10
1 ESE 531: Digital Signal Processing Lec 13: February 23st, 2017 Frequency Response of LTI Systems Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley Lecture Outline 2 ! Frequency Response of LTI Systems " Magnitude Response " Simple Filters " Phase Response " Group Delay " Example: Zero on Real Axis Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley Frequency Response of LTI System ! LTI Systems are uniquely determined by their impulse response ! We can write the input-output relation also in the z-domain ! Or we can define an LTI system with its frequency response ! H(e jω ) defines magnitude and phase change at each frequency 3 yn = xk hn k k=−∞ = xk hk Y z () = Hz () X z () Ye jω ( ) = He jω ( ) Xe jω ( ) Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley Frequency Response of LTI System ! We can define a magnitude response ! And a phase response 4 Ye jω ( ) = He jω ( ) Xe jω ( ) Ye jω ( ) = He jω ( ) Xe jω ( ) Ye jω ( ) = He jω ( ) + Xe jω ( ) Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley Phase Response ! Limit the range of the phase response 5 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley Phase Response ! Limit the range of the phase response 6 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Frequency Response of LTI System

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Frequency Response of LTI System

1

ESE 531: Digital Signal Processing

Lec 13: February 23st, 2017 Frequency Response of LTI Systems

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Lecture Outline

2

!  Frequency Response of LTI Systems "  Magnitude Response

"  Simple Filters

"  Phase Response "  Group Delay

"  Example: Zero on Real Axis

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Frequency Response of LTI System

!  LTI Systems are uniquely determined by their impulse response

!  We can write the input-output relation also in the z-domain

!  Or we can define an LTI system with its frequency response !  H(ejω) defines magnitude and phase change at each frequency

3

y n⎡⎣ ⎤⎦= x k⎡⎣ ⎤⎦ h n− k⎡⎣ ⎤⎦k=−∞

∑ = x k⎡⎣ ⎤⎦∗h k⎡⎣ ⎤⎦

Y z( ) = H z( ) X z( )

Y e jω( ) = H e jω( ) X e jω( )

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Frequency Response of LTI System

!  We can define a magnitude response

!  And a phase response

4

Y e jω( ) = H e jω( ) X e jω( )

Y e jω( ) = H e jω( ) X e jω( )

∠Y e jω( ) =∠H e jω( )+∠X e jω( )

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Phase Response

!  Limit the range of the phase response

5 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Phase Response

!  Limit the range of the phase response

6 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 2: Frequency Response of LTI System

2

Group Delay

!  General phase response at a given frequency can be characterized with group delay, which is related to phase

!  More later…

7 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Linear Difference Equations

8 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Magnitude Response

9 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Magnitude Response

10 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Magnitude Response

11

e jω

ω

dk

v1

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Magnitude Response Example

12 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 3: Frequency Response of LTI System

3

Magnitude Response Example

13 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Magnitude Response Example

14

e jω

ωv1

v2

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Magnitude Response Example

15

e jω

ωv1

v2

π 2πω

H (e jω )

1

(dB - Log scale)

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Low Pass Filter

16 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Low Pass Filter

17

πω

H (e jω )

1

(dB - Log scale)

ωc

1 2

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple High Pass Filter

18 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 4: Frequency Response of LTI System

4

Simple High Pass Filter

19

e jω

ωv1v2

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple High Pass Filter

20

πω

H (e jω )

1

(dB - Log scale)

ωc

1 2

e jω

ωv1v2

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Stop (Notch) Filter

21 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Stop (Notch) Filter

22

ω0

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Stop (Notch) Filter

23

ω0

πω

H (e jω )

1

(dB - Log scale)

ω0Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Stop (Notch) Filter

24

ω0

πω

H (e jω )

1

(dB - Log scale)

ω0Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 5: Frequency Response of LTI System

5

Simple Band-Stop (Notch) Filter

25

ω0

πω

H (e jω )

1

(dB - Log scale)

ω0Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Pass Filter

26 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Pass Filter

27 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Pass Filter

28

πω

H (e jω )

1

(dB - Log scale)

ω0Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Simple Band-Pass Filter

29

πω

H (e jω )

1

(dB - Log scale)

ω0

Larger α reduces pass band

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Phase Response

!  Limit the range of the phase response

30 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 6: Frequency Response of LTI System

