102
DE-FE0010808 Fracture Design, Placement, and Sequencing in Horizontal Wells Mukul M. Sharma Hisanao Ouchi, Amit Katiyar, John Foster University of Texas at Austin

Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DE-FE0010808

Fracture Design, Placement, and Sequencing in Horizontal Wells

Mukul M. Sharma

Hisanao Ouchi, Amit Katiyar, John Foster

University of Texas at Austin

Page 2: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 2

Outline

• Problem statement: The need for a new model

• Model Verification

• Interaction between Hydraulic Fractures and Natural Fractures

• Propagation of multiple fractures in horizontal wells

• Effect of Reservoir Heterogeneity

• Conclusion

• Peridynamics Based Hydraulic Fracturing Model

Page 3: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 3

Hydraulic Fractures are Complex

To optimize stimulation design and completion strategy, we must consider Complex fracture

geometry (multiple, non-planar)

Fracture networks (interaction with natural fractures)

Impact of natural fractures, heterogeneities, poroelasticity, layering, variation in the in situ confining stresses etc.

Ref: Warpinski, N.R. et al, SPE 114173, 2008

Page 4: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 4

Peridynamics

Unifies the mechanics of continuous and discontinuous media

Silling S. A., J. Mech. Phys. Solids, 48, 175-209, 2000

Material points (particle-based discretization)Non-local interaction (bonds) inside horizon

Horizon of point

Body

Integral FormClassical model

Peridynamics

Any Known Constitutive Model in Classical Theory

x'

x

Page 5: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 6

Peridynamics Based Hydraulic Fracturing Model

Ref: Turner D.Z., arXiv:1206.5901, LE Q.V. et al, Int. J. Numer. Meth. Engng, 2014

Solid Mechanics

[ ]( ) ( )2

1

3 3 153GK P GT

m m

α χχ ω − − + = + + − +

η ξx ξ x ξ η ξ ξη ξ

P 𝜃𝜃

Peridynamics Based Poroelastic Model

Ref: Katiyar A., Foster J. T., Ouchi H., and Sharma M. M., J. Comp. Phys., 261, 209-229, 2014.

(for 2D flow)

Porous Flow

Coupling

∅f Pf, 𝐼𝐼Fracture Flow

Ref: Ouchi, H., Katiyar A., York, J., Foster, John T., Sharma, Mukul M., J. Comp. Mech., 2015.

Page 6: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 7

Dual Permeability Concept

Injector Injector

Shmin

Pore Space(Pore Pressure)

Before fracture propagation4 Primary Unknowns : position of element (x,y,z) and matrix pressure

After fracture propagation5 Primary Unknowns : position of element (x,y,z), matrix pressure, and fracture pressure

Pore Space(Pore Pressure)

Fracture Space(Fracture Pressure)

Page 7: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 9

Model Verification

Page 8: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 10

Biot Consolidation Problem(Verification of Poroelastic Model)

Jaeger J.C et al, Fundamentals of Rock Mechanics, forth edition, 189-P194

t* =

0.4

5

t* =

0.9

7

t* =

4.4

9

PeridynamicsExact

Z=0.053h

Z=0.303h

Z=0.553h

Z=0.803hPeridynamicsExact

Peridynamics

Analytical

Peridynamics

Analytical

Page 9: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 11

2-D Single Fracture Propagation (Comparison with KGD Model)

• Young’s modulus (GPa) = 60

• Poisson’s ratio = 0.25

• Shmax (MPa) = 12

• Shmin (MPa) = 8

• Permeability (nD) = 10

• Porosity = 0.3

• Initial pore pressure (MPa) = 3.2

• Fluid: Water

• Injection rate (m3/min/m)= 0.12

• Number of elements 200*160

Injector

Hydraulic fracture

ShmaxShmax

Shmin

Shmin

x

y

20 m

16 m

Page 10: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 12

Results: Fracture Half Length and Wellbore Pressure

0

2

4

6

8

10

12

14

16

0 20 40 60 80

KGD (P@Wellbore = P@Frac. Tip)Our model (Wellbore)Our model (Frac. Tip)Our model (Infinite Conductivity: P@Wellbore = P@Frac. Tip)

0123456789

10

0 20 40 60 80

KGDOur modelOur model (Infinite Conductivity)

Sim: Kf = f(width)KGD

Sim: Tip (Kf = f(width))

Sim: Bottomhole (Kf = f(width))

KGD

Sim: Infinite Conductivity

Sim: Infinite Conductivity

Frac

ture

hal

f len

gth

(m)

Time (s) Time (s)W

ellb

ore

Pre

ssur

e (M

Pa)KGD

Our model (kf = function of width)Our model (infinite conductivity)

KGD assumes constant pressure distribution along a fracture.

Infinite conductivity model shows good agreement with KGD.

Page 11: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 13

(a) (b)

Results: Stress Distribution around Fracture (Infinite Conductivity Case)

fracture fracture

Analytical(Sneddon solution)

Peridynamics

Y axis

Y axis

Peridynamics

Analytical

X axis

X axis Peridynamics

Analytical

Page 12: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 14

3-D Single Fracture Propagation (Comparison with PKN Model)

• Young’s modulus (GPa) = 60

• Poisson’s ratio = 0.25

• Svmax (MPa) = 60

• Shmin (MPa) = 40

• Permeability (nD) = 10

• Fluid: Water

• Injection rate (m3/min/m)= 0.12

• Number of elements 100*100*20

4m

20 m

20 m

Ty

Tx

Tz

Injector

The eight elements at the center of the simulation domain are representing injection from the injector(dual injection points)

fracture

Page 13: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 15

Results: Fracture Half Length, Fracture Width, and Wellbore Pressure

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50

Frac

ture

hal

f len

gth

(m)

Time (s)

PKN Peridynamics

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0 10 20 30 40 50

Max

imum

frac

ture

wid

th (m

)

Time (s)

PKN Peridynamics

0

10

20

30

40

50

60

0 10 20 30 40 50

Pres

sure

(MPa

)

Time (s)

PKN Peridynamics

Page 14: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 16

Effect of Reservoir Heterogeneities

Page 15: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 17

Effect of Multi-Scale Heterogeneities

http://www.agilegeoscience.com/journal/2011/8/18/niobrara-shale-field-trip.html

Different scale heterogeneitiesin the reservoir

layer scale (m order) heterogeneity

sub-layer scale (cm order)heterogeneity

small scale heterogeneity(mm order)

How does this multi-scale heterogeneity affect fracture propagation?

1.5 mm

1.5 mm

quartz

clay or kerogen

Page 16: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 18

Effect of Layer Boundary

x

z

In most of the hydraulic fracturing simulators, only “crossing” or “stopping” are simulated due to planar propagation assumption.

hydraulic fracture

However, in many cases, fractures can show the following characteristic propagation behaviors near the layer interface other than “crossing” or “stopping”.

