Free space LASERcommunication

Embed Size (px)

Citation preview

  • 7/27/2019 Free space LASERcommunication

    1/26

    Free Space Laser CommunicationSeminar 2008

    1. INTRODUCTION

    Lasers have been considered for space communication since their realization in 1960.

    For a number of applications, laser technology is being championed as the successor to radio-

    frequency (RF) technology for meeting the bandwidth demands of the 21st century. With RF

    carrier frequencies ranging from 106 to 1010 Hz and optical carrier frequencies ranging from

    1013 to 1015, the switch from RF to optical should ultimately accommodate an increase in

    bandwidth of five to six orders of magnitude.

    Much of the technology and many of the components for achieving this kind of bandwidth

    performance have already been developed during the past decade for military and space

    programs, as well as for applications in fiber optic telecommunications.

    Free space point to point communication systems are used extensively in the communication

    field. A network point to point microwave system can carry messages across the country as part

    of the public switched telephone network. Despite strong competition from fiber optic based

    communication systems, microwave or other free space systems are often justified for shorter

    routes, when right of way for cable system is not available, or when the high communications

    capacity of a fiber optic system is not needed.

    Laser communications systems in particular have become increasingly popular to provide a free

    space communication link between two locations. Laser systems do not require extensive

    frequency coordination as do microwave systems in common frequency bands. Laser systems

    often are less expensive to install then conventional copper cable or fiber optic cable

    communication systems because physical installation of a cable is unnecessary. For example, a

    laser communication system may have application between two corporate locations in a campus

    environment. Each laser communication terminal may be positioned on the building roof top or

    even positioned adjacent a window and aligned to operate between buildings. A communication

    link within a building may also be provided by a free space laser communication system. Modern

    office automation also typically generates large amounts of data that must often be

    communicated between different corporate locations. Accordingly, the demand for laser

    communication links is increasing.

  • 7/27/2019 Free space LASERcommunication

    2/26

    Free Space Laser CommunicationSeminar 2008

    Figure1.1 Figure showing practical use of laser communication

  • 7/27/2019 Free space LASERcommunication

    3/26

    Free Space Laser CommunicationSeminar 2008

    Figure1.2 Schematic diagram of a 2-way laser communication system

  • 7/27/2019 Free space LASERcommunication

    4/26

    Free Space Laser CommunicationSeminar 2008

    1.1. FIGURE DESCRIPTION

    10. Laser communication system.

    11, 11. Microprocessor.

    12, 12. Laser radiation source.

    13, 13. Photo detector.

    14, 14. Analog laser control circuit.

    15/15. Output laser beam from A/B.

    16, 16. Digital input/output control and buffer circuit.

    20, 20. Collecting lens.

    21/21. Input laser beam for A/B.

    22, 22. Laser transmitter housing.

    23, 23. Beam shaping lens.

    24, 24. Amplifier and threshold circuit.

  • 7/27/2019 Free space LASERcommunication

    5/26

    Free Space Laser CommunicationSeminar 2008

    2. FEATURES OF LASER COMMUNICATIONS SYSTEM

    A block diagram of typical terminal is illustrated in figure. Information, typically in the form of

    digital data, is input to data electronics that modulates the transmitting laser source. Direct or

    indirect modulation techniques may be employed depending on the type of laser employed. The

    source output passes through an optical system into the channel. The optical system typically

    includes transfer, beam shaping, and telescope optics. The receiver beam comes in through the

    optical system and is passed along to detectors and signal processing electronics. There are also

    terminal control electronics that must control the gimbals and other steering mechanisms, and

    servos, to keep the acquisition and tracking system operating in the designed modes of operation.

  • 7/27/2019 Free space LASERcommunication

    6/26

    Free Space Laser CommunicationSeminar 2008

    3. WORKING

    The figure shows a laser communication system including a pair of communication terminals A

    and B. The communication terminals A and B are separated by a free space distance which may

    vary depending on the desired path, expected atmospheric conditions etc. the maximum

    separation distance for a free space communication system operating at a predetermined

    frequency is determined primarily by the desired signal-to-noise ratio and the desired information

    transmission rate, or bit rate.

