30
Author: Date: PFOS, PFOA and Other Fluorinated Compounds: Overcoming Sampling and Analy<cal Challenges Terry Obal, Ph.D., C.Chem. RPIC Federal Contaminated Sites Na?onal Workshop April 1416, 2014

Free Powerpoint Templates - Project Maths

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Author:  

Date:  

PFOS,  PFOA  and  Other  Fluorinated  Compounds:    Overcoming  Sampling  and  Analy<cal  Challenges  

Terry  Obal,  Ph.D.,  C.Chem.  

RPIC  Federal  Contaminated  Sites  Na?onal  Workshop  April  14-­‐16,  2014  

2   maxxam.ca  

Acknowledgments  

Adam  Robinson   Sin  Chii  Chia  

3   maxxam.ca  

•  Overview  –  Physical/Chemical  Proper?es  –  Nomenclature  –  Environmental  Significance  

•  Sampling,  Analy?cal  and  Repor?ng  Considera?ons  –  Sampling  Challenges  –  Analy?cal  Methods  –  “Understanding”  the  results  

Outline  

4   maxxam.ca  

What  are  they?  

Perfluorooctanoic  Acid  (PFOA)  

 Teflon®  

Perfluorooctane  Sulfonate  (PFOS)    

Scotchguard®  

Hydrophobic Hydrophilic

5   maxxam.ca  

•  Very  stable  and  persistent  –  do  not  degrade  •  Low  vola?lity  •  Soluble  in  water  

•  Readily  bind  (sorb)  to  variety  of  materials  (hard  to  predict  par??oning)  

•  Bioaccumula?on  

•  Ubiquitous  (“they’re  everywhere”)  

Chemical  and  Physical  Proper?es  

6   maxxam.ca  

Fluoropolymers  vs.  Fluorinated  Telomers  

Fluoropolymers  §  Long  chain  molecules  §  Fire  resistant  §  Repel  oil,  grease,  stains  and  water  §  Used  to  provide  non-­‐s?ck  surface  

in  cookware  and  waterproof  breathable  membranes  for  clothing  

§  Hundreds  of  other  uses  in  virtually  all  industry  segments  (e.g.  aerospace,  automo?ve,  chemical,  electronics,  tex?le,  etc.)  

Fluorinated  Telomers  §  Surfactants  and  surface  

treatment  chemicals  in  many  products    (e.g.  repellent  coa?ngs  on  tex?les,  leather  and  paper)  

§  High  performance  surfactants  in  products  that  need  to  flow  evenly  (e.g.  paints,  coa?ngs,  fire  figh?ng  foams,  engineering  coa?ngs  in  the  manufacture  of  semi-­‐conductor  coa?ngs)  

