrost Hot Gas

2015 N22:15 42016 Unit 4 Defrost Bleed

2016 N22:16 42017 Unit 4 Defrost Fan Delay

2017 N22:17 42018 Unit 4 Refrigeration Counter Setpoint

2018 N22:18 42019 Unit 4 Max Days between Defrosts

2019 N22:19 42020 Unit 4 Max Consecutive Defrosts

2020 N22:20 42021 Unit 4 Defrost Stage Time Remaining

2021 N22:21 42022 Unit 4 Purge Time Remaining

Page 59: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 59

COMMANDS (Write only):ModbusAddress

ABAddress

Description of Command AcceptedValues

5001 N55:1 Panel Control Status (0 - Manual, 1 - Remote) 0 & 1

5002 N55:2 Refresh command (send Frick or Modbus Address to reload) 0 - 4999

5003 N55:3 Refresh All Setpoints command 0

5005 N55:5 Clear Alarms command (send Unit id) 1-45006 N55:6 Unit Status

ten's place - Unit Id (1-4) one's place - (0 - Stop, 1 - Start) example: 41 - Start Unit 4; 30 - Stop Unit 3

10,11,20,21,30,31,40,41

5007 N55:7 Unit Mode ten's place - Unit Id (1-4) one's place - (0 - Process, 1 - Cleanup) example: 11 - Switch Unit 1 to Cleanup; 20 - Switch Unit 2 to Process

10,11,20,21,30,31,40,41

5008 N55:8 Unit Control Status ten's place - Unit Id (1-4) one's place - (0 - Local, 1 - Remote) example: 21 - Set Unit 2 to Remote Mode; 40 - Set Unit 4 to Local Mode

10,11,20,21,30,31,40,41

5012 N55:12 Pressure & Temp. Units select 0=PSIA, Deg. C 1=Panel setup 0 & 1

5013 N55:13 Data values select 0=x10 1=x100 0 & 1

Note: Caution must be used when writing data to these Command addresses. It is not recommended to use Frick®

address 5012 for any purpose other than remotely displaying Pressure and Temperature data.

SPECIAL (read only):ModbusAddress

ABAddress

Description of Data

4500 N25:0 Unit 1 Alarm list (See Following Note)

4501 N25:1 Unit 2 Alarm list (See Following Note)

4502 N25:2 Unit 3 Alarm list (See Following Note)

4503 N25:3 Unit 4 Alarm list (See Following Note)

Alarm list Note: The read request returns three values for each alarm. The alarm code, the hour the alarm occurred,and the minutes after the hour the alarm occurred. If the alarm code is 0, the hour and minutes are not relative. Themaximum number of alarms that can be requested is 18. The message size value determines how many alarms arereturned. Multiply 3 times the number of alarms to be requested and enter this number as the size of the message.For example, if the data of 18 alarms is desired, set the message size to 54 Reference the numerical listing of thealarm codes in this manual.

Page 60: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 60 COMMUNICATIONS SETUP

Alarm List 2 (read only):Some systems cannot handle all alarms being returned under one address. To accommodate these systems, the Alarm List isalso broken down into individual addresses. (Refer to the address table below for the specific addresses.)

With regard to the Alarm List, the ACUair® Quantum™ is capable of displaying the most recent 18 alarms, as well as the hour,minute and date that each alarm occurred. Each alarm is now accessible independently. For instance, reading Frick® Address4600 will return the value of the most recent alarm code. This code value will correspond to the ALARMS/SHUTDOWNSMESSAGE CODE near the back of the Communications Setup manual. Reading the next address (4601) will return the hoursinteger (0 to 24) and the following address (4602) will give the minutes integer (0 to 59). It should be pointed out that an alarmcode of zero indicates that there is no alarm in that message slot. Although no alarm is present, there is a still a time stampreturned. Simply ignore this time stamp.