“turning” “kinking”“branching”

Page 17: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 19

Fracture Propagation in Layered Rocks

x

z

Extracting a small area near layer boundary

Upper Layer

Lower Layer 5 cm

10 cm

30 cm

Inject water from the bottom

1Hσ

2Hσ

Important parameters:

Horizontal-vertical stress contrast Young’s modulus contrast Weak connection between layers Layer Dip

Horizontal stress contrast Toughness contrast

E1

E2

KIC1

KIC2

hydraulic fracture

Page 18: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 20

Effect of Layer Stresses(0 degrees, E2 = 10 GPa)

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.00.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.00.0

(b) E1 = 20 GPa (c) E1 = 40 GPa

(d) E1 = 80 GPa

: Turning

: Crossing

B : Branching

(a) E1 = 10 GPa

BB

BB

BB

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

0.0

Layer1

Layer2

Layer1

Layer2

Published shale dataRijken and Cooke (2001)

E: 4.5 - 61.0 GPaKIC: 0.7 - 2.16 MPa m0.5

E1

E2=10GPa

0 dip angle

Page 19: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 21

Turning and Branching

• “Turning” is strongly affected by principal stress difference and fracture toughness contrast.

• A higher fracture toughness contrast• A smaller principal stress difference

More fracture turning

• Very high Young’s modulus contrast (> 8.0)• Low fracture toughness contrast (< 1.0)

e.g. upper layer = calcite vein (E = 83.8 GPa, KIC = 0.19 MPa m0.5)

• Young’s modulus contrast does not have a large influence on fracture turning along the layer interface.

• “Branching” occurs under the following conditions.

Page 20: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 22

Effect of Dip Angle (15 degrees, E2 = 10 GPa)

B1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

B

B1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

(b) E1 = 20 GPa (c) E1 = 40 GPa

(d) E1 = 80 GPa

: Turning

: Kinking

B : Branching

(a) E1 = 10 GPa

: Crossing

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

“Turning” criteria does not change a lot from 0 dipping angle cases.

15 deg

E1

E2=10GPa

layer interface layer 1

layer 2

layer interface

15 deg

Branching

But, “Kinking” is observed in most of the cases below the turning criteria.

Page 21: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 23

Effect of Dip Angle (30 degrees, E2 = 10 GPa)

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

5.0 10.0 15.0

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

(b) E1 = 20 GPa (c) E1 = 40 GPa

(d) E1 = 80 GPa

: Turning

: Kinking

(a) E1 = 10 GPa

30 deg

E1

E2=10GPa

layer interface

layer 1

layer 230 deg

“Turning” criteria in the high dipping angle cases becomes lower than the lower dipping angle cases.

“Kinking” is observed in every case below the turning criteria.

Page 22: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 24

Mechanism of Kinking

Sxx distribution

damage distribution

(a) after 0.27 sec

The left side stress becomes higher due to smaller strain of upper layer.

The fracture turns to the right side.

(c) after 0.5 sec (b) after 0.47 sec

E=40GPa

E=10GPa

(MPa)

(fraction)

30 cm

15 cm

The left side of the fracture is difficult to deform due to the high Young’s modulus.

The fracture turns as if avoiding the layer interface.

Page 23: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 26

Effect of Young’s modulus contrast on “kinking”

(fraction)

(a) E1/E2=10GPa/10GPa

15deg

E=10GPaKIC = 1.4 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

30 cm

15 cm

(b) E1/E2=20GPa/10GPa

E=20GPaKIC = 1.4 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

(c) E1/E2=40GPa/10GPa

E=40GPaKIC = 1.4 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

(c) E1/E2=80GPa/10GPa

E=80GPaKIC =1.4 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

Kinking angle increases with the Young’s modulus contrast.

Page 24: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 27

Effect of fracture toughness contrast on “kinking”

E=40GPaKIC = 0.5 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

(a) KIC1/KIC2=0.5 MPa m0.5

/0.5 MPa m0.5

15deg

(fraction)

E=40GPaKIC = 1.0 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

E=40GPaKIC = 1.4 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

E=40GPaKIC =2.0 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

30 cm

15 cm

(b) KIC1/KIC2=1.0 MPa m0.5

/0.5 MPa m0.5

(c) KIC1/KIC2=1.4 MPa m0.5

/0.5 MPa m0.5

(d) KIC1/KIC2=2.0 MPa m0.5

/0.5 MPa m0.5

Kinking angle does not depend on the fracture toughness contrast.

Page 25: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 28

Effect of principal stress difference on “kinking”

E=10GPaKIC = 0.5 MPa m

0.5E=10GPaKIC = 0.5 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5E=10GPaKIC = 0.5 MPa m

0.5

15deg

E=40GPaKIC = 1.4 MPa m

0.5

E=40GPaKIC = 1.4 MPa m

0.5 E=40GPaKIC = 1.4 MPa m

0.5

E=40GPaKIC = 1.4 MPa m

0.5

(a) principal stress difference = 1 MPa

30 cm

15 cm

(b) principal stress difference = 6 MPa

(c) principal stress difference = 10 MPa (d) principal stress difference = 20 MPa

Kinking angle decreases with increase in stress contrast.

Page 26: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 29

Effect of layer dip angle on “kinking”

(a) 15deg (stress difference = 1 MPa)

E=10GPaKIC = 0.5 MPa m

0.5

E=40GPaKIC = 1.4 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

E=40GPaKIC = 1.4 MPa m

0.5

(b) 15deg (stress difference = 10 MPa)

(c) 30deg (stress difference = 1 MPa) (d) 30deg (stress difference = 10 MPa)

(fraction)

15deg

E=10GPaKIC = 0.5 MPa m

0.5

E=40GPaKIC = 1.4 MPa m

0.5

E=10GPaKIC = 0.5 MPa m

0.5

E=40GPaKIC = 1.4 MPa m

0.5

30 deg

Higher layer dip angle leads to more kinking.30 cm

15 cm

Page 27: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 30

Effect of Bed Dip

If the upper layer is thinner?3 different layer thickness models

5.0 cm

30 cm

15 cm1.2 cm 2.4 cm

5.0 cm

4.8 cm

5.0 cm

fracture

0 degrees models

1.2 cm5.0 cm

30 cm

15 cm 2.4 cm

5.0 cm

4.8 cm

5.0 cm

30 degrees models

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20

Upp

er la

yer t

ough

ness

MPa

m0.