7   maxxam.ca  

PFC  Naming  Conven?ons  

Perfluorobutanoic  Acid  aka  

Perfluorobutyric  Acid  

Perfluorobutanoate  

8   maxxam.ca  

Naming  Conven?ons  

Abbrevia<on   Acid   Conjugate  

PFBA   Perfluorobutanoic  Acid   Perfluorobutanoate  

PFBS   Perfluorobutanesulfonic  Acid   Perfluorobutanesulfonate  

PFPA   Perfluoropentanoic  Acid   Perfluoropentanoate  

PFHxA   Perfluorohexanoic  Acid   Perfluorohexanoate  

PFHxS   Perfluorohexanesulfonic  Acid   Perfluorohexanesulfonate  

PFHpA   Perfluoroheptanoic  Acid   Perfluoroheptanoate  

PFOA   Perfluorooctanoic  Acid   Perfluorooctanoate  

PFOS   Perfluorooctanesulfonic  Acid   Perfluorooctanesulfonate  

PFNA   Perfluorononanoic  Acid   Perfluorononanoate  

PFDA   Perfluorodecanoic  Acid   Perfluorodecanoate  

PFDS   Perfluorodecanesulfonic  Acid   Perfluorodecanesulfonate  

PFUdA   Perfluoroundecanoic  Acid   Perfluoroundecanoate  

PFDoA   Perfluorododecanoic  Acid   Perfluorododecanoate  

PFTrDA   Perfluorotridecanoic  Acid   Perfluorotridecanoate  

PFTeDA   Perfluorotetradecanoic  Acid   Perfluorotetradecanoate  

PFOSA   Perfluorooctanesulfonamide   Perfluorooctanesulfonamide  

9   maxxam.ca  

Environmental  Pathways  for  PFC  Exposure  

§  Commercially  used  perfluorinated  compounds  (PFCs)  have  been  widely  detected  in  humans,  but  the  sources  of  human  exposure  are  not  fully  characterized  

§  Suggested  sources  of  exposure  –  Drinking  Water  –  Dust/Ambient  Air  –  Food  

10   maxxam.ca  

Where  are  they  being  found?  

•  Although  PFOS,  PFOA  and  other  PFCs  are  likely  to  be  found  anywhere,  at  differing  concentra?ons  

•  Typical  areas  where  these  may  be  compounds  of  concern,  at  elevated  concentra?ons,  are:  –  AFFFs:  

§  Airports  §  Run-­‐off  from  incidents  of  fire  

–  Landfill  leachate  –  WWTP  Effluent  

11   maxxam.ca  

…and  now  they’re  making  the  news  

12   maxxam.ca  

•  S?ll  being  evaluated  -­‐  a  range  of  toxicological  effects  have  been  reported  in  a  variety  of  species  

•  Readily  absorbed  and  accumulates  in  all  ?ssues,  especially  target  organs  (e.g.  liver)  

•  Not  metabolized  and  eliminated  slowly  

•  Studies  suggest  high  poten?al  human  toxicity  

•  Not  yet  confirmed  as  human  carcinogen  

•  PFOS  exposure  has  been  associated  with  many  health  problems  including  some  cancers  

Toxicology  

13   maxxam.ca  

•  Risk  management  strategies  should  maintain  environmental  PFOS  concentra?ons  as  low  as  possible  by:  •  Preven?ng  re-­‐introduc?on  to  market;  and  •  Addressing  remaining  uses  through  restric?ons/exemp?on  

•  May  30,  2012:  AFFFs  with  PFOS  >0.5  ppm  are  prohibited  (certain  military  opera?ons  may  be  excluded)  

•  January  2013:  Environment  Canada  consulta?on  document  issued  describing  current  risk  management  ac?ons  in  Canada  and  globally  

•  May  29,  2013:  Manufacture,  use,  sale  and  import  of  PFOS  and  PFOS-­‐containing  products  is  prohibited  in  Canada    (Note:  Other  PFCs,  e.g.  polyfluorotelomer  sulphonates,  are  used  in  newer  AFFF  formula?ons)  

Regulatory  Status  in  Canada  (PFOS  Focus)  

14   maxxam.ca  

•  2010/2015  PFOA  Stewardship  Program:  •  Eight  (8)  global  suppliers  agree  to:  

§  95%  reduc?on  in  PFOA  (and  related  precursor)  levels  in  emissions  rela?ve  to  2000  levels  

§  Total  elimina?on  of  PFOA  (and  related  precursor)  levels  in  emissions  

•  September  30,  2013  –  USEPA  Significant  New  Use  Rule  (SNUR)  rela?ng  to  perfluoroalkyl  sulphonates  (PFASs)  

•  SNUR  related  to  perfluoroalkyl  carboxylates  (PFACs)    (in-­‐process)  

Regulatory  Status  

15   maxxam.ca  

Regulatory  Limits  –  Drinking  Water  

Jurisdic<on  PFOA  (ug/L)  

PFOS  (ug/L)  

PFBA  (ug/L)  

PFBS  (ug/L)  