Alarm List 2ModbusAddress

ABAddress

Description of Data

4600 N25:100 Unit 1 Alarm # 1 Message (Most Recent)

4601 N25:101 Unit 1 Alarm # 1 Hrs.

4602 N25:102 Unit 1 Alarm # 1 Min.

4603 N25:103 Unit 1 Alarm # 1 Date High Order

4604 N25:104 Unit 1 Alarm # 1 Date Low Order

4605 N25:105 Unit 1 Alarm # 2 Message

4606 N25:106 Unit 1 Alarm # 2 Hrs.

4607 N25:107 Unit 1 Alarm # 2 Min.

4608 N25:108 Unit 1 Alarm # 2 Date High Order

4609 N25:109 Unit 1 Alarm # 2 Date Low Order

4610 N25:110 Unit 1 Alarm # 3 Message

4611 N25:111 Unit 1 Alarm # 3 Hrs.

4612 N25:112 Unit 1 Alarm # 3 Min.

4613 N25:113 Unit 1 Alarm # 3 Date High Order

4614 N25:114 Unit 1 Alarm # 3 Date Low order

4615 N25:115 Unit 1 Alarm # 4 Message

4616 N25:116 Unit 1 Alarm # 4 Hrs.

4617 N25:117 Unit 1 Alarm # 4 Min.

4618 N25:118 Unit 1 Alarm # 4 Date High Order

4619 N25:119 Unit 1 Alarm # 4 Date Low Order

4620 N25:120 Unit 1 Alarm # 5 Message

4621 N25:121 Unit 1 Alarm # 5 Hrs.

4622 N25:122 Unit 1 Alarm # 5 Min.

4623 N25:123 Unit 1 Alarm # 5 Date High Order

4624 N25:124 Unit 1 Alarm # 5 Date Low Order

4625 N25:125 Unit 1 Alarm # 6 Message

4626 N25:126 Unit 1 Alarm # 6 Hrs.

4627 N25:127 Unit 1 Alarm # 6 Min.

4628 N25:128 Unit 1 Alarm # 6 Date High Order

4629 N25:129 Unit 1 Alarm # 6 Date Low Order

4630 N25:130 Unit 1 Alarm # 7 Message

4631 N25:131 Unit 1 Alarm # 7 Hrs.

4632 N25:132 Unit 1 Alarm # 7 Min.

4633 N25:133 Unit 1 Alarm # 7 Date High Order

4634 N25:134 Unit 1 Alarm # 7 Date Low Order

4635 N25:135 Unit 1 Alarm # 8 Message

4636 N25:136 Unit 1 Alarm # 8 Hrs.

Page 61: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 61

Alarm List 2 - continued:ModbusAddress

ABAddress

Description of Data

4637 N25:137 Unit 1 Alarm # 8 Min.

4638 N25:138 Unit 1 Alarm # 8 Date High Order

4639 N25:139 Unit 1 Alarm # 8 Date Low Order

4640 N25:140 Unit 1 Alarm # 9 Message

4641 N25:141 Unit 1 Alarm # 9 Hrs.

4642 N25:142 Unit 1 Alarm # 9 Min.

4643 N25:143 Unit 1 Alarm # 9 Date High Order

4644 N25:144 Unit 1 Alarm # 9 Date Low Order

4645 N25:145 Unit 1 Alarm # 10 Message

4646 N25:146 Unit 1 Alarm # 10 Hrs.

4647 N25:147 Unit 1 Alarm # 10 Min.

4648 N25:148 Unit 1 Alarm # 10 Date High Order

4649 N25:149 Unit 1 Alarm # 10 Date Low Order

4650 N25:150 Unit 1 Alarm # 11 Message

4651 N25:151 Unit 1 Alarm # 11 Hrs.

4652 N25:152 Unit 1 Alarm # 11 Min.

4653 N25:153 Unit 1 Alarm # 11 Date High Order

4654 N25:154 Unit 1 Alarm # 11 Date Low Order

4655 N25:155 Unit 1 Alarm # 12 Message

4656 N25:156 Unit 1 Alarm # 12 Hrs.

4657 N25:157 Unit 1 Alarm # 12 Min.

4658 N25:158 Unit 1 Alarm # 12 Date High Order

4659 N25:159 Unit 1 Alarm # 12 Date Low Order

4660 N25:160 Unit 1 Alarm # 13 Message

4661 N25:161 Unit 1 Alarm # 13 Hrs.

4662 N25:162 Unit 1 Alarm # 13 Min.

4663 N25:163 Unit 1 Alarm # 13 Date High Order

4664 N25:164 Unit 1 Alarm # 13 Date Low Order

4665 N25:165 Unit 1 Alarm # 14 Message

4666 N25:166 Unit 1 Alarm # 14 Hrs.

4667 N25:167 Unit 1 Alarm # 14 Min.

4668 N25:168 Unit 1 Alarm # 14 Date High Order4669 N25:169 Unit 1 Alarm # 14 Date Low Order

4670 N25:170 Unit 1 Alarm # 15 Message

4671 N25:171 Unit 1 Alarm # 15 Hrs.

4672 N25:172 Unit 1 Alarm # 15 Min.

4673 N25:173 Unit 1 Alarm # 15 Date High Order

4674 N25:174 Unit 1 Alarm # 15 Date Low Order

4675 N25:175 Unit 1 Alarm # 16 Message

4676 N25:176 Unit 1 Alarm # 16 Hrs.

4677 N25:177 Unit 1 Alarm # 16 Min.

4678 N25:178 Unit 1 Alarm # 16 Date High Order

4679 N25:179 Unit 1 Alarm # 16 Date Low Order

4680 N25:180 Unit 1 Alarm # 17 Message

4681 N25:181 Unit 1 Alarm # 17 Hrs.

4682 N25:182 Unit 1 Alarm # 17 Min.

Page 62: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 62 COMMUNICATIONS SETUP