    The system operates at either two power levels. At low power safety level, the output laser

    power is reduced to meet safety regulations for a stationary laser beam. At the high power

    normal level, the output laser power may be above the regulatory safety criteria for stationary

    laser sources to thereby provide a greater signal-to-noise ratio or otherwise enhance system

    performance.

    The communication terminal A and B may preferably be the same except for a unique identifying

    code associated with each terminal.

    The terminal A includes a microprocessor operating under stored program control. Terminal A

    also includes, a transmitter comprising a laser radiation source, and a receiver comprising a photo

    detector. The microprocessor is connected to the laser and photo detector by conventionalinput/output methods. The laser is controlled by an analog laser control circuit.

    The analog laser control circuit properly biases the laser and regulates its optical power output,

    compensating for temperature, component ageing, and other variations. The analog laser control

    circuit in cooperation with the microprocessor also modulates the laser output beam with the

    desired information to be transmitted. The analog laser control circuit interfaces to the

    microprocessor through the digital I/O control and buffer circuit.

    The digital I/O control and buffer circuit buffers an entire packet of data from the

    microprocessor. The buffer is then emptied and the data is modulated onto the output laser beam.

    The microprocessor may be connected to a data terminal which communicates with a

    corresponding remotely positioned data terminal via the laser communication system.

  • 7/27/2019 Free space LASERcommunication

    7/26

    Free Space Laser CommunicationSeminar 2008

    The microprocessor also controls the safety related and other functions for the terminal A. For

    example, the microprocessor periodically inserts the terminal identification code into the datastream to be modulated onto the output beam. The identification code is recognized by the

    remotely positioned terminal B. laser power and duty cycles are also controlled by the

    microprocessor. A conventional Dead Man circuit, as used in laser scanning systems may

    preferably be include in the laser control circuit to turn off the laser transmitter if it is determined

    that microprocessor has malfunctioned.

    A collecting lens collects the input laser beam from the remotely positioned terminal B. The

    photo diode is positioned at the focal point of the collecting lens. The collecting lens may also

    include an opening at the centre thereof to permit mounting of the laser transmitter housing and

    its associated beam shaping lens.

    The photo detector feeds the signal from the input beam to an amplifier and threshold circuit. The

    amplifier and threshold circuit may include an automatic gain control circuit, or the gain may be

    digitally controlled by the microprocessor. The threshold circuit converts the analog signal from

    the photo detector to a digital pulse stream. The threshold circuit also preferably implements a

    lockout criteria that reduces the digitization of noise.

    The digital signal from the amplifier and threshold circuit is fed to a digital buffer in the digital

    I/O control and buffer circuit. When the buffer is filled, an interrupt is sent to the microprocessor

    which then receives the contents of the buffer. Thus, the microprocessor operates on large blocks

    of data.

    The communication terminal A includes detector means, cooperating with the receiver, for

    detecting a blockage or misalignment of the output beam based upon the input beam. The

    blockage or misalignment of the output beam is indicated if the remotely positioned terminal B

    fails to properly receive the output beam. The remotely positioned terminal beam B produces a

    confirmation signal periodically modulated onto the input beam in the confirmation data stream.

    A blockage or misalignment of the output beam will cause the confirmation signal to stop being

  • 7/27/2019 Free space LASERcommunication

    8/26

    Free Space Laser CommunicationSeminar 2008

    sent. A blockage or misalignment of the output beam indicates that the beam may be directed to

    the eyes of an accidental or unintended observer.

    The detector means preferably includes means for recognizing the confirmation signal. If theconfirmation signal is not detected for a predetermined time, a blockage or misalignment of the

    output beam is indicated. In the interest of safety, the laser communication system requires

    positive confirmation that the output beam is being received at the remotely positioned terminal

    B before operation at the high power level is permitted.

  • 7/27/2019 Free space LASERcommunication

    9/26

    Free Space Laser CommunicationSeminar 2008

    4. ACQUISITION AND TRACKING

    There are three basic steps to laser communication: acquisition, tracking, and communications.

