Fracrional Pontryagin - Copy

Embed Size (px)

Citation preview

  • 8/12/2019 Fracrional Pontryagin - Copy

    1/19

    Research Article

    Received 24 August 2012 Published online in Wiley Online Library

    (wileyonlinelibrary.com) DOI: 10.1002/mma.2928MOS subject classification: 26A33; 49K15; 49J15

    Pontryagin maximum principle for fractionalordinary optimal control problems

    Rafal Kamocki*

    Communicated by M. A. Lachowicz

    In the paper, fractional systems with RiemannLiouville derivatives are studied. A theorem on the existence and unique-ness of a solution of a fractional ordinary Cauchy problem is given. Next, the Pontryagin maximum principle for nonlinearfractional control systems with a nonlinear integral performance index is proved. Copyright 2013 John Wiley& Sons, Ltd.

    Keywords: fractional derivatives and integrals; fractional differential equations; fractional ordinary Cauchy problem; maximum

    principle

    1. Introduction

    In the last years, fractional calculus plays an important role in mathematics, physics, electronics, mechanics, and so on [15]. Recent

    investigations have shown that the dynamic of many physical processes can be modeled accurately by using fractional differential

    equations. If fractional differential equations contain a control variable and a performance index is given, we obtain a fractional opti-

    mal control problem (FOCP). It is well known that the classical optimal control is a generalization of the calculus of variations. This is

    exactly the same in the fractional context considered in this paper, where the literature concerning the fractional calculus of variations

    is very rich and already well established (see [6] and references therein). In 2004 Agrawal, [7], using the Lagrange multipliers technique,

    formulated necessary conditions for optimality for the following standard FOCP:D0Cx

    .t/ D G.t,x.t/, u.t//, t2 0, 1, (1)

    x.0/ Dx0, (2)

    J.u/ D

    1Z0

    F.t,x.t/, u.t//dt! min, (3)

    wherex.t/2 Rn is the state variable,u.t/2 Rm is the control variable,

    D0Cx

    .t/denotes the left RiemannLiouville derivative order

    2 .0, 1/andF, Gare two given functions possessing certain regularity properties with respect to xandu.

    In the next years, the optimality conditions for the different modifications of the earlier problem were investigated (see, e.g., [8, 9]).

    In our article, we consider the following fractional control problem:DaCx

    .t/ D f.t,x.t/, u.t//, t2 a, b a.e. (4)

    I1aC x

    .a/ Dx0, (5)

    u.t/ 2M Rm, t2 a, b, (6)

    Faculty of Mathematics andComputerScience, Chair of Differential Equations andComputerScience, Universityof Lodz, Banacha 22, 90-238 Lodz, Poland

    *Correspondence to: Rafal Kamocki, Faculty of Mathematics and Computer Science, Chair of Differential Equations and Computer Science, University of Lodz, Banacha

    22, 90-238 Lodz,Poland.E-mail: [email protected]

    Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    2/19

    R. KAMOCKI

    J.x, u/ D

    bZa

    f0.t,x.t/, u.t//dt! min, (7)

    wheref: a, bRn M !Rn,f0: a, bRn M !R,x02 R

    n and 0< 0 andf./ 2 L1.a, b, Rn/. The functions

    IaCf

    .t/:D

    1

    ./

    tZa

    f./

    .t /1d,

    Ibf

    .t/:D

    1

    ./

    bZt

    f./

    . t/1d

    defined for almost everyt2 .a, b/ are called the left-sided RiemannLiouville integraland the right-sided RiemannLiouville integralof the

    function f./of order, respectively.

    Now, let 2 .0, 1/ and f./ 2 L1.a, b, Rn/. Wesay that the function f./ possesses the left-sided RiemannLiouville derivative

    DaCf

    ./

    of order(the right-sided RiemannLiouville derivative

    Dbf

    ./of order), if

    I1aC f

    ./

    I1b f

    ./

    has an absolutely continuous rep-

    resentant ona, b(i.e., there exists an absolutely continuous function ona, bthat is equal a.e. on a, bto I1aC f ./ I1b f ./). Insuch a case, we write I1aC f ./ 2AC.a, b, Rn/ I1b f ./ 2AC.a, b, Rn/ and putDaCf

    .t/:D

    d

    dt

    I1aC f

    .t/, t2 a, b a.e.