Alarm List 2 - continued:ModbusAddress

ABAddress

Description of Data

4683 N25:183 Unit 1 Alarm # 17 Date High Order

4684 N25:184 Unit 1 Alarm # 17 Date Low Order

4685 N25:185 Unit 1 Alarm # 18 Message

4686 N25:186 Unit 1 Alarm # 18 Hrs.

4687 N25:187 Unit 1 Alarm # 18 Min.

4688 N25:188 Unit 1 Alarm # 18 Date High Order

4689 N25:189 Unit 1 Alarm # 18 Date Low Order

4700 N25:200 Unit 2 Alarm # 1 Message (Most Recent)

4701 N25:201 Unit 2 Alarm # 1 Hrs.

4702 N25:202 Unit 2 Alarm # 1 Min.

4703 N25:203 Unit 2 Alarm # 1 Date High Order

4704 N25:204 Unit 2 Alarm # 1 Date Low Order

4705 N25:205 Unit 2 Alarm # 2 Message

4706 N25:206 Unit 2 Alarm # 2 Hrs.

4707 N25:207 Unit 2 Alarm # 2 Min.

4708 N25:208 Unit 2 Alarm # 2 Date High Order

4709 N25:209 Unit 2 Alarm # 2 Date Low Order

4710 N25:210 Unit 2 Alarm # 3 Message

4711 N25:211 Unit 2 Alarm # 3 Hrs.

4712 N25:212 Unit 2 Alarm # 3 Min.

4713 N25:213 Unit 2 Alarm # 3 Date High Order

4714 N25:214 Unit 2 Alarm # 3 Date Low order

4715 N25:215 Unit 2 Alarm # 4 Message

4716 N25:216 Unit 2 Alarm # 4 Hrs.

4717 N25:217 Unit 2 Alarm # 4 Min.

4718 N25:218 Unit 2 Alarm # 4 Date High Order

4719 N25:219 Unit 2 Alarm # 4 Date Low Order

4720 N25:220 Unit 2 Alarm # 5 Message

4721 N25:221 Unit 2 Alarm # 5 Hrs.

4722 N25:222 Unit 2 Alarm # 5 Min.

4723 N25:223 Unit 2 Alarm # 5 Date High Order

4724 N25:224 Unit 2 Alarm # 5 Date Low Order

4725 N25:225 Unit 2 Alarm # 6 Message

4726 N25:226 Unit 2 Alarm # 6 Hrs.

4727 N25:227 Unit 2 Alarm # 6 Min.

4728 N25:228 Unit 2 Alarm # 6 Date High Order

4729 N25:229 Unit 2 Alarm # 6 Date Low Order

4730 N25:230 Unit 2 Alarm # 7 Message

4731 N25:231 Unit 2 Alarm # 7 Hrs.

4732 N25:232 Unit 2 Alarm # 7 Min.

4733 N25:233 Unit 2 Alarm # 7 Date High Order

4734 N25:234 Unit 2 Alarm # 7 Date Low Order

4735 N25:235 Unit 2 Alarm # 8 Message

4736 N25:236 Unit 2 Alarm # 8 Hrs.

4737 N25:237 Unit 2 Alarm # 8 Min.

4738 N25:238 Unit 2 Alarm # 8 Date High Order

Page 63: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 63

Alarm List 2 - continued:ModbusAddress

ABAddress

Description of Data

4739 N25:239 Unit 2 Alarm # 8 Date Low Order

4740 N25:240 Unit 2 Alarm # 9 Message

4741 N25:241 Unit 2 Alarm # 9 Hrs.

4742 N25:242 Unit 2 Alarm # 9 Min.

4743 N25:243 Unit 2 Alarm # 9 Date High Order

4744 N25:244 Unit 2 Alarm # 9 Date Low Order

4745 N25:245 Unit 2 Alarm # 10 Message

4746 N25:246 Unit 2 Alarm # 10 Hrs.

4747 N25:247 Unit 2 Alarm # 10 Min.

4748 N25:248 Unit 2 Alarm # 10 Date High Order

4749 N25:249 Unit 2 Alarm # 10 Date Low Order

4750 N26:0 Unit 2 Alarm # 11 Message

4751 N26:1 Unit 2 Alarm # 11 Hrs.

4752 N26:2 Unit 2 Alarm # 11 Min.

4753 N26:3 Unit 2 Alarm # 11 Date High Order

4754 N26:4 Unit 2 Alarm # 11 Date Low Order

4755 N26:5 Unit 2 Alarm # 12 Message

4756 N26:6 Unit 2 Alarm # 12 Hrs.

4757 N26:7 Unit 2 Alarm # 12 Min.

4758 N26:8 Unit 2 Alarm # 12 Date High Order

4759 N26:9 Unit 2 Alarm # 12 Date Low Order

4760 N26:10 Unit 2 Alarm # 13 Message

4761 N26:11 Unit 2 Alarm # 13 Hrs.

4762 N26:12 Unit 2 Alarm # 13 Min.

4763 N26:13 Unit 2 Alarm # 13 Date High Order

4764 N26:14 Unit 2 Alarm # 13 Date Low Order

4765 N26:15 Unit 2 Alarm # 14 Message

4766 N26:16 Unit 2 Alarm # 14 Hrs.

4767 N26:17 Unit 2 Alarm # 14 Min.

4768 N26:18 Unit 2 Alarm # 14 Date High Order

4769 N26:19 Unit 2 Alarm # 14 Date Low Order

4770 N26:20 Unit 2 Alarm # 15 Message

4771 N26:21 Unit 2 Alarm # 15 Hrs.

4772 N26:22 Unit 2 Alarm # 15 Min.

4773 N26:23 Unit 2 Alarm # 15 Date High Order

4774 N26:24 Unit 2 Alarm # 15 Date Low Order

4775 N26:25 Unit 2 Alarm # 16 Message

4776 N26:26 Unit 2 Alarm # 16 Hrs.

4777 N26:27 Unit 2 Alarm # 16 Min.

4778 N26:28 Unit 2 Alarm # 16 Date High Order

4779 N26:29 Unit 2 Alarm # 16 Date Low Order

4780 N26:30 Unit 2 Alarm # 17 Message

4781 N26:31 Unit 2 Alarm # 17 Hrs.4782 N26:32 Unit 2 Alarm # 17 Min.

4783 N26:33 Unit 2 Alarm # 17 Date High Order

4784 N26:34 Unit 2 Alarm # 17 Date Low Order

Page 64: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 64 COMMUNICATIONS SETUP