    Of the three, acquisition is generally the most difficult; angular tracking is usually the easiest.

    Communications depends on bandwidth or data rate, but is generally easier than acquisition

    unless very high data rates are required. Acquisition is the most difficult because laser beams are

    typically much smaller than the area of uncertainty. Satellites do not know exactly where they are

    or where the other platform is located, and since everything moves with some degree of

    uncertainty, they cannot take very long to search or the reference is lost. Instability of the

    platforms also causes uncertainty in time. In the ideal acquisition method, the beam width of the

    source is greater than the angle of uncertainty in the location of receiver. The receiver field of

    includes the location uncertainty of the transmitter. Unfortunately, this ideal method requires a

    significant amount of laser power.

    It is possible to operate a number of laser types at high peak power and low duty cycle to make

    acquisition easier. This is because a lower pulse rate is needed for acquisition than for tracking

    and communications. High peak power pulses more easily overcome the receiver set threshold

    and keep the false alarm rate low. A low duty cycle transmitter gives high peak power, yet

    requires less average power, and is thus a suitable source for acquisition. As the uncertainty area

    becomes less, it becomes more feasible to use a continues source of acquisition, especially if the

    acquisition time does not have to be short.

  • 7/27/2019 Free space LASERcommunication

    10/26

    Free Space Laser CommunicationSeminar 2008

    Figure 4.1 flow chart illustrating operation of a laser communication system

  • 7/27/2019 Free space LASERcommunication

    11/26

    Free Space Laser CommunicationSeminar 2008

    4.1 DETAILS OF THE FLOW CHART

    When the terminal A is first powered up the laser is operated at a low power safety level so that

    the output beam is below the class 1 safety threshold. At block 34, the microprocessor generates

    a unique terminal identification code which is transmitted on the output beam. The data on the

    output beam is then monitored for an initial confirmation signal, such as a predetermined digital

    code, indicating that the remotely positioned terminal B has received the output beam. If the

    confirmation signal has not been received, the microprocessor again sends the terminal

    identification code at block 34 at the low power safety level and monitors for the initial

    confirmation signal.

    Once the initial conformational signal is received at block 38, the microprocessor then operates

    the laser at the high power normal level. While the system is operating at a high power level, the

    system operating performance is enhanced. For example, the system may operate at a higher

    signal-to-noise ratio, the bit rate may be increased, or a combination of these may be achieved.

    At block 42 the microprocessor monitors the received data signal for the confirmation signal. At

    block 44, if the confirmation signal is absent for a time greater than T then the laser is again

    operated at the low power safety level. The absence of the confirmation signal indicates a

    blockage or misalignment of the output beam. The time T is determined by the allowable

    exposure time, based on the laser power.

  • 7/27/2019 Free space LASERcommunication

    12/26

    Free Space Laser CommunicationSeminar 2008

    5. VERY NARROW BEAMS

    12-Inch telescope (30.5 cm)

    1.55 m wavelength

    Beamwidth ~ 1.0 arc second

    (5.1 rad)

    (0.00028 degree)

    From geosynchronous orbit

    - 180 meter spot

    - High directivity deliversstrong signal

    - (Radio spot from a 12-inch

    antenna

    would be ~ 1800 km)

    On the other hand must point

    Correctly and hold steady to

    ~ 0.25-0.5 rad (10-20 meters)

    Fig. 5.1 Boston Harbor

  • 7/27/2019 Free space LASERcommunication

    13/26

    Free Space Laser CommunicationSeminar 2008

    Figure 5.2 Graph showing allowed exposure time versus elapsed time of exposure for variouspower laser beams

  • 7/27/2019 Free space LASERcommunication

    14/26

    Free Space Laser CommunicationSeminar 2008

    Referring to the graph shown above we can see that the laser powers vary from 0.001 milli-watts

    to 10 milli-watts. The limit L is indicated by the straight line extending diagonally across the

    graph. Class 1 safety limits are complied with if the laser power and elapsed time are above the

    line. If they are below the class 1 limits, then the beam is not safe.