Canada  –  Health  Canada   0.7   0.3   N/V   N/V  

U.S.A  -­‐  EPA   0.4   0.2   N/V   N/V  

U.S.A.  –  Minnesota   0.3   0.2   7   7  

U.S.A.  –  New  Jersey   0.04   N/V   N/V   N/V  

U.S.A.  –  North  Carolina   2   N/V   N/V   N/V  

Europe  –  United  Kingdom   10   0.3   N/V   N/V  

Europe  -­‐  Germany   0.1  (PFOA  and  PFOS)   N/V   N/V  

16   maxxam.ca  

Regulatory  Limits  –  UCMR3  

Compound  Minimum  

Repor<ng  Level  (ug/L)  

Perfluorooctane  sulphonate  (PFOS)   0.04  

Perfluorooctanoic  Acid  (PFOA)   0.02  

Perfluorononanoic  Acid  (PFNA)   0.02  

Perfluorohexanesulfonate  (PFHxS)   0.03  

Perfluoroheptanoic  Acid  (PFHpA)   0.01  

Perfluorobutane  sulphonate  (PFBS)   0.09  

17   maxxam.ca  

Provisional  Soil  Levels  -­‐  PFOS  

Jurisdic<on  Residen<al  

(ug/g)  Commercial  

(ug/g)  Industrial  (ug/g)  

Canada  –  Health  Canada1   0.7   1   5  

U.S.A  –  EPA  Region  IV   6   N/V   N/V  1)  CCME  Guidelines  for  PFOS  an<cipated    2014/2015  

18   maxxam.ca  

•  Inconsistent  approaches  to  analysis  for  PFCs  in  simple  and  complex  environmental  matrices  

•  High  risk  of  sample  cross  contamina?on  due  to  ubiquitous  nature  of  PFCs  and  the  tendency  to  be  found  at  high  concentra?ons  

•  Sample  matrices  range  from  simple  to  complex  

•  Data  comparability  between  laboratories  is  difficult  –  High  variability  –  Lack  of  confidence  in  the  results  –  Inability  to  make  supportable  remedial  decisions  

Problem  Statement(s)  

19   maxxam.ca  

Sampling,  Analy?cal  and  Repor?ng  Considera?ons  

20   maxxam.ca  

Sample  Containers  

Teflon®   ?

21   maxxam.ca  

•  Sampling  and  field  quality  assurance  plans  must  address  the  potenial  for  cross  contamina?on  and/or  false  posi?ves  

•  Consider  poten?al  sources  of  PFOS,  PFOA  and  other  PFCs:  •  Teflon®  •  Gore-­‐tex®  •  Water  proof  field  note  books  

•  Water  for  blanks  MUST  be  PFC  free.  

Sampling  

22   maxxam.ca  

Analy?cal  Methods  The  “Basics”  

23   maxxam.ca  

•  If  the  isotopically  labeled  analogue  is  added  to  the  sample  at  the  very  beginning  of  the  analy?cal  process  (i.e.  before  any  sample  homogeniza?on,  extrac?on,  clean-­‐up  etc.),  it  enables  exact  compensa?on  for  variances  at  all  stages  of  the  analysis,  from  sample  prepara?on  through  to  the  final  instrumental  measurement.  

•  IDMS  provides  greater  accuracy  than  other  calibra?on  methods  because  it  compensates  for  any  matrix  effects  that  may  suppress  recovery  of  the  parameters  being  measured.  

Importance  of  Isotope  Dilu?on…  

24   maxxam.ca  

Importance  of  Isotope  Dilu?on…  

•  Simply  put…  …the  recovery  of  the  labeled  compound,  which  is  not  naturally  present  in  the  sample,  is  an  exact  representa?on  of  the  recovery  of  the  na?ve  compound  which  is  present  in  the  sample.  

 •  Using  PFOS  as  an  example,  the  13C4-­‐labelled  analog  of  PFOS  is  

used  to  correct  for  varying  recovery  of  the  na?ve  (12C)  PFOS  from  the  sample.    So  if  the  recovery  of  the  labeled  PFOS  is  60%,  the  recovery  of  the  na?ve  PFOS  being  measured  will  also  be  60%.  