5

Principal stress difference (MPa)

Frac

ture

toug

hnes

s con

tras

t

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

10.0

Principal stress difference (MPa)20.0

0.0

0degree: E1/E2 = 40 GPa / 10 GPa

30degree: E1/E2 = 40 GPa / 10 GPa

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 5 10 15 20

Upp

er la

yer t

ough

ness

MPa

m0.

5

Principal stress difference (MPa)

Frac

ture

toug

hnes

s con

tras

t1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

5.0 10.0 15.0

10.0

Principal stress difference (MPa)20.0

How the criteria changes with bed dip?

Page 28: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 31

Frac

ture

toug

hnes

s con

trast

Layer thickness (cm)

Frac

ture

toug

hnes

s con

trast

Layer thickness (cm)

(a) =1.0 MPa (E1/E2 = 40/10)σ∆ (b) =10.0 MPa (E1/E2 = 40/10)σ∆

layer thickness = 1.2 cm(fracture toughness contrast = 4.0 )

layer thickness = 4.8 cm(fracture toughness contrast = 4.0 )

layer thickness = 2.4 cm(fracture toughness contrast = 4.0 )

layer thickness = 10.0 cm (reference)(fracture toughness contrast = 4.0 )

: turning : crossing

(b) reference (layer thickness = 10.0 cm)

E = 40.0 GPa

E = 10.0 GPa

Effect of Layer Thickness(0 degrees cases)

(a) layer thickness = 1.2 cm

E = 10.0 GPa

E = 10.0 GPa

E = 40.0 GPa

More stress reduction than the reference case

Page 29: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 32

Frac

ture

toug

hnes

s con

tras

tLayer thickness (cm)

Frac

ture

toug

hnes

s con

tras

t

Layer thickness (cm)

layer thickness = 1.2 cm(fracture toughness contrast = 4.0 )

layer thickness = 4.8 cm(fracture toughness contrast = 4.0 )

layer thickness = 2.4 cm(fracture toughness contrast = 4.0 )

layer thickness = 10.0 cm (reference)(fracture toughness contrast = 4.0 )

(a) =1.0 MPa (E1/E2 = 40/10)σ∆ (b) =10.0 MPa (E1/E2 = 40/10)σ∆

: turning : crossing

Turning criteria is strongly affected by the upper layer thickness.

The kinking angles are almost same regardless of the upper layer thickness.

Effect of Layer Thickness(30 degrees cases)

However, the magnitude of kinking is not affected by the upper layer thickness.

Page 30: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 33

Effect of Weak Surface

If the layer interface is damaged for some reason, how do the turning criteria change?

Investigating the same cases as the previous fully-bonded cases by setting the following shear failure criteria

Shear coefficient = 0.6

Cohesion = 0.0 MPa

Page 31: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 34

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

: Turning

: Crossing

layer interface layer 1

layer 2

Branching region disappear

criteria without the weaker surface

(a) E1/ E2 = 10 GPa/10 GPa (b) E1/ E2 = 20 GPa/10 GPa (c) E1/ E2 = 40 GPa/10 GPa

(d) E1/ E2 = 80 GPa/10 GPa

Effect of Weak Surface(0 degrees cases)

Page 32: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 36

Effect of Weak Surface(30 degrees cases)

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

BBB

B

B

1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

BBB

B

B1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

BBB B1.0

0.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0.0 5.0 10.0 15.0

: TurningB : Branching

layer interface

layer 1

layer 2

30 deg

Different type of branching appears in these case.

criteria without the weaker surface

(a) E1/ E2 = 10 GPa/10 GPa (b) E1/ E2 = 20 GPa/10 GPa (c) E1/ E2 = 40 GPa/10 GPa

(d) E1/ E2 = 80 GPa/10 GPa

Page 33: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 37

Shale reservoirs are filled with cm scale heterogeneities (sub-layers)

Investigating how multiple layers affect fracture propagation

30 cm

30 c

m

2 cm

Well

2 cm

Well

30 cm

30 c

m

30 degree

Higher Young’s modulus

Lower Young’s modulus

(a) 0 degrees model (b) 30 degrees model

Represented by two different models with changing layer dip angle

Effect of cm Scale Sub-Layers

Passey, Q.R., et al. (2010)

Page 34: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 38

CaseYoung's

modulus 1(GPa)

Young's modulus 2

(GPa)

Fracture toughness 1(MPa m0.5)

Fracture toughness 2(MPa m0.5)

Energy release rate contrast between layers(hard layer/soft layer)

Layer dip angle

low_contrast 10 20 0.5 0.707 1.00 0middle_contrast 10 40 0.5 1.000 1.00 0high_contrast 10 80 0.5 1.414 1.00 0high_contrast_2 10 80 0.5 0.707 0.25 0low_contrast_dipping 10 20 0.5 0.707 1.00 30middle_contrast_dipping 10 40 0.5 1.000 1.00 30high_contrast_dipping 10 80 0.5 1.414 1.00 30high_contrast_2_dipping 10 80 0.5 0.707 0.25 30

Principal Stress Difference = 20 MPa (Shmin = 40 MPa, Svmax = 60 Mpa)

Effect of cm Scale Sub-Layers(Case Settings)

( )2 21ICc

KG

Eν−

=

The relationship among energy release rate, fracture toughness, Poisson’s ratio,and Young’s modulus in 2-D plane strain condition.

Page 35: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 39

Effect of cm Scale Sub-Layers(0 degrees: Low and Middle E Contrast)

E1/E2 = 20/10; KIC1/KIC2 = 0.7/0.5; Dip angle = 0Low E Contrast

Middle E Contrast

Young’s modulus Damage Sxx (MPa)

E1/E2 = 40/10; KIC1/KIC2 = 1.0/0.5; Dip angle = 0

Page 36: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 40

Effect of cm Scale Sub-Layers(0 degrees: High E Contrast)

High E Contrast (Gc = const)

High E Contrast(Low Kic contrast)

Young’s modulus Damage Sxx (MPa)

E1/E2 = 80/10; KIC1/KIC2 = 1.4/0.5; Dip angle = 0

E1/E2 = 80/10; KIC1/KIC2 = 0.7/0.5; Dip angle = 0

Page 37: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 41

Effect of cm scale sub-layers(30 degrees: Low and Middle E Contrast)

propagating parallel to the maximum principal stress direction

Young’s modulus Damage Sxx (MPa)

propagating slightly turning direction

Low E Contrast

Middle E Contrast

E1/E2 = 20/10; KIC1/KIC2 = 0.7/0.5; Dip angle = 30

E1/E2 = 40/10; KIC1/KIC2 = 1.0/0.5; Dip angle = 30

Page 38: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 42

Effect of cm scale sub-layers(30 degrees: High E Contrast)

High E Contrast (Gc = const)

High E Contrast(Low Kic contrast)

Young’s modulus Damage Sxx (MPa)

Overall fracture propagation direction is inclined.