    The laser communication system controls the laser transmitter so that the power of the output

    beam is maintained below the safety level threshold when a blockage or misalignment of the

    beam is detected. At all other times during normal operation, the laser transmitter may be

    operated at a higher average power level to improve system performance.

    The laser communication system includes the confirmation signal within the communication data

    stream. Accordingly, it requires no additional major components other than those necessary

    without the safety features and enhanced performance of the present invention. Thus the laser

    communication system is relatively simple, yet highly reliable.

  • 7/27/2019 Free space LASERcommunication

    15/26

    Free Space Laser CommunicationSeminar 2008

    6. ADVANTAGES

    Free space laser communications links eliminate the need for securing right of ways, and buried

    cable installations. As the equipments operate within the near infrared spectrum, they are not

    subject to government licensing and no spectrum fees have to be paid (according to Art. 7 in [3]

    requires only the use of the frequency spectrum below 3000 GHz a license). Additionally, since no

    radio interference studies are necessary, the systems are quickly deployable. The narrow laser beam

    width precludes interference with other communication systems of this type. The advantages of

    this wavelength range for Satellite-to-Earth communication include good atmospheric

    penetration, the ability to use smaller optics than with longer wavelength technology, and the

    ability to use sensitive detectors based on silicon avalanche photodiode technology

  • 7/27/2019 Free space LASERcommunication

    16/26

    Free Space Laser CommunicationSeminar 2008

    7. DISADVANTAGES

    Free space laser communications systems provide only interconnection between points that have

    direct line-of-sight (LOS). They can transmit through glass, however, for each glass surface the

    light intensity is reduced, due to a mixture of absorption and refraction, thus reducing the

    operational distance of a system. Occasionally, short interruptions or unavailability events lasting

    from some hours up to a few days can occur.

    In addition to its bandwidth-improvement potential, free-space laser communication technology

    also offers tangible benefits in satellite design.

  • 7/27/2019 Free space LASERcommunication

    17/26

    Free Space Laser CommunicationSeminar 2008

    8. LIMITATIONS

    Free space laser communication systems are considered stationary laser sources for regulatory

    purposes, and as such, must comply with regulatory limits established to protect the eyes of an

    accidental or unintended observer. An accidental observer may receive permanent damage from a

    high power laser beam without experiencing any pain which might forewarn the observer of the

    harmful exposure. In addition, the wavelengths used by the laser systems are often invisible.

    Accordingly, standards have been put in place that establish safe limits for the power that may be

    transmitted by a stationary laser source, such as a laser communication terminal. This maximum

    permissible power limits the communication systems signal-to-noise ratio (SNR), bit rate, and/or

    separation distance. Accordingly there is great need for a free space laser communication system

    and method that complies with safety limits yet which has improved performance over existing

    systems.

  • 7/27/2019 Free space LASERcommunication

    18/26

    Free Space Laser CommunicationSeminar 2008

    9. SOLUTIONS

    Moving laser beams present less of a hazard than do stationary beams as required for a free space

    laser communication system. For example, laser scanning systems for reading bar codes

    producing a moving, or non-stationary, laser beam. A spinning holographic disk produces a

    series of facet pulses from the beam. If the facet pulses are not detected, it is assumed the

    holographic disk is not spinning and thus the laser beam is stationary. The holographic scanner

    then operates the laser at a low duty cycle until the facet pulses are again detected.

  • 7/27/2019 Free space LASERcommunication

    19/26

    Free Space Laser CommunicationSeminar 2008

    10. HISTORY OF SPACE LASERCOM

    Fig 10.1 History of space lasercom

  • 7/27/2019 Free space LASERcommunication

    20/26

    Free Space Laser CommunicationSeminar 2008

    10.1. TECHNICAL CHALLENGES OF FIRST GENERATION SPACE

    LASERCOM

    Spatial acquisition and tracking

    - Initial uncertainty may require

    searching over 105 beam spots.

    - Spacecraft vibrations may be

    hundreds of beamwidths.

    - Point-ahead requirements may be

    1-10 beamwidths.

    Rugged opto-mechanical-thermal

    design.

    Technology maturity

    - Lasers.