Alarm List 2 - continued:ModbusAddress

ABAddress

Description of Data

4785 N26:35 Unit 2 Alarm # 18 Message

4786 N26:36 Unit 2 Alarm # 18 Hrs.

4787 N26:37 Unit 2 Alarm # 18 Min.

4788 N26:38 Unit 2 Alarm # 18 Date High Order

4789 N26:39 Unit 2 Alarm # 18 Date Low Order

4800 N26:50 Unit 3 Alarm # 1 Message (Most Recent)

4801 N26:51 Unit 3 Alarm # 1 Hrs.

4802 N26:52 Unit 3 Alarm # 1 Min.

4803 N26:53 Unit 3 Alarm # 1 Date High Order

4804 N26:54 Unit 3 Alarm # 1 Date Low Order

4805 N26:55 Unit 3 Alarm # 2 Message

4806 N26:56 Unit 3 Alarm # 2 Hrs.

4807 N26:57 Unit 3 Alarm # 2 Min.

4808 N26:58 Unit 3 Alarm # 2 Date High Order

4809 N26:59 Unit 3 Alarm # 2 Date Low Order

4810 N26:60 Unit 3 Alarm # 3 Message

4811 N26:61 Unit 3 Alarm # 3 Hrs.

4812 N26:62 Unit 3 Alarm # 3 Min.

4813 N26:63 Unit 3 Alarm # 3 Date High Order

4814 N26:64 Unit 3 Alarm # 3 Date Low order

4815 N26:65 Unit 3 Alarm # 4 Message

4816 N26:66 Unit 3 Alarm # 4 Hrs.

4817 N26:67 Unit 3 Alarm # 4 Min.

4818 N26:68 Unit 3 Alarm # 4 Date High Order

4819 N26:69 Unit 3 Alarm # 4 Date Low Order

4820 N26:70 Unit 3 Alarm # 5 Message

4821 N26:71 Unit 3 Alarm # 5 Hrs.

4822 N26:72 Unit 3 Alarm # 5 Min.

4823 N26:73 Unit 3 Alarm # 5 Date High Order

4824 N26:74 Unit 3 Alarm # 5 Date Low Order

4825 N26:75 Unit 3 Alarm # 6 Message

4826 N26:76 Unit 3 Alarm # 6 Hrs.

4827 N26:77 Unit 3 Alarm # 6 Min.

4828 N26:78 Unit 3 Alarm # 6 Date High Order

4829 N26:79 Unit 3 Alarm # 6 Date Low Order

4830 N26:80 Unit 3 Alarm # 7 Message

4831 N26:81 Unit 3 Alarm # 7 Hrs.

4832 N26:82 Unit 3 Alarm # 7 Min.

4833 N26:83 Unit 3 Alarm # 7 Date High Order

4834 N26:84 Unit 3 Alarm # 7 Date Low Order

4835 N26:85 Unit 3 Alarm # 8 Message

4836 N26:86 Unit 3 Alarm # 8 Hrs.

4837 N26:87 Unit 3 Alarm # 8 Min.

4838 N26:88 Unit 3 Alarm # 8 Date High Order

4839 N26:89 Unit 3 Alarm # 8 Date Low Order

4840 N26:90 Unit 3 Alarm # 9 Message

Page 65: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 65

Alarm List 2 - continued:ModbusAddress

ABAddress

Description of Data

4841 N26:91 Unit 3 Alarm # 9 Hrs.

4842 N26:92 Unit 3 Alarm # 9 Min.

4843 N26:93 Unit 3 Alarm # 9 Date High Order

4844 N26:94 Unit 3 Alarm # 9 Date Low Order

4845 N26:95 Unit 3 Alarm # 10 Message

4846 N26:96 Unit 3 Alarm # 10 Hrs.

4847 N26:97 Unit 3 Alarm # 10 Min.

4848 N26:98 Unit 3 Alarm # 10 Date High Order

4849 N26:99 Unit 3 Alarm # 10 Date Low Order

4850 N26:100 Unit 3 Alarm # 11 Message

4851 N26:101 Unit 3 Alarm # 11 Hrs.

4852 N26:102 Unit 3 Alarm # 11 Min.

4853 N26:103 Unit 3 Alarm # 11 Date High Order

4854 N26:104 Unit 3 Alarm # 11 Date Low Order

4855 N26:105 Unit 3 Alarm # 12 Message

4856 N26:106 Unit 3 Alarm # 12 Hrs.

4857 N26:107 Unit 3 Alarm # 12 Min.

4858 N26:108 Unit 3 Alarm # 12 Date High Order

4859 N26:109 Unit 3 Alarm # 12 Date Low Order

4860 N26:110 Unit 3 Alarm # 13 Message

4861 N26:111 Unit 3 Alarm # 13 Hrs.

4862 N26:112 Unit 3 Alarm # 13 Min.

4863 N26:113 Unit 3 Alarm # 13 Date High Order

4864 N26:114 Unit 3 Alarm # 13 Date Low Order

4865 N26:115 Unit 3 Alarm # 14 Message

4866 N26:116 Unit 3 Alarm # 14 Hrs.

4867 N26:117 Unit 3 Alarm # 14 Min.

4868 N26:118 Unit 3 Alarm # 14 Date High Order

4869 N26:119 Unit 3 Alarm # 14 Date Low Order

4870 N26:120 Unit 3 Alarm # 15 Message

4871 N26:121 Unit 3 Alarm # 15 Hrs.

4872 N26:122 Unit 3 Alarm # 15 Min.

4873 N26:123 Unit 3 Alarm # 15 Date High Order

4874 N26:124 Unit 3 Alarm # 15 Date Low Order

4875 N26:125 Unit 3 Alarm # 16 Message

4876 N26:126 Unit 3 Alarm # 16 Hrs.

4877 N26:127 Unit 3 Alarm # 16 Min.

4878 N26:128 Unit 3 Alarm # 16 Date High Order

4879 N26:129 Unit 3 Alarm # 16 Date Low Order

4880 N26:130 Unit 3 Alarm # 17 Message

4881 N26:131 Unit 3 Alarm # 17 Hrs.

4882 N26:132 Unit 3 Alarm # 17 Min.

4883 N26:133 Unit 3 Alarm # 17 Date High Order

4884 N26:134 Unit 3 Alarm # 17 Date Low Order

4885 N26:135 Unit 3 Alarm # 18 Message

4886 N26:136 Unit 3 Alarm # 18 Hrs.

Page 66: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 66 COMMUNICATIONS SETUP