E1/E2 = 80/10; KIC1/KIC2 = 1.4/0.5; Dip angle = 30

E1/E2 = 80/10; KIC1/KIC2 = 0.7/0.5; Dip angle = 30

Page 39: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 43

Effect of Pore Scale Heterogeneity10 cm

10 cm

Core scale heterogeneity

Pore scale heterogeneity

1.5 mm

1.5 mm

quartz or calcite

clay or kerogen

Page 40: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 44

(1) Borrowing the shape of minerals from the original picture

Mineral type Young’s modulus

(GPa)

Shear modulus

(GPa)

Fracture toughness(MPa m0.5)

Quartz 95.6 44.3 2.40Calcite 83.8 32.0 0.19Clay 10.0 4 0.50

(2) Applying one of these properties to each mineral group

1.5 mm

1.5 mm

water injection

mineral group1

mineral group2

mineral group3

Effect of Pore Scale Heterogeneity(Model Construction)

Carozzi (1993)

Page 41: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 45

Effect of Pore Scale Heterogeneity(Case Settings)

Injection

Case 1: Quartz + Clay (mineral connections : fully bonded)

Case 2: Quartz + Clay (mineral connections: damaged)

Case 3: Quartz + Calcite + Clay (mineral connections : fully bonded)

Case 4: Quartz + Calcite + Clay (mineral connections: damaged)

Injection

(GPa)

1.5 mm

1.5

mm

Quartz

clay(GPa)

1.5 mm

1.5

mm

CalciteQuartz

clay

Page 42: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 46

Case 1: Quartz + Clay No Interface Damage

Fracture initially propagates in the maximum principal stress direction.

1.5 mm

1.5 mm

(a) after 0.04

(d) after 0.3 sec (c) after 0.23 sec

(b) after 0.06 sec

Fracture turns along the mineral interface.

Fracture bypasses the turning path, and the old path closes.

Another case wherebypassing occurs.

Quartz

Clay

Page 43: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 47

1.5 mm

1.5

mm

Case 1: Quartz + Clay No Interface Damage

Quartz

Clay

Page 44: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 48

Case 2: Quartz + ClayInterface damageSH_max

Sh_min

Fracture basically propagates along the mineral interface from the beginning.

1.5 mm

1.5 mm

(a) after 0.16 sec (b) after 0.18 sec

(c) after 0.20 sec

Many branches appear along the mineral interfaces.

Finally the shortest path remains as the main path (bypassing).

Quartz

Clay

Page 45: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 49

1.5 mm

1.5

mm

Case 2: Quartz + ClayWith Interface damage

Quartz

Clay

Page 46: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 50

1.5 mm1.

5 m

m

Case 3: Quartz + Calcite + ClayNo Interface DamageSH_max

Sh_min calcitequartz

(a) after 0.01 sec (b) after 0.05 sec

(c) after 0.08 sec (d) after 0.1 sec

pre-damage zone inside the calcite

pre-damage zone inside the calcite

Main path connects pre-damage zone

Main path connects pre-damage zone

pre-damage zone inside the calcite

pre-damage zone along the calcite

Main path connects pre-damage zone

Page 47: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 51

1.5

mm

1.5 mm

CalciteQuartz

Clay

Case 3: Quartz + Calcite + ClayNo Interface Damage

Page 48: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 52

1.5 mm1.

5 m

m

Case 4: Quartz + Calcite + ClayInterface DamageSH_max

Sh_min

(a) after 0.01 sec (b) after 0.05 sec

(c) after 0.08 sec (d) after 0.1 sec

Page 49: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 53

1.5

mm

1.5 mm

Case 4: Quartz + Calcite + ClayInterface Damage

Page 50: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 54

Interaction between Hydraulic and Natural Fractures

Page 51: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 55

Comparison with Experimental Results(Zhou et al. 2008)

Well

Hydraulic Fracture

Natural Fracture

30 cm

30 cm

IntractionInteraction

Parameters Value

(degree) 30, 60, 90

(MPa) 3, 5, 7, 10

θσ∆

Case Parameters

Parameters Value

Young’s modulus (GPa) 5.18

Poisson’s ratio 0.25

Matrix Permeability (mD) 0.1

Injection rate (m3/s/m) 1.05x10-9

Distance between well and natural fracture (cm)

4.0

Basic Parameters

Experimental Setting

Page 52: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 56

Results

Crossed DilatedExperimentalSimulation

*Note that Deformation is exaggerated 150 times.

5MPa

8MPa

θ=30º

5MPa

10MPa

θ=90º

5MPa

8MPa

θ=60º

Fracture Crossing

Fracture Dilation

Angle of interaction, (degree)

Hor

izon

tal d

iffer

entia

l stre

ss, (

MP

a)

Ref: J. Zhou, M. Chen, Y. Jin, G. Zhang, International of Rock Mechanics & Mining Science (2008)

Page 53: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 57

Factors Affecting Interaction of HF with NF Including Poroelastic Effects

Well

Hydraulic Fracture

Natural Fracture

30 cm

30 cm

IntractionInteraction

1 8MPaσ = 3 5MPaσ =60degθ =

Base Case:

• Rock permeability: Poroelastic effects• Shear strength of NF (failure criteria)• NF toughness (NF critical strain)• Rock toughness and Young’s modulus • Initial Natural Fracture Permeability• Injection Rate

Change the following six parameters for sensitivity analysis:

Page 54: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 58

Effect of Permeability

Permeability = 0.001 mD Permeability = 0.1 mD(Base)

Permeability = 0.01 mD

High leak-off Low effective stress(shear failure)

Fracture turning

Shear Failure Elements

(MPa)

Pore pressure distribution

Shear failure elements

Page 55: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 59

Effect of Shear Strength of Natural Fracture

Coefficient = 0.89Cohesion = 0.0 MPa

Coefficient = 0.89Cohesion = 7.0 Mpa

Coefficient = 0.89Cohesion = 3.2 MPa

(Base)

0

2

4

6

8

10

12

14

-10 -5 0 5 10 15 20 25

Shea

r stre

ss (M

Pa)

Normal stress (MPa)

Mohr Circle

0.89 3.2τ σ= +

Shear Failure Criteria(Base)

0.89 0.0τ σ= +

Shear Failure Criteria(Low)

0.89 7.0τ σ= +

Shear Failure Criteria(High)

Initial Condition

Low shear strength of NF promotes HF turning

Page 56: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 60

Effect of Natural Fracture Toughness

Natural FractureCritical Strain

= 0.592*10-3(Base)

Natural FractureCritical Strain = 1.183*10-3

Natural FractureCritical Strain

= 0.0

(KIC=0.87 MPa m-1/2)(KIC=1.74 MPa m-1/2) (KIC=0.0 MPa m-1/2)

Fracture toughness of NF also controls Mode I opening.