    - Amplifiers.

    - Modulators.

    - Efficient detection architectures.

    Fig 10.2Spatialacquisition and tracking

  • 7/27/2019 Free space LASERcommunication

    21/26

    Free Space Laser CommunicationSeminar 2008

    11. OPTIC vs RF

    For a number of applications, laser technology is being championed as the successor to radio-

    frequency (RF) technology for meeting the bandwidth demands of the 21st century.

    With RF carrier frequencies ranging from 106 to 1010 Hz and optical carrier frequencies ranging

    from 1013 to 1015, the switch from RF to optical should ultimately accommodate an increase in

    bandwidth of five to six orders of magnitude.

    Commercial activity has already begun in the space-to-space-link (SSL) arena, which is likely to

    provide the overwhelming commercial pull for the time being as engineering firms endeavour to

    design and build the optics required for low-Earth-orbit telecommunications systems, such as the

    "Internet in the Sky" project by Teledesic (Kirkland, WA).

  • 7/27/2019 Free space LASERcommunication

    22/26

    Free Space Laser CommunicationSeminar 2008

    12. APPLICATIONS

    Depending on the climatic zone where the free space laser communications systems are used,

    they can span distances up to 6 km at low bitrates or provide bitrates up to 1.25 Gbps at shorter

    distances. The systems are protocol transparent allowing transmission of digital computer data

    (LAN interconnect), video, voice over IP, multiplexed data, or ATM. They are suitable for

    temporary connectivity needs such as at conventions, sporting events, corporate and university

    campuses, disaster scenes or military operations.

  • 7/27/2019 Free space LASERcommunication

    23/26

  • 7/27/2019 Free space LASERcommunication

    24/26

    Free Space Laser CommunicationSeminar 2008

    14. FURTHER REMARKS

    Microwave systems have the ability to achieve a high link quality (error performance and

    availability) for distances of up to 100 km. Measurements on a 600 m first generation free space

    laser communications link carried out by Swiss Telecom in the area of Berne, showed a

    significant lower quality. The degradation effects can be categorized as follows:

    Propagation effects and

    Mechanical insufficiencies.

    The origin of the first category is quite obvious, e.g.: if heavy fog, snow or smoke blocks the

    line-of-sight between the units or the sun is interfering the laser beam. Unfortunately, there are

    not many countermeasures to improve the situation in such cases. The source for the second

    category can be found in the narrow optical beam. Therewith the link performance is sensitive to

    vibration, wind sway, and thermal expansion of the equipment. However, since the products

    listed in Table 1 are second and third generation products, it can be expected that in the

    meantime mechanical improvements have been made.

    Last but not least it should be noted, that a microwave link designer has within limits - the

    possibility to reduce the influence of the propagation effects and to optimize the desired link

    quality and its costs by choosing the frequency, antenna diameters, diversity protection, etc. A

    free space laser communication system has to be taken as it is.

  • 7/27/2019 Free space LASERcommunication

    25/26

    Free Space Laser CommunicationSeminar 2008

    15. CONCLUSION

    Anticipating a number of fixed launch schedules, the relevant departments are cooperating to

    develop and test engineering models of satellite-mounted equipment that will be able to provide

    high-capacity transmission despite its globally unparalleled small size.

  • 7/27/2019 Free space LASERcommunication

    26/26

    Free Space Laser CommunicationSeminar 2008

    16. REFERENCES

    1) M. Jeganathan, Development of the free-space optical communications analysis software,

    Free-Space Laser Communications Technologies X, Proceedings of SPIE, [Ed. G.

    Stephen Mecherle], Volume 3266, 90-98, 2005.

    2) C. C. Chen and C. S. Gardner, Impact of random pointing and tracking errors on the

    design of coherent and incoherent optical intersatellite communication links, IEEE

    Trans. Commun.37 (3), 252260 (2004).

    3) S. G. Lambert and W. L. Casey, Laser Communication in Space(Artech House, Boston,2002).

    4) Henderson A. R., Bioptica: A Guide to Laser Safety ISBN 0-412-72940-7, UKFebruary 2005