Alarm List 2 - continued:ModbusAddress

ABAddress

Description of Data

4887 N26:137 Unit 3 Alarm # 18 Min.

4888 N26:138 Unit 3 Alarm # 18 Date High Order

4889 N26:139 Unit 3 Alarm # 18 Date Low Order

4900 N26:150 Unit 4 Alarm # 1 Message (Most Recent)

4901 N26:151 Unit 4 Alarm # 1 Hrs.

4902 N26:152 Unit 4 Alarm # 1 Min.

4903 N26:153 Unit 4 Alarm # 1 Date High Order

4904 N26:154 Unit 4 Alarm # 1 Date Low Order

4905 N26:155 Unit 4 Alarm # 2 Message

4906 N26:156 Unit 4 Alarm # 2 Hrs.

4907 N26:157 Unit 4 Alarm # 2 Min.

4908 N26:158 Unit 4 Alarm # 2 Date High Order

4909 N26:159 Unit 4 Alarm # 2 Date Low Order

4910 N26:160 Unit 4 Alarm # 3 Message

4911 N26:161 Unit 4 Alarm # 3 Hrs.

4912 N26:162 Unit 4 Alarm # 3 Min.

4913 N26:163 Unit 4 Alarm # 3 Date High Order

4914 N26:164 Unit 4 Alarm # 3 Date Low order

4915 N26:165 Unit 4 Alarm # 4 Message

4916 N26:166 Unit 4 Alarm # 4 Hrs.

4917 N26:167 Unit 4 Alarm # 4 Min.

4918 N26:168 Unit 4 Alarm # 4 Date High Order

4919 N26:169 Unit 4 Alarm # 4 Date Low Order

4920 N26:170 Unit 4 Alarm # 5 Message

4921 N26:171 Unit 4 Alarm # 5 Hrs.

4922 N26:172 Unit 4 Alarm # 5 Min.

4923 N26:173 Unit 4 Alarm # 5 Date High Order

4924 N26:174 Unit 4 Alarm # 5 Date Low Order

4925 N26:175 Unit 4 Alarm # 6 Message

4926 N26:176 Unit 4 Alarm # 6 Hrs.

4927 N26:177 Unit 4 Alarm # 6 Min.

4928 N26:178 Unit 4 Alarm # 6 Date High Order

4929 N26:179 Unit 4 Alarm # 6 Date Low Order

4930 N26:180 Unit 4 Alarm # 7 Message

4931 N26:181 Unit 4 Alarm # 7 Hrs.

4932 N26:182 Unit 4 Alarm # 7 Min.

4933 N26:183 Unit 4 Alarm # 7 Date High Order

4934 N26:184 Unit 4 Alarm # 7 Date Low Order

4935 N26:185 Unit 4 Alarm # 8 Message

4936 N26:186 Unit 4 Alarm # 8 Hrs.

4937 N26:187 Unit 4 Alarm # 8 Min.

4938 N26:188 Unit 4 Alarm # 8 Date High Order

4939 N26:189 Unit 4 Alarm # 8 Date Low Order

4940 N26:190 Unit 4 Alarm # 9 Message

4941 N26:191 Unit 4 Alarm # 9 Hrs.

4942 N26:192 Unit 4 Alarm # 9 Min.

Page 67: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 67

Alarm List 2 - continued:ModbusAddress

ABAddress

Description of Data

4943 N26:193 Unit 4 Alarm # 9 Date High Order

4944 N26:194 Unit 4 Alarm # 9 Date Low Order

4945 N26:195 Unit 4 Alarm # 10 Message

4946 N26:196 Unit 4 Alarm # 10 Hrs.

4947 N26:197 Unit 4 Alarm # 10 Min.

4948 N26:198 Unit 4 Alarm # 10 Date High Order

4949 N26:199 Unit 4 Alarm # 10 Date Low Order

4950 N26:200 Unit 4 Alarm # 11 Message

4951 N26:201 Unit 4 Alarm # 11 Hrs.

4952 N26:202 Unit 4 Alarm # 11 Min.

4953 N26:203 Unit 4 Alarm # 11 Date High Order

4954 N26:204 Unit 4 Alarm # 11 Date Low Order

4955 N26:205 Unit 4 Alarm # 12 Message

4956 N26:206 Unit 4 Alarm # 12 Hrs.

4957 N26:207 Unit 4 Alarm # 12 Min.

4958 N26:208 Unit 4 Alarm # 12 Date High Order

4959 N26:209 Unit 4 Alarm # 12 Date Low Order

4960 N26:210 Unit 4 Alarm # 13 Message

4961 N26:211 Unit 4 Alarm # 13 Hrs.

4962 N26:212 Unit 4 Alarm # 13 Min.

4963 N26:213 Unit 4 Alarm # 13 Date High Order

4964 N26:214 Unit 4 Alarm # 13 Date Low Order

4965 N26:215 Unit 4 Alarm # 14 Message

4966 N26:216 Unit 4 Alarm # 14 Hrs.

4967 N26:217 Unit 4 Alarm # 14 Min.

4968 N26:218 Unit 4 Alarm # 14 Date High Order

4969 N26:219 Unit 4 Alarm # 14 Date Low Order

4970 N26:220 Unit 4 Alarm # 15 Message

4971 N26:221 Unit 4 Alarm # 15 Hrs.

4972 N26:222 Unit 4 Alarm # 15 Min.

4973 N26:223 Unit 4 Alarm # 15 Date High Order

4974 N26:224 Unit 4 Alarm # 15 Date Low Order

4975 N26:225 Unit 4 Alarm # 16 Message

4976 N26:226 Unit 4 Alarm # 16 Hrs.

4977 N26:227 Unit 4 Alarm # 16 Min.

4978 N26:228 Unit 4 Alarm # 16 Date High Order

4979 N26:229 Unit 4 Alarm # 16 Date Low Order

4980 N26:230 Unit 4 Alarm # 17 Message

4981 N26:231 Unit 4 Alarm # 17 Hrs.

4982 N26:232 Unit 4 Alarm # 17 Min.

4983 N26:233 Unit 4 Alarm # 17 Date High Order

4984 N26:234 Unit 4 Alarm # 17 Date Low Order

4985 N26:235 Unit 4 Alarm # 18 Message

4986 N26:236 Unit 4 Alarm # 18 Hrs.4987 N26:237 Unit 4 Alarm # 18 Min.4988 N26:238 Unit 4 Alarm # 18 Date High Order4989 N26:239 Unit 4 Alarm # 18 Date Low Order

Page 68: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 68 COMMUNICATIONS SETUP

Alarms/Shutdowns Message Codes0000 No Alarm0001 Outside Air Temp. Sensor Fault0002 Discharge Air Temp. Sensor Fault0003 Return Air Temp. Sensor Fault0004 Analog Input #4 Sensor Fault 0005 Damper Pos. Sensor Fault0006 Exhaust Fan 1 Pos. Sensor Fault0007 Exhaust Fan 2 Pos. Sensor Fault0008 Ammonia Sensor Fault0009 Return Air Humidity Sensor Fault0010 Return Air Pressure Sensor Fault0011 Coil Air Temp. Sensor Fault0012 No Air Flow Shutdown0013 Ammonia Alarm0014 Ammonia Shutdown0015 Auxiliary 1 Alarm/Shutdown0016 Auxiliary 2 Alarm/Shutdown0017 Auxiliary 3 Alarm/Shutdown0018 Unused0019 Unused0020 Unused0021 Flame Failure Alarm0022 High Room Pressure Alarm

0023 High Room Pressure Shutdown0024 GCU Board Comm 2 Failed0025 GCU Board Comm 2 Not Found0026 Defrost Input Fault to On0027 Defrost Input Fault to Off0028 Low Discharge Temp. Alarm0029 Low Discharge Temp. Shutdown0030 Aux. Analog 1 High Shutdown0031 Aux. Analog 1 High Alarm0032 Aux. Analog 1 Low Alarm0033 Aux. Analog 1 Low Shutdown0034 Aux. Analog 2 High Shutdown0035 Aux. Analog 2 High Alarm0036 Aux. Analog 2 Low Alarm0037 Aux. Analog 2 Low Shutdown0038 Aux. Analog 3 High Shutdown0039 Aux. Analog 3 High Alarm0040 Aux. Analog 3 Low Alarm0041 Aux. Analog 3 Low Shutdown0042 Aux. Analog 4 High Shutdown0043 Aux. Analog 4 High Alarm0044 Aux. Analog 4 Low Alarm0045 Aux. Analog 4 Low Shutdown

Page 69: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 69

Quantum™ 3 Main Board History andIdentification

The processor board shown on this page is known as theQuantum™ 3 and has been in production since January2000. Frick® Company developed this board as thesuccessor to the Quantum™ 1 & 2 and it is based on thePentium microprocessor platform.

The Quantum™ 3 board can be identified by the presenceof a “piggy back” daughter board mounted to the mainboard. This “daughter board” can be easily identified bythe presence of a large black heat sink mounted on themain processor chip. There are also a number of jumpers(or links) present on this smaller board. It is NOT advisedto modify these jumpers.

The main board (communications board) has a 2-digit LEDdisplay (which during normal operation, will display aconstantly changing pattern of values), an 8 position DIPswitch pack on the main board, and a number of jumpers(or links). The links on this main board MAY need to bemodified by factory qualified personnel to configure the

Quantum™ for specific applications. Refer to the nextpage for more details on the settings of these “Links”.