Low NF toughness Easier fracture turning

Page 57: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 61

Assuming in this case ICK E∝

E = 4.0 GPa E = 8.4 GPa(Base)

E = 20.0 GPa

High matrix toughness Encouraging fracture turning

Effect of Matrix Toughness

Page 58: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 62

(a) Crossing (b) Turning

(c) Re-initiating

Hydraulic fracture

Natural fracture

3-D interaction Behavior

2-D interaction behaviorIf the NF fills the entire pay zone, these 2-D interactions cover all the patterns of interaction.

However, if

fracture propagation direction

pay zone

Hydraulic FractureNatural Fractures

Page 59: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 63

3-D interaction Behavior

(a) Bypassing + Turning

(b) Turning + Diverting propagation from side of NF

3-D interaction behaviors

Bahorich et al (2012)

Bahorich et. al (2012) showed more complicated 3-D interaction behavior could appear in the reservoir.

What kind of parameters affect these characteristic fracture propagation behaviors?

Page 60: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 64

Case Settings(Common Parameters)

Injector

Water injection point

1.6 m

1.6 m

0.64 m

Natural fracture

= 60 MPa

= 40 MPa

= 41 MPa

Common Case ParametersParameters Value

Young’s modulus (GPa) 30.0

Poisson’s ratio 0.25

Shmax (MPa) 41

Shmin (MPa) 40

NF shear trend 0.5

NF cohesion 0.0

Upper and lower boundary were fixed for mimicking boundary layers.

Page 61: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 65

Case SettingsEffect of NF height, Position, and Tensile Strength

fracture propagation direction

pay zone

(0.6m)

Hydraulic Fracture Natural Fracture

0.3 m60deg

fracture propagation direction

pay zone

(0.6m)

Hydraulic Fracture Natural Fracture

60deg

fracture propagation direction

pay zone

(0.6m)

Hydraulic Fracture Natural Fracture

0.3 m60deg

Case 1 (full height)

Case 2 (lower half)

Case 3 (lower half + weak TS)

fracture propagation direction

pay zone

(0.6m)

Hydraulic Fracture Natural Fracture

0.3 m60deg

0.15 m

0.15 m

Case 4 (middle half)

Case 5 (lower one-third)

fracture propagation direction

pay zone

(0.6m)

Hydraulic Fracture Natural Fracture

0.2 m 60deg

0.4 m

weaker tensile strength

weaker tensile strength

Page 62: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 66

Injector

Natural fracture

1.6 m

0.64 m

1.6 m

Results (Case 1: Reference)

60 deg

Turning

(a) side-top view (b) front-top view

(c) top view

Page 63: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 67

Results (Case 2: Lower Half NF)

1.6 m

0.64 m

1.6 m

Bypassing + TurningInjector

(a) side-top view (b) front-top view

(c) top view(c) top view

Page 64: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 73

Growth of Multiple Fractures in Naturally Fractured Reservoirs

8265 psia

7975psia

2600 ft

2600 ft

No-NF model

5 non-competing fractures

200 ft

The same amount of water is injected from the each injection point.

8265 psia

7975psia

2600 ft

2600 ft

NF model

Page 65: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 74

Fracture Growth from 5 Clusters

Outside ones are lower,Center one is the highest.

Initially outside ones are longer, Center one is thicker

(after 2500 sec)

1300

ft

1300 ft

Damage Distribution Fracture Pressure Distribution

(fraction) (GPa)

10875 psi

7975 psi

Later, the center one grows longer with narrower thickness near wellbore

(after 4000 sec)

Page 66: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 75

Multiple Fracture Growth with NF

(fraction) (MPa)

Damage Distribution Fracture Pressure Distribution

Page 67: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 76

Conclusions

• A new peridynamics based hydraulic fracturing model was developed by modifying the existing elastic formulation to include poroelasticity and coupling it with the new peridynamics formulation for fluid flow.

• This model can simulate non-planar, multiple fracture growth in arbitrarily heterogeneous reservoirs by solving deformation of the reservoir, fracturing fluid pressure and pore pressure simultaneously.

• The validity of the model was shown through comparing model results with analytical solutions (1-D consolidation problem, the KGD model, the PKN model, and the Sneddon solution) and experiments.

Page 68: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 77

Conclusions

• The effects of different types of layer heterogeneity on fracture propagation were systematically investigated.

• The factors controlling characteristic fracture propagation behaviors (“turning”, “kinking”, and “branching”) near the layer interface were quantified.

• In layered systems, the mechanical property contrast between layers, the dip angle, the stress contrast and poroelastic effects all play an important role in controlling the fracture trajectory.

• It was shown that even at the micro-scale, fracture geometry can be quite complex and is determined by the geometry and distribution of mineral grains and their mechanical properties.

Page 69: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 78

Conclusions

• The principal stress difference, the approach angle, the fracture toughness of the rock, the fracture toughness of the natural fracture, and the shear strength of the natural fracture when hydraulic fractures interact with natural fractures.

• The 3-D interaction study elucidated that the height of the NF, the position of the NF, and the opening resistance of the NF have a huge impact on the three-dimensional interaction behavior between a HF and a NF.

Page 70: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 79

Publications• H. Ouchi, A. Katiyar, J.T. Foster, and M.M. Sharma. A Peridynamics Model for

the Propagation of Hydraulic Fractures in Heterogeneous, Naturally Fractured Reservoirs. In SPE Hydraulic Fracturing Technology Conference, SPE-173361-MS. Society of Petroleum Engineers, February 2015. doi:10.2118/173361-MS

• H. Ouchi, J.R. York, A. Katiyar, J.T. Foster, and M.M. Sharma. A Peridynamics Model of Fully-Coupled Porous Flow and Geomechanics for Hydraulic Fracturing. Computational Mechanics, 2016. doi:10.1007/s00466-015-1123-8, 2015.

• “A Peridynamic Formulation of Pressure Driven Convective Fluid Transport in Porous Media”. Journal of Computational Physics, Vol. 261, pp. 209-229, January, 2014, Amit Katiyar, John T. Foster, Hisanao Ouchi, Mukul M Sharma.

• A Peridynamics Formulation of the Coupled Mechanics-Fluid Flow Problem”, Workshop on Nonlocal Damage and Failure: Peridynamics and Other Nonlocal Models, San Antonio, March 2013.

“A Non-Local Peridynamic Formulation for Convective Flow in Porous Media”, USACM's 12th U.S. National Congress on Computational Mechanics, Raleigh, North Carolina, July 2013.