    Dbf

    .t/ :D d

    dt

    I1b f

    .t/, t2 a, b a.e.

    Letp 1. ByIaC.L

    p/andIb.Lp/we denote the sets

    IaC.Lp/:D

    f./:a, b !Rn; 9g./2Lp.a,b,Rn/; fD I

    aCg a.e. on a, b

    ,

    Ib.Lp/:D

    f./:a, b !Rn; 9g./2Lp.a,b,Rn/; fD I

    bg a.e. on a, b

    respectively. We identify functions fromIaC.L

    p/ Ib

    .Lp/ equal almost everywhere ona, b.Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    3/19

    We have the following

    Proposition 1 ([3, lemmas 2.4, 2.5 (a) and 2.6 (a)])

    Let 0< 0, p 1, q 1 and 1p C 1q 1 C

    if 1p C

    1q D 1C then p 1 and q 1

    . Iff./2 Lp.a, b, Rn/andg./2 Lq.a, b, Rn/,

    then

    bZa

    f.t/

    IaCg

    .t/dtD

    bZa

    g.t/

    Ibf

    .t/dt.

    Theorem 2

    Let2 .0, 1/,p 1,q 1 and 1

    p

    C 1

    q

    1C . if 1p C 1q D 1C , then p 1 and q 1. Iff./ 2 Ib.Lp/andg./ 2 IaC.Lq/, thenbZ

    a

    f.t/

    DaCg

    .t/dtD

    bZa

    g.t/.Dbf/.t/dt.

    In conclusion of this section, we shall formulate so called smoothconvex optimal control problem and recall the extremumprinciple

    for such problem [18]. These facts will be used in the proof of the main result of this paper (Theorem 7).

    LetXandYbe Banach spaces, letUbe an arbitrary set, letf0, : : : , fnbe functions onX U, and letF:X U! Ybe a mapping of the

    productX UintoY. We consider the problem

    f0.x, u/ ! inf; (9)

    F.x, u/ D 0, (10)

    Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    4/19

    R. KAMOCKI

    f1.x, u/ 0, : : : , fn.x, u/ 0, (11)

    u 2 U. (12)

    If the functionsf0, : : : , fnand the mappingFsatisfy certain conditions of smoothness inxand convexity inu(cf. Assumptions (a) and

    (b) in Theorem 3), then the earlier problem is called the smoothconvex problem.

    The Lagrange function for the earlier problem is given by formula

    L.x, u, 0, : : : , n,y/ D

    nXiD0

    ifi.x, u/C hyF.x, u/i,

    where0, : : : , nare real numbers andy 2 Y (dual space toY).

    We shall say that a pair.x, u/that satisfies the constraints (10)(12) is a local minimum point of problem (9)(12) if there exists a

    neighborhoodVofxsuch that

    f0.x, u/ f.x, u/.

    for any pair.x, u/ 2X Usatisfying constraints (10)(12).

    Theorem 3 (Smoothconvex extremum principle)

    Let the point.x, u/satisfy conditions (10)(12). Further, assume that there exists a neighborhoodV Xofxsuch that

    (a) for everyu 2 U, the mappingx! F.x, u/and the functionsx! fi.x, u/,iD 0, : : : , n, belong to the classC1 at the pointx;

    (b) for everyx2 V, the mappingu ! F.x, u/and the functionsu ! fi.x, u/,iD 0, : : : , n, satisfy the following convexity condition: for

    everyu1, u22 Uand2 0, 1, there exists au 2 Usuch that

    F.x, u/ D F.x, u1/C .1/F.x, u2/, (13)

    fi.x, u/ fi.x, u1/C .1/fi.x, u2/, iD 0, : : : , n; (14)

    (c) the rangeImFx.x, u/of the linear operator Fx.x, u/ : X! Y is closed and has finite codimension in Y (i.e., complementary

    subspace toImFx.x, u/has finite dimension inY).

    Then, if.x, u/is a local minimum point of problem (9)(12), there exist Lagrange multipliers 0 0, : : : , n 0,y

    2 Y

    , not allzero, such that

    Lx.x, u, 0, : : : , n,y/