Unlike the Quantum™ 1 & 2, which utilized EPROMS forthe Operating Software, the Quantum™ 3 utilizes FlashCard technology. There is a Flash Card socket located onthis main board. The Operating System has been pre-loaded at the factory, so this Flash Card feature willprimarily be utilized for future program updates.

When calling Frick Company for service or help, it willgreatly assist us if the type of board is known, eitherQuantum™ 1, 2 , 3 or 4. Additionally, Frick will requestthe Sales Order number, and the Operating Systemversion number (this can be found on the Menu “About…”screen). The more information you have at the time of thecall, the better able we will be to assist you.

The information that follows will primarily describe thejumper configuration for communications settings, as wellas wiring diagrams for the different types ofcommunications that are possible with the Quantum™ 3.

Quantum™ Main Board (Quantum™ 3)

Page 70: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 70 COMMUNICATIONS SETUP

Quantum™ 3 Communications Jumpers

COMMUNICATIONS BOARD JUMPERS

Com-1

LK1 inout*

Pull down COM1No pull down RS-422/485 (Rx-/Tx-)

LK2 inout*

Terminate COM1No termination

RS-422/485

LK3 inout*

Pull up COM1No pull up

RS-422/485 (Rx+/Tx+)

LK4 inout*

Pull down COM1No pull down RS-422 (Tx-)

LK5 inout*

Pull up COM1No pull up. RS-422 (Tx+)

LK16 A *B

COM1 RS-485COM1 RS-422

* Standard SettingCom-2

LK6 inout*

Pull down COM2No pull down RS-422/485 (Rx-/Tx-)

LK7 inout*

Terminate COM2No termination RS-422/485

LK8 inout*

Pull up COM2No pull up RS-422/485 (Rx+/Tx+)

LK9 inout*

Pull down COM2No pull down.

RS-422 (Tx-)

LK10 inout*

Pull up COM2No pull up

RS-422 (Tx+)

LK17 A *B

COM2 RS-485COM2 RS-422

LK19in *out

Select RS-422/RS-485 for COM2Select RS-232 for COM2

* Standard Setting

COMMUNICATIONS WIRING

TB1 - COM1 RS-485/422 (Used for Sequencing):4-way screw terminal

Pin Signal (RS-422) Signal (RS-485)4 COM1 TX+ -3 COM1 TX- -2 COM1 RX+ COM1 TX+ / RX+1 COM1 RX- COM1 TX- / RX-

TB2 - COM2 RS-485/422 (Standard Communications):4-way screw terminal

Pin Signal (RS-422) Signal (RS-485)4 COM2 TX+ -3 COM2 TX- -2 COM2 RX+ COM2 TX+ / RX+1 COM2 RX- COM2 TX- / RX-

TB3- COM3 RS-485/422: 4-way screw terminalPin Signal (RS-422) Signal (RS-485)4 COM3 TX+ -3 COM3 TX- -2 COM3 RX+ COM3 TX+ / RX+1 COM3 RX- COM3 TX- / RX-

COM2

-12V+5VTP3

+5

TP4+12

TP5-12

RX

4TX

4

TP6GND

+12

Power-I/OCom. Cable

+12VDC-12VDC

GND

-RX/-TX+RX/+TX

LK11

BA

LK10

BA

KB

This assembly is shipped withLK11 set to position “B”. If a

Samsung, NEC, or Sharpdisplay is being used, thenLK11 must be changed to

position “A”.KeypadCable

LK7

LK8

LCDDisplayCable

LCDBacklight

Cable

LK24B A

HEAT SINK

COM2RS232

LK19

FLASH MEMORYSOCKET

SW

Dip SwitchPack

BA

T1

SW

2

ON

1 2 3 4 5 6 7 8

LK20B A

P7

P7

TP1GND

COM31

2

3

4

RS-422RS-485

LK12LK11

LK13LK14LK15

TX3

RX

3

LK18B A

B A

1

2

3

4

RS-422RS-485

LK6

LK8LK9LK10

LK7TX2

RX

2

LK17

COM1LK1LK2

LK3LK4LK5

1

2

3

4

RS-422RS-485

LK16B A

TX1

RX

1

LK25

+5VDC

Communications Board(large bottom board)

Processor Board(small top board)

Page 71: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 71

Quantum™ 4 Main Board History andIdentification

The processor board shown on this page is known as theQuantum™ 4 and has been in production since October2001. Frick Company developed this board as thesuccessor to the Quantum™ 3 and it is based on thePentium microprocessor platform.

The Quantum™ 4 board can be identified by the presenceof a “piggy back” daughter board mounted to the mainboard. This “daughter board” is the communicationsportion of the Quantum™, and it can be identified by thepresence of an 8 position DIP switch. There are also anumber of jumpers (or links) present on this smaller board,as well as three green connectors (RS-232, RS-422 andRS-485 ports). The jumpers are used to set up thecommunications parameters that are listed on the nextpage.

The main board (larger of the two) has a number ofjumpers (or links) also. The links on this main board MAYneed to be modified by factory qualified personnel toconfigure the Quantum™ for specific applications. Refer tothe ACUair® Maintenance Manual (S90-500 M) for moredetails on the settings of these “Links”.

Unlike the Quantum™ 1 & 2, which utilized EPROMS forthe Operating Software, the Quantum™ 4 utilizes FlashCard technology, as did the Quantum™ 3. There is aFlash Card socket located on the under side of this mainboard. The Operating System has been pre-loaded at thefactory, so this Flash Card feature will primarily be utilizedfor future program updates.

When calling Frick Company for service or help, it willgreatly assist us if the type of board is known, eitherQuantum™ 1, 2, 3 or 4 (Quantum™ 3 is described in theprevious section). Additionally, Frick will request theSales Order number, and the Operating System versionnumber (this can be found on the “About…” screen). Themore information you have at the time of the call, thebetter able we will be to assist you.

The information that follows will primarily describe thejumper configuration for communications settings, as wellas wiring diagrams for the different types ofcommunications that are possible with the Quantum™ 4.