Page 71: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 80

Future Work

• Improvement of Computation Efficiency

• Model Extension/Improvement

• Effect of heterogeneities at different scales

Integration of peridynamics models with finite element models

More efficient solvers, pre-conditioners

Non-Newtonian fluid

Proppant transport

How smaller scale propagation behavior affects the larger scale propagation behavior

Page 72: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 81

Acknowledgement

This work is supported by DOE Grant NO. DE-FOA-0000724 and by the generous support of 35 member companies participating in the JIP on Hydraulic Fracturing and Sand Control at The University of Texas at Austin.

Questions?

Page 73: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 82

Backup Slides

Page 74: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

Project Schedule and Outcomes

Page 75: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

Project Schedule and Outcomes

Page 76: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

Impacts

• The developed fracturing model and procedures would be applicable to all shale oil and gas resources that are more likely to have natural fractures and consequently result in more complex fracture patterns.

• This realistic model of hydraulic fracture propagation will allow better understanding of- the effects of fracture design on the stimulated rock volume and- well performance to potentially improve fracture and well design.

• Both the modeling and the fracturing recommendations from this work are expected to have an immediate and long-term impact and benefit.

• Both items above should result in significant performance improvements and cost savings thereby allowing more wells to be drilled for the same annual budget.

• Cost reductions and smaller overall footage drilled will result in more economic wells and longer economic well lives resulting in a 5 to 10% increase in the recovery of oil and gas from these unconventional plays.

Page 77: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 86

Classical model: 𝛻. 𝜌[𝒙𝒙]𝜇𝑲 𝒙𝒙 .𝛻Φ 𝒙𝒙 + 𝑟 𝒙𝒙 = 𝟎

Develop its variational problem and infer the quadratic functional

𝐼𝐼 𝒙𝒙 = � 𝑍 𝛻Φ 𝐱 dVx − �𝑟 𝒙𝒙 Φ 𝒙𝒙 𝑑𝑉𝑥ℬℬ

𝑍 𝛻Φ 𝒙𝒙 =12𝛻Φ 𝒙𝒙 .

𝜌 𝒙𝒙𝜇𝜇

𝑲 𝒙𝒙 .𝛻Φ 𝒙𝒙 .

Remove restrictions on Z• Remove Locality: let 𝑍 depend on points 𝒙𝒙′ finite distance away from 𝒙𝒙

• Remove Continuity: let 𝑍 admit discontinuities in Φ

𝑍 ≡ �̂� = �̂� Φ 𝒙𝒙′ ,Φ 𝒙𝒙 , 𝒙𝒙′,𝒙𝒙

= �̂� Φ′,Φ,𝒙𝒙′,𝒙𝒙

= �̂� Φ′ − Φ , 𝒙𝒙′ − 𝒙𝒙

= �̂� Φ, 𝝃

State-based Peridynamic Formulation Derivation (1)

Multiplied by Test function

We want to express Z as a function of potential difference and position difference instead of partial differentiation form

Page 78: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 87

State-based Peridynamic Formulation Derivation(2)

𝐼𝐼 𝒙𝒙 = � �̂� Φ[𝒙𝒙] 𝑑𝑉𝑥 − �𝑟 𝒙𝒙 Φ 𝒙𝒙 𝑑𝑉𝑥ℬℬ

, Φ 𝒙𝒙 𝝃 = Φ 𝒙𝒙′ − Φ 𝒙𝒙

Assume peridynamic analogue of the quadratic functional

The stationary value of 𝑰� 𝒙𝒙 at 𝜹𝑰� 𝒙𝒙 = 𝟎 leads to peridynamic equation

𝛿𝐼𝐼 𝒙𝒙 = � � −𝛻�̂� 𝒙𝒙 𝝃 + 𝛻�̂� 𝒙𝒙′ −𝝃ℬ

𝑑𝑉𝑥′ + 𝑟 𝒙𝒙 𝛿Φ 𝒙𝒙 𝑑𝑉𝑥 = 0ℬ

Fréchet derivative: 𝛿�̂� Φ 𝒙𝒙 = ∫ 𝛻�̂� 𝝃 . 𝛿Φ 𝝃 𝑑𝑉𝑥′ℬ

𝑄𝑄 𝒙𝒙 𝝃 = −𝛻�̂� 𝒙𝒙 𝝃

Peridynamic model: 𝜕𝜕𝑡

𝜌[𝒙𝒙]∅[𝒙𝒙] = ∫ 𝑄𝑄 𝒙𝒙 𝝃 − 𝑄𝑄 𝒙𝒙′ −𝝃 𝑑𝑉𝑥′ + 𝑅 𝒙𝒙ℋ𝑥

arbitrary

Minimizing this formulation gives us peridynamic fluid flow formulation

Page 79: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 88

Defining peridynamics way of I[x]

Page 80: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 89

Same procedure as local mocel with Frechet derivertive

Page 81: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 90

ρ = −∇⋅u σ

( ) ( )21 1,2 2i ij kk ij ijL L u T U Gε ρ λ ε ε ε = = − = ⋅ − +

u u

2ij kk ij ijGσ λε δ ε= +

2 2

1 1

2

1

2 2

1 1

12

t t

t t V

t

i ijt Vi ij

t t jiiV t t V

i ij j i

Ldt LdVdt

L Lu dVdtu

uuL Lu dtdV dVdtu x x

δ δ

δ δεε

δ δε

=

∂ ∂= ⋅ +

∂ ∂

∂∂∂ ∂= ⋅ + + ∂ ∂ ∂ ∂

∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫

2 2

1 1

2

1

3 3

1 1

3

1

12

t t

i i jV t t V Vj ii j ij i ij

t

it Vji j ij

d L L Lu dtdV u u dVdtdt u x x

d L L u dVdtdt u x

δ δ δε ε

δε

= =

=

∂ ∂ ∂ = − ⋅ + − ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − − ⋅ ∂ ∂ ∂

∑ ∑∫ ∫ ∫ ∫ ∫

∑∫ ∫

( )

3

1

3

1

0

2 0

2 0

ji j ij

ijkki ij

j j j

i ij kk ijj

d L Ldt u x

u Gx x

u Gx

ε

εερ λδ

ρ λδ ε ε

=

=

∂ ∂− − = ∂ ∂ ∂

∂∂⇔ − − + = ∂ ∂

∂⇔ − − + =

( )( )2 2

1 1

0 0t t

t tLdt T U dtδ δ= − =∫ ∫

( )( ) ( )

( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ){ }

2

1

2

1

2

1

'

'

' '

'