25   maxxam.ca  

Branched  (technical)  vs.  Linear  PFOS  

•  When  interpre?ng  PFOS  data,  it  is  important  to  understand  if  it  is  being  quan?fied  as  the  linear  or  branched  chain  isomers  

•  Technical  PFOS  is  a  mixture  of  linear  and  branched  chain  PFOS  isomers  

•  Linear  PFOS  is  typically  pure  

•  Branched  chained  PFOS  contains  at  least  3  isomers  

•  This  is  an  important  differen?a?on  because  if  linear  PFOS  is  used  as  the  calibra?on  standard,  the  quan?ta?ve  results  on  real-­‐world  samples  (containing  a  mix  of  linear  and  branched  PFOS)  can  be  off  by  as  much  as  40%    

26   maxxam.ca  

Limits  of  Quan?ta?on  (LOQs)  

Compound  

LOQs  

Water  (ug/L)  

Soil  (ug/kg)  

Perfluorobutanoic  Acid  (PFBA)   0.02   0.1  

Perfluorobutanesulfonic  Acid  (PFBS)   0.02   0.1  

Perfluoropentanoic  Acid  (PFPA)   0.02   0.1  

Perfluorohexanoic  Acid  (PFHxA)   0.02   0.1  

Perfluorohexanesulfonic  Acid  (PFHxS)   0.02   0.1  

Perfluoroheptanoic  Acid  (PFHpA)   0.02   0.1  

Perfluorooctanoic  Acid  (PFOA)   0.02   0.1  

Perfluorooctanesulfonate  (PFOS)   0.02   0.1  

Perfluorononanoic  Acid  (PFNA)   0.02   0.1  

Perfluorodecanoic  Acid  (PFDA)   0.02   0.1  

Perfluorodecanesulfonate  (PFDS)   0.02   0.1  

Perfluoroundecanoic  Acid  (PFUdA)   0.02   0.1  

Perfluorododecanoic  Acid  (PFDoA)   0.02   0.1  

Perfluorotridecanoic  Acid  (PFTrDA)   0.02   0.1  

Perfluorotetradecanoic  Acid  (PFTeDA)   0.02   0.1  

Perfluorooctanesulfonamide  (PFOSA)   0.02   0.1  

27   maxxam.ca  

Sampling  Protocols  and  Analy?cal  Methods:  Key  Areas  for  Considera?on  

•  Sample  Collec?on  Protocols:  –  Low  flow,  bailers,  passive  samplers  –  Cross-­‐contamina?on  –  Minimize  exposure  of  samples/extracts  to  poten?al  sources  of  PFCs  –  Fill  containers  completely  

•  Minimize  transfer  of  sample  aliquots  –  (i.e.  as  much  as  is  possible,  avoid  subsampling  prior  to  addressing  

adsorp?on)  

•  Sample  Prepara?on:  –  Homogeniza?on/Filtra?on  

28   maxxam.ca  

Sampling  Protocols  and  Analy?cal  Methods:  Key  Areas  for  Considera?on  

•  Sample  Extrac?on/Clean-­‐up  –  Direct  injec?on/solid  phase  extrac?on  (SPE)  

•  Analysis:  –  “Isotope  Dilu?on”  LC/MS/MS  –  Calibra?on:  solvent  based  standards/matrix  matched  standards  

•  Data  Reduc?on:  –  Linear  vs  branched  chain  PFOS  

29   maxxam.ca  

•  Laboratory  Accredita?on  (ISO  Guide  17025):  ‒  SCC  (Canada)  ‒  DoD  (USA)  

•  Calibra?on  Range:  –  Water:  0.02  –  50  ug/L  –  Soil:    0.1  –  10  ug/kg  

•  Standard  Turnaround  Time  –  10  working  days  

•  Rush  Analyses  –  Minimum  3  days  

What  to  expect  when  reques?ng  analyses  

30   maxxam.ca  

Ques?ons?