Quantum™ 4 Main Board Photo

Page 72: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 72 COMMUNICATIONS SETUP

Quantum™ 4 Communications Jumpers

COMMUNICATIONS BOARD JUMPERSCom-1 (TB1)

LK2 inout*

Terminate COM1No termination RS-422/485

LK7 in out*

Pull down COM1No pull down RS-422/485 (Rx-/Tx-)

LK8 inout*

Pull up COM1No pull up

RS-422/485 (Rx+/Tx+)

LK9 inout*

Pull down COM1No pull down RS-422 (Tx-)

LK10 inout*

Pull up COM1No pull up RS-422 (Tx+)

LK16 AB*

COM1 RS-422 (TB1)COM1 RS-485 (TB1)

* Standard Setting

Com-2 (TB2 - TB3)

LK 1 inout*

Terminate COM2No termination RS-422/485

LK 3 in out*

Pull down COM2No pull down RS-422/485 (Rx-/Tx-)

LK 4 inout*

Pull up COM2No pull up RS-422/485 (Rx+/Tx+)

LK 5 inout*

Pull down COM2No pull down

RS-422 (Tx-)

LK 6 inout*

Pull up COM2No pull up RS-422 (Tx+)

LK 11 AB*

Select RS-232 for COM2 (TB2)Select RS-422/RS-485 for COM2 (TB3)

LK 17 AB*

COM2 RS-422 (TB2)COM2 RS-485 (TB2)

* Standard Setting

COMMUNICATIONS WIRING

TB1 - COM1 RS-485/422 (Used for Sequencing):4-way screw terminal

Pin Signal (RS-422) Signal (RS-485)4 COM1 TX+ -3 COM1 TX- -2 COM1 RX+ COM1 TX+ / RX+1 COM1 RX- COM1 TX- / RX-

TB2 - COM2 RS-485/422 (Standard Communications):4-way screw terminal

Pin Signal (RS-422) Signal (RS-485)4 COM2 TX+ -3 COM2 TX- -2 COM2 RX+ COM2 TX+ / RX+1 COM2 RX- COM2 TX- / RX-

TB3- COM2 RS-232 (Standard Communications):3-way screw terminal

Pin Signal (RS-422)3 Ground2 RX1 TX

PWR

SUSP

FLASH

LK11 LK12

PL24

PL3

PL

LK9

LK8LK10

PL16

LK1

PL7

PL9

LK2

PL17

PL12

PL19

PL18

PL14

PL10

PL6

PL2

PL4

PL1

Flash CardSocket

(Locatedunderboard)

PL3PL5

PL11

LK3

AB

LK4

PL15

+5VDC

+12VDC

RET / GNDRET / GND

+RX/+TX-RX/-TX

PowerCable

PL8

I/O Cable

TB1TB2

LK2COM-2 TB3

RS

-232

3

21

PL13

This assembly isshipped with LK4 set to"B" position for an LG

Philips display.

If using a Samsung, NECor Sharp Display, setLK4 to position "A".

Keyboard Cable

Display Cable

LK6

B ALK5

LK7COM-2 COM-11 2 3 4 1 2 3 4

LK8LK7 LK10LK9

D3LK16

AB

AB

PL2

34

56

70

12

D8D10D11D12

PORT 80H

D4D5D7

D13

SW1

ON

1 2

3 4

5 6

7 8

D6

D2

LK11

BA

LK1LK4LK3 LK6LK5

D1

D8

LK17

To set Comm-2 for RS-232operation, set LK11 to "A"

position.

To set Comm-2 for RS-422/485operation, set LK11 to "B"

position.

RS-422RS-485

RS-422RS-485

PL1

Processor Board (largebottom board)

Communications Board(small top board)

COM2 (TX)COM1(RX)

COM1(TX)

KB

COM2(RX)

Page 73: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 73

WIRING DIAGRAM – QUANTUM™ TOCUSTOMER REMOTE COMPUTER/DCS RS-485 COMMUNICATIONS

WIRING DIAGRAM – QUANTUM™ TOCUSTOMER REMOTE COMPUTER/DCS RS-422 COMMUNICATIONS

ACUair #1 ACUair #2 ACUair #3

-RX/-TX

+RX/+TX

BLK

CLR

BLK

CLR

BLK

CLR

Belden #8761#22 AWG or Equal

Belden #8761#22 AWG or Equal

1

2

34

1

2

34

BLK

CLR

BLK

CLR

Belden #8761#22 AWG or Equal

1

2

34

To CustomerRemote

Computer / DCSSystem

COM2(TB2)

COM2(TB2)

COM2(TB2)

BLK

RED

-TX

+TX

Belden #8777#22 AWG or Equal

BLK

RED

BLK

RED

Belden #8777#22 AWG or Equal

BLK

RED

BLK

RED

Belden #8777#22 AWG or Equal

To CustomerRemote

Computer / DCSSystem

ACUair #1 ACUair #2 ACUair #3

-RX

+RX

BLK

GRN

COM2Belden #8777#22 AWG or Equal

1

2

34

1

2

34

BLK

GRN

BLK

GRN

Belden #8777#22 AWG or Equal

1

2

34

BLK

GRN

BLK

Belden #8777#22 AWG or Equal

GRN

COM2 COM2

Page 74: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 74 COMMUNICATIONS SETUP

CONNECTIONS

Qua

ntum

™Q

uant

um™

Qua

ntum

PLC

RS

-422

/ R

S-4

85

RS

-422

/ R

S-4

85

Mod

icon

PLC

with

aM

OD

BU

Sco

mm

unic

atio

ns p

ort

Typ

ical

MO

DB

US

(A

SC

II) S

etu

p

DC

S (

Dis

trib

uted

Con

trol

Sys

tem

) O

R

With

ser

ial i

nter

face

adap

ter

card

that

supp

orts

our

MO

DB

US

and

/or

our

AB

SLC

500

DF

1pr

otoc

ol (

SE

EA

BO

VE

)

Gen

eric

DC

S/P

LC

Set

up

RS

-232

RS

-422

RS

-485

Dire

ct to

one

Qua

ntum

RS

-422

/ R

S-4

85

RS

-232

to 4

22/4

85C

onve

rter

RS

-232

RS

-232

to 4

22/4

85C

onve

rter

Qua

ntum

RS

-232

Dire

ct to

one

RS

-232

AC

Uai

r™

Qua

ntum

™Q

uant

um™

Qua

ntum

AC

Uai

r™A

CU

air™

Page 75: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 75

Index

AAB Protocol ..........................................................15Address ....................... 17, 19, 20, 21, 22, 23, 25, 33Allen-Bradley .............................. 4, 6, 14, 15, 27, 33ASCII.............................6, 12, 20, 21, 22, 23, 25, 29