'

t

t

t

t

t

t

dV dV dt

dV dV dt

dV dV dV dV dt

δ δ

δ δ

Β Β

Β Β

Β Β Β Β

= ∇Ψ ⋅∆

= ∇Ψ ⋅ −

= ∇Ψ ⋅ − ∇Ψ ⋅

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

x x

x x

x x x x

Y x ξ Y x ξ

Y x ξ u x u x

Y x ξ u x Y x ξ u x

2 2

1 1

t t

t tTdt p dVdtδ δ

Β= − ⋅∫ ∫ ∫ u u

( )( ) ( )( )( )( )( )2

1'' 0

t

tp dV dV dtδ

Β Β

− − ∇Ψ − −∇Ψ ⋅ = ∫ ∫ ∫ xu Y x ξ Y x ξ u

( )( ) ( )( )( )( ) ( )( )

( )t t T∇Ψ = = =⋅

Y x ξY x ξ M x ξ

Y x ξ Y x ξ

( ) ( )( ) ''p T T dVΒ

= − −∫ xu x ξ x ξ

( )( )2 2

1 1

t t

t tUdt dV dtδ δ

Β= Ψ∫ ∫ ∫ xY x ξ

( )( ) ( ) ( )( ) ( )( )( )( ) ( ) ( )( )2

dV O

δ

Β

Ψ = Ψ + ∆ −Ψ

= ∇Ψ ⋅∆ + ∆∫ ξ

Y x ξ Y x ξ Y x ξ Y x ξ

Y x ξ Y x ξ Y x ξ

Local Theory Peridynamics Theory

Kinetic Strain Energy Density

Frechet Derivative

( ) ( )( )1,2i ijL L u T U dV dVε ρ

Β Β= = − = ⋅ − Ψ∫ ∫ xu u Y x ξ

Kinetic Strain Energy Density

Inserting

finding stationary value

finding stationary value

Page 82: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 91

Local Theory Peridynamics Theory

[ ] 0Iδ =x

Page 83: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 92

Results for a Benchmark Flow Problem

Steady State

Injector

Producer

5-spot well pattern

y (m

)x (m)

Pressure contours, (Analytical)MPa

𝑘𝑘 =100 mD = 10−13 𝑚𝑚2

𝜇𝜇 =0.001 Pa.s

𝑄𝑄𝑇𝑇 𝒙𝒙 = 0.001 𝑚𝑚3

𝑠𝑠

𝑁𝑁 =100

x

y

Page 84: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 93

Results for a Benchmark Flow Problem

Steady State

Page 85: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 94

Constitutive Equations Porosity equations

( )( )

( ) ( ) ( )( ){ }( )( ) ( ) ( )( ) ( ) ( )( ){ }

11 1

1 1_ _ _

1

1

npin n n n

i i r i ibi

n n n n nmlocal i r i i mlocal i mlocal i

VC P P

V

C P P

φ φ

α θ θ θ

++ +

+ +

= = − −

+ + − + −

( )( )

( )1

1 1_ @ _

nfin n

fi local i local crit damagebi

VV

φ θ θ+

+ += = −

{ }2

_1

localN

local i i j i jj

m dVω=

= −∑ x x

( )( ) ( ) ( )( )1 11

1_

1 1_ _

local localn nnN N i j i j i j i ji j i i jn

local ij jlocal i local i

dVe dV

m m

ωωθ

+ +++

= =

− − − − − = =

∑ ∑x x y y x xx x

( )( ) ( ) ( )( )( )1 1* 1

1_

1 1_ _

min ,slocal local

n nnN N i j i j i crit j i ji j i i jnmlocal i

j jlocal i local i

dVe dV

m m

ωωθ

+ +++

= =

− − − − = =

∑ ∑x x y y x xx x

where,

xixj

yi

yj

( )* min ,si j i crit j i j ie = − − − −y y x x x x

Injector

Shmin

Matrix Volume = Pore Volume = Fracture Volume =

bV

pV

fV

Fracture Permeability Equation

( )22

0 ( )

2( )

12 12

f crit

ini fcrit

k if d d

Lw if d dφ

= <

= = ≥

w

Fracture Width

2 ini fw L φ

Initial Element Length

matrix

fracture

Page 86: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 95

Constitutive Equations( ),iI x t• Flow between pore and fracture in a element

( )( )_, mi i fi mii inner

ibi bi i

k A P PqI x t

V V lµ

−= =

[ ] ( )( ) ( )( )( ) ( )

1 1

1 1, , 3 5 3 15

n nj ij j j j ji i i i i

i j i j i j j i i n ni j i j i j j i

PPT t T t K G G em m m m m m

θ ω ω ωθ ω ω ωα+ +

+ +

− − − − = − + − + − + + −

y yx x x x x x x x

y y

For bonds not passing through fracture surface

[ ]( ) ( )( )( ) ( )

1 1

1 1, , 3

n nj iji

i j i j i j fk j i n ni j j i

T t T t Pm m

ωω+ +

+ +

− − − − = + − −

y yx x x x x x x x

y y

For bonds passing through fracture surface

• Flow Scalar State

• Force Scalar State

[ ]( )( ) ( )4

0.25, , mi mimi

m i j i m j i j mj mi

traceQ t Q t P P

γρµ ξ

− − − − = −

ξ K K I ξx x x x x x

For matrix

For fracture[ ] ( )_

2, ,2

fi i ijf i j i f j i j fj fi

kQ t Q t P P

γρµ ξ

− − − = − x x x x x x

Pj

Pi

Fracture SurfacePfk

Page 87: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 96

How to apply constant stress boundary condition?Constant stress boundary condition is given as a body force in the elements which distance from the boundary is less than horizon size.

Example case: horizon size = 3 delta (boundary forces are given to three layers from the boundary)

- First layerBoundary

- Second layerBoundary

- Third layerBoundary

Ghost node

Actual node

13

ghostNji

boundary bounary j i jj i j

b x x Vm m

ωω ξτξ=

= − + − ∑

Body force

*note that the equation above is for 3D.

12

ghostNji

boundary bounary j i jj i j

b x x Vm m

ωω ξτξ=

= − + − ∑

(for 2D)

Page 88: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 97

Fracture Surface ConnectionWe want to limit our fracture elements in 1st line even if 2nd line damage exceeds a critical damage. How?

