FRET Presentation

Embed Size (px)

Citation preview

  • 7/27/2019 FRET Presentation

    1/25

    FRET and Other Energy

    Transfers

    Patrick Bender

  • 7/27/2019 FRET Presentation

    2/25

    Presentation Overview

    Concepts of Fluorescence

    FRAP

    Fluorescence Quenching

    FRET

    Phosphorescence

  • 7/27/2019 FRET Presentation

    3/25

    Fluorescence

    Basically the emission of light associatedwith electronic transitionsAbsorbs one color light and emits another

    Uses:Tracking molecules (i.e. proteins)

    Give information about solute environmentMolecular ruler

    Etc.

  • 7/27/2019 FRET Presentation

    4/25

    How does it work?

    Excited state

    Ground state

    1. (Solid Arrow) Excitation from

    impinging photon

    2. (Dotted Arrow) Internal conversion

    3. (Dashed Arrow) Electronic relaxation

    and light emission

    Note:

    Emitted light has longer wavelength

    than impinging

    Internal conversion really fast(picosecond vs. microsecond)

  • 7/27/2019 FRET Presentation

    5/25

    Fluorescence Quantified

    (Quantum Yield)

    Number of photons fluoresced

    Number of photons absorbed

    f =

  • 7/27/2019 FRET Presentation

    6/25

    FRAP

    Fluorescence Recovery After Photo-

    bleaching

    Used to examine Brownian motion and

    2-D interactions in membranes

    Examine molecular transport

  • 7/27/2019 FRET Presentation

    7/25

    FRAP procedure

    1. Baseline reading of

    fluorescing membrane

    2. Photobleach to

    destroy fluorescencein a spot

    3. Monitor rates of

    fluorescence recovery

    4. Fluorescence recovery

  • 7/27/2019 FRET Presentation

    8/25

    http://www.me.rochester.edu/courses/ME201/webproj/FRAP.gif

    http://www.me.rochester.edu/courses/ME201/webproj/FRAP.gifhttp://www.me.rochester.edu/courses/ME201/webproj/FRAP.gif
  • 7/27/2019 FRET Presentation

    9/25

    Fluorescence Quenching

    Environmental effect

    Solvent

    Additional solutes

    Other moieties

    Drastically effects quantum yield as well

    as rate of fluorescence

  • 7/27/2019 FRET Presentation

    10/25

    How does it work?Fluorophore

    MolecularOxygen

    Fluorophore

    Molecular

    Oxygen

    Fluorescent Not

    Fluorescent

  • 7/27/2019 FRET Presentation

    11/25

    Fluorophore

    Fluorescent

    Iodide

    High-energy vibration

    states

    Radiationless

    energy transfer

  • 7/27/2019 FRET Presentation

    12/25

    Examples of quenching

    Ethidium Bromide

    Interchelated with DNA vs. in solvent

    Interchelated with DNA in presence of other

    metals

    Fluorescence quenching by tryptophan

    Locate fluorophore proximity to tryptophan

  • 7/27/2019 FRET Presentation

    13/25

    Quenchers

    Single molecule protein folding

    Fluorescing molecules quench each other in

    folded conformation

    Common quenchers:

    Water

    Molecular Oxygen

    Many electron molecules/ions (e.g. Iodide)

  • 7/27/2019 FRET Presentation

    14/25

    FRET

    Forster Resonance Energy Transfer

    Involves radiationless energy transfer

    Used as molecular ruler

    Use in photosynthesis

  • 7/27/2019 FRET Presentation

    15/25

    FRET

    Excitation of Donor

    Internal conversion of donor

    Excitation transfer of donor

    Fluorescence of acceptor

  • 7/27/2019 FRET Presentation

    16/25

    What we can calculate

    Efficiency of transfer:

    Distance between fluorophores (r)

    r0= Distance where efficiency equal 0.5

    D

    ADEff

    1

    66

    0

    6

    0

    rrrEff

  • 7/27/2019 FRET Presentation

    17/25

    http://www.olympusfluoview.com/applications/fretintro.html

    http://www.olympusfluoview.com/applications/fretintro.htmlhttp://www.olympusfluoview.com/applications/fretintro.html
  • 7/27/2019 FRET Presentation

    18/25

  • 7/27/2019 FRET Presentation

    19/25

    Photosystem II

  • 7/27/2019 FRET Presentation

    20/25

    Phosphorescence

    Emission of light resulting from quantum-

    mechanically forbidden transitions

    Glow in the dark

  • 7/27/2019 FRET Presentation

    21/25

    How it works

    S1

    S0

    T1

    Intersystem crossing

  • 7/27/2019 FRET Presentation

    22/25

    Consequences

    Violates quantum mechanics selection

    rules

    Inversion of spin

    Lifetime of excited triplet state in the

    millisecond or longer range

  • 7/27/2019 FRET Presentation

    23/25

  • 7/27/2019 FRET Presentation

    24/25

  • 7/27/2019 FRET Presentation

    25/25

    List of Works Cited

    Dmitriev, R., Zhdanov, A., Ponomarev, G., Yashunski, D., & Papkovsky, D.(2010). Intracellular oxygen-sensitive phosphorescent probes based on cell-penetrating peptides.Analytical Biochemistry, 398(1), 24-33.doi:10.1016/j.ab.2009.10.048.

    Zhuang, X. et al. (2000). Fluorescence quenching: a tool for single-moleculeprotein-folding study. PNSA, 97(26), 14241-14244.

    Olmsted, J, & Kearns, D. (1977). Mechanism of ethidium bromidefluorescence enhancement on binding to nucleicacids. Biochemistry, 16(16), 3647-3654.

    Atherton, J, & Beaumont P. (1986). Quenching of the fluorescence ofDNA-intercalated ethidium bromide by some transition-metal ions. J. Phys.

    Chem., 1986, 90(10), pp 22522259

    Fluorescence resonance energy transfer (fret). (2010). Retrieved fromhttp://www.andor.com/learning/applications/Fluorescence_Resonance/