BBaud Rate ........................................................5, 31Bits per second.....................................................27Broadcasting.........................................................20Byte.........................................20, 21, 22, 23, 24, 25

CCabling .................................................................26Carriage Return ....................................................21Change Communications....................................... 6Channel ....................................................15, 17, 19Character..............................................................20Checksum ............................................................. 6Colon.................................................. 21, 22, 23, 24Com-1 ................................................ 3, 5, 6, 70, 72Com-2 ...............................3, 4, 6, 26, 31, 32, 70, 72Communication failure ..........................................20

Jumpers .......................................................... 6Wiring.......................................................70, 72

Conversion For Decimal/Hexadecimal/ASCII ........12CRLF....................................................................21

DData

Address....................................................22, 23Bits...........................................................25, 27Communications terminal ................................ 3Elements ........................................................20Field.........................................................20, 21File. ..........................................................17, 19Packet ............................................................20Table............................................ 17, 19, 20, 33

DB9 connector....................................................... 5DCS .....................................................................20Decimal ....................... 12, 20, 21, 22, 23, 24, 25, 33Device address.....................................................20Direct connection..................................................26

EError ...............................................................20, 21

Checking ........................................................21Correction Code .............................................21

Exception code ...............................................20, 21

FFlow Control .........................................................27Frame.............................................................20, 21Frick “#” protocol...................................................27

Frick®…….2, 3, 7, 15, 23, 29, 33, 34, 35, 36, 37, 38,39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,69

Function Code ..................................................... 20

HHandshake........................................................... 20Hex............................................... 22, 23, 24, 25, 32Hexadecimal .......................................12, 20, 21, 32High Order ................................................22, 23, 24HMI...................................................................... 26Holding registers ............................................ 20, 21Human Machine Interface .................................... 26Hyperterminal .... 6, 21, 23, 24, 26, 27, 30, 31, 32, 33

II/O Board ............................................................. 20I/O Communication activity lamp ............................ 6ID Number ............................................................. 5Integer ........................................................... 25, 33

JJumper settings............................................ 4, 5, 26

LLine Feed..................................................21, 23, 24Load Register ...................................................... 20Local.............................................................. 17, 19Longitudinal Redundancy..................................... 21Low Order.................................................22, 23, 24Low Order Address ........................................ 22, 24LRC ..................................................................... 21

MMaster ................................ 3, 20, 21, 24, 25, 31, 32Master / Slave...................................................... 20Message ........................6, 16, 20, 21, 22, 23, 24, 31Modbus............................. 20, 21, 22, 23, 25, 27, 33

ASCII............................................................. 20Protocol ................................................... 20, 25

Modem ........................................................ 3, 4, 26Multi-drop............................................................. 20

NNAK..................................................................... 12Network ........................................ 20, 21, 22, 23, 26Node.............................................................. 17, 19

OOpto 22 AC422 ...................................................... 5Opto 22 AC7A/B .................................................... 5

PPacket .......................................... 20, 22, 23, 24, 31

Page 76: FRICK QUANTUM™ ACUair CONTROL PANEL · FRICK® QUANTUM™ ACUair® CONTROL PANEL S90-500 CS COMMUNICATIONS SETUP Page 5 RS-232 Communications Following is the pin connections showing

S90-500 CS FRICK® QUANTUM™ ACUair® CONTROL PANELPage 76 COMMUNICATIONS SETUP

Panel ID................................................6, 20, 22, 23Panel setup.......................................5, 6, 26, 31, 32Parity ............................................................. 20, 27Pinouts................................................................... 3PLC................................................................ 20, 26Port...................................................4, 6, 17, 19, 20Pressures....................................................... 25, 33Programmable controller ........................................ 3Programmable Logic Controller ...................... 20, 26Protocol ...................6, 20, 21, 25, 26, 27, 31, 32, 33

Allen-Bradley DF-1 serial ................................. 6Description....................................................... 6Frick ................................................................ 6ModBus ASCII serial ........................................ 6Setting Up Communication............................... 6

QQuantum™ ......................... 3, 21, 23, 24, 26, 31, 71

Data Table..................................................... 20ID… .................................... 6, 17, 19, 20, 21, 32Protocols.......................................................... 6Quantum™ 1 ....................................... 3, 69, 71Quantum™ 1 & 2 ..................................... 69, 71Quantum™ 2 ................................................... 3Quantum™ 3 ........................3, 4, 32, 69, 70, 71Quantum™ 4 ..............................3, 4, 32, 71, 72

Query......................................................... 6, 20, 21

RRead ........................6, 16, 17, 19, 20, 21, 22, 23, 25Read Function...................................................... 21Receive.............................................................. 5, 6Receiving device .................................................. 21Register ................................................... 17, 20, 21Remote ...................................................... 3, 26, 33Remote Terminal Unit .......................................... 20Request ...................... 20, 22, 23, 24, 25, 31, 69, 71

Response............................6, 20, 21, 24, 25, 28, 31RS-232................................3, 4, 5, 6, 32, 70, 71, 72RS-422.......................... 3, 4, 5, 6, 20, 32, 70, 71, 72RS-485.......................... 3, 4, 5, 6, 20, 32, 70, 71, 72RS-485/422 .................................................... 70, 72RSLogix5 .............................................................15RSLogix500..........................................................15RTU ............................................................... 20, 25RX2.............................................................. 4, 6, 31

SSerial....................................................................20Setting up Hyperterminal ................................ 26, 32Setting Up the Quantum™ for Communication........3Show Comms screen............................................31Slave....................................................................20SLC........................................................ 4, 5, 17, 19SLC 5/04 ............................................................4, 5SLC500 .................................................... 15, 17, 19Start of Message ..................................................21Status....................................................... 21, 31, 33Stop Bits......................................................... 20, 27

TTarget Device................................................. 17, 19Temperatures................................................. 25, 33Testing Communications ................................ 30, 31Transmit .................................................................5TX2 .............................................................. 4, 6, 31

UUsing RS-232.......................................................20

WWrite .............................................................. 18, 19

YORK Refrigeration100 CV Avenue, P.O. Box 997 Waynesboro, Pennsylvania USA 17268-0997Phone: 717-762-2121 • Fax: 717-762-8624 • www.frickcold.com

Subject To Change Without NoticePrinted in U.S.A.