6

Phase Response Example

31

ωπ

−π

ARG

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay

!  General phase response at a given frequency can be characterized with group delay, which is related to phase

32

ωω1 ω2

- slope Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Phase Response Example

33

ωπ

−π

ARG

For linear phase system, group delay is nd Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay

!  General phase response at a given frequency can be characterized with group delay, which is related to phase

34

ωω1 ω2

- slope Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay

35

ωω1 ω2

- slope

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay

36

ωω1 ω2

- slope

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 7: Frequency Response of LTI System

7

Group Delay Math

37

H (z) =b0a0

(1− ck z−1)

k=1

M

(1− dk z−1)

k=1

N

∏H (e jω ) =

b0a0

(1− cke− jω )

k=1

M

(1− dke− jω )

k=1

N

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay Math

38

H (z) =b0a0

(1− ck z−1)

k=1

M

(1− dk z−1)

k=1

N

∏H (e jω ) =

b0a0

(1− cke− jω )

k=1

M

(1− dke− jω )

k=1

N

arg[H (e jω )]= arg[1− cke− jω ]

k=1

M

∑ − arg[1− dke− jω ]

k=1

N

grd[H (e jω )]= grd[1− cke− jω ]

k=1

M

∑ − grd[1− dke− jω ]

k=1

N

arg of products is sum of args

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay Math

39

arg[1− re jθe− jω ]= tan−1 rsin(ω −θ )1− rcos(ω −θ )⎛

⎝⎜

⎠⎟

grd[H (e jω )]= grd[1− cke− jω ]

k=1

M

∑ − grd[1− dke− jω ]

k=1

N

!  Look at each factor:

grd[1− re jθe− jω ]= r2 − rcos(ω −θ )

1− re jθe− jω2

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

40

arg[1− re− jω ]

r

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

41

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

r

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

42

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

ωr

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 8: Frequency Response of LTI System

8

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

43 Penn ESE 531 Spring 2017 - Khanna

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

ωϕ

r

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

44 Penn ESE 531 Spring 2017 - Khanna

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

ωϕ

r

ϕ −ω

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

45 Penn ESE 531 Spring 2017 - Khanna

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

ωϕ

r

ϕ −ω

ω

arg

π

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

46

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

r ω

arg

π

ω = 0

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

47

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

r ω

arg

π

ω = π

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

48

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

ωϕ

r

ϕ −ω

ω

arg

π

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 9: Frequency Response of LTI System

9

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

49

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

r

ϕ −ω

ω

arg

π

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  Geometric Interpretation for (θ=0)

50

arg[1− re− jω ]= arg[(e jω − r)e− jω ]= arg[e jω − r]− arg[e jω ]

ωϕ

ω

arg

π

grd

πω

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Group Delay Math

51

arg[1− re jθe− jω ]= tan−1 rsin(ω −θ )1− rcos(ω −θ )⎛

⎝⎜

⎠⎟

grd[H (e jω )]= grd[1− cke− jω ]

k=1

M

∑ − grd[1− dke− jω ]

k=1

N

!  Look at each factor:

grd[1− re jθe− jω ]= r2 − rcos(ω −θ )

1− re jθe− jω2

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

52

!  For θ≠0

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  Magnitude Response

53 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  For θ=π, how does zero location effect magnitude, phase and group delay?

54 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Page 10: Frequency Response of LTI System

10

Example: Zero on Real Axis

!  For θ=π, how does zero location effect magnitude, phase and group delay?

55 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Example: Zero on Real Axis

!  For θ=π, how does zero location effect magnitude, phase and group delay?

56 Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

2nd Order IIR with Complex Poles

57 Penn ESE 531 Spring 2017 - Khanna

magnitude

2nd Order IIR with Complex Poles

58 Penn ESE 531 Spring 2017 - Khanna

magnitude

phase

group delay

Big Ideas

59

!  Frequency Response of LTI Systems "  Magnitude Response

"  Simple Filters

"  Phase Response "  Group Delay

"  Example: Zero on Real Axis

Penn ESE 531 Spring 2017 – Khanna Adapted from M. Lustig, EECS Berkeley

Admin

!  HW 5 "  Due Friday 3/3

!  Homework solutions to be posted soon

60 Penn ESE 531 Spring 2017 - Khanna