1st line

2nd lineAdditional constraints for fracture flow

1st line2nd line

• Defining which surface has fracture in each element• One element cannot have two independent frac. Surface• New fracture surface must connecting pre existing fracture surface

Page 89: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 98

Comparison with KGD solution(Fracture Pressure Distribution after 80 sec)

Permeability as a function of width Infinite Conductivity

Simulation

KGD

Simulation

KGD

*note that Shmin = 8 MPa, Deformation is exaggerated 2000 times.(MPa)

Page 90: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 99Ref:

Page 91: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 100

0

5

10

15

20

0

10

20

30

40

0 20 40 60 80 100 120 140

CALC

ULAT

ION

TIM

E (H

OUR)

SPEE

D UP

NUMBER OF CPU

Speed upCalc. time

Parallel Performance

About 30 times speed up by 128 CPU

Page 92: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 101

Biot Consolidation Validation

• Young’s modulus (GPa) = 30

• Poisson’s ratio = 0.25

• Porosity = 0.02

• Permeability (mD) = 6

• Biot coefficient = 0.6667

• Initial pore pressure (MPa) = 3.82

• Fluid: Water

Jaeger J.C et al, Fundamentals of Rock Mechanics, forth edition, 189-P194

x

yz

Roller no-flow boundary

Fixed no-flow boundary

Pref = 3.82 MPa

Stress = 10 MPaConstant pressure boundary

(Pb =0.1 Mpa)

flow

h

Page 93: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 102

Results: Pressure and Deformation

x

yz

x

yz

time < 0 time > 0

Page 94: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 103

i

j

Disassembling original force vector state into two directions

Natural FractureSurface

NFn

sijf_sij nf_tsijf

1NF =n

Deleting tangential force vector state once shear failure criteria is satisfied

Shear Failure Model in Peridynamics

Page 95: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 104

Results (Case 2: Lower Half NF)

NF

HF

Page 96: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 105

Results (Case 4: Middle Half NF)

NFHF

Page 97: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 106

Investigation of Fracture Propagation Behavior in 3 Layers

Injector

If the layer is sanded by the two different Young’s modulus layers, the fracture always propagate more to the softer layer at first.

High E

Low EHowever, after reaching the layer interface with the low Young’s modulus layer, the fracture propagation behavior changes with mechanical properties of each layer.

Which parameter governs the preferential fracture propagation direction?

Injector

Page 98: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 107

30 cm

10 cm

10 cm

10 cm

1Hσ

2Hσ

3Hσ

Layer 1

Layer 2

Layer 3

Injector

E1, KIC1

E2, KIC2

E3, KIC3

Model Description

Page 99: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 108

E 40/20/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (Gc 11.7/11.7/11.7 J/m2)

E 20/40/10 GPa, KIC 0.5/0.707/0.354 MPa m0.5

Sxx 40/40/40 MPa (Gc 11.7/11.7/11.7 J/m2)

E 40/12/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (Gc 11.7/19.5/11.7 J/m2)

E 40/20/10 GPa, KIC 1.2/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (Gc 23.4/11.7/11.7)

E 40/20/10 GPa, KIC 1.6/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (Gc 33.8/11.7/11.7)

E 40/20/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 45/40/40 MPa (Gc 11.7/11.7/11.7 J/m2)

E 40/10/20 GPa, KIC 0.707/0.354/0.5 MPa m0.5

Sxx 40/40/40 MPa(Gc 11.7/11.7/11.7 J/m2)

E 40/20/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 50/40/40 MPa (Gc 11.7/11.7/11.7 J/m2)

Results

Which parameter controls the preferential propagation direction?

Page 100: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 109

Theoretical Consideration(Critical Displacement)

[ ] [ ]{ }( ) * *

0, ',finalt

T t T t dω = − −∫η

ξ x ξ x ξ η( )2 2

3 3

9 194 4

ICcc

KGE

νω

δ δ

−= =

If

[ ]

( )

*

23 8,

23 8

2 3 5 83

d

d

GKGT t x e

m m

GKGx e

m m

K G Gem

θω ω

θω ω

ω θ

− + = + +

− + = + + + = − + +

ξ ηx ξ ξ ξξ η

ξ ηξ ξξ η

ξ ηξ η

cω ω>ξ , bond will break.

[ ] [ ] [ ]*0, ,T t t t T+

= ++

ξ ηx ξ x ξ x ξξ η

background force vector state

For the simplicity, here we neglect back ground vector state term and poroelastic effect.

3de e xθ

= −ξ ξ ξinserting

If we assume Poisson's ratio = 0.25 and for the simplicity, the equation above becomes the function of E and delta.

( ) ( ) ( )4 4

31648585

EG Em πδ πδ

+ + + = + − = + − = + − + + +

ξ η ξ η ξ ηξ η ξ ξ η ξ ξ η ξξ η ξ η ξ η

e = + −ξ ξ η ξ

1.0ω =

42 2

0 0 2m r rd dr

δ π πδω ϕ= =∫ ∫

To break a bond, how much deformation is necessary?

Page 101: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 110

If we consider the element separation in the same direction as ,

Theoretical Consideration

[ ] [ ]{ }( )

( )( )

* *

0

40

, ',

965

final

final

t

t

T t T t d

E d

ω

πδ

= − −

+= + −

+

η

ξ

η

x ξ x ξ η

ξ ηξ η ξ ηξ η

ξ

+ξ ηξ

[ ] [ ]{ }( )

( )( )

* *

0

40

24

, ',

965

485

final

final

t

t

T t T t d

E d

E

ω

πδ

πδ

= − −

+= + −

+

η

ξ

η

x ξ x ξ η

ξ ηξ η ξ ηξ η

η

( )

( )

2 22

4 3

2 2

2

9 1485 4

15 1

6445256

c

IC

IC

IC

KEE

K

EKE

ω ω

ν

πδ δ

ν δ

δ

>

−⇔ >

−⇔ >

⇔ >

ξ

η

η

η

The critical displacement for breaking a bond is proportional to

ICKE

Page 102: Fracture Design, Placement , and Sequencing in Horizontal ... · DE-FE0010808 . Fracture Design, Placement , and Sequencing in Horizontal Wells. Mukul M. Sharma HisanaoOuchi, Amit

DOE Project Review, Sharma, University of Texas at Austin8/23/2016 111

K/E and horizontal stress control the preferential stress direction.

E 40/20/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (KIC/E 0.018/0.025/0.035)

E 20/40/10 GPa, KIC 0.5/0.707/0.354 MPa m0.5

Sxx 40/40/40 MPa (KIC/E 0.025/0.018/0.035)

E 40/10/20 GPa, KIC 0.707/0.354/0.5 MPa m0.5

Sxx 40/40/40 MPa(KIC/E 0.018/0.035/0.025)

E 40/12/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (KIC/E 0.018/0.042/0.035)

E 40/20/10 GPa, KIC 1.2/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (KIC/E 0.03/0.025/0.035)

E 40/20/10 GPa, KIC 1.6/0.5/0.354 MPa m0.5

Sxx 40/40/40 MPa (KIC/E 0.04/0.025/0.035)

E 40/20/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 45/40/40 MPa (KIC/E 0.018/0.025/0.035)

E 40/20/10 GPa, KIC 0.707/0.5/0.354 MPa m0.5

Sxx 50/40/40 MPa (KIC/E 0.018/0.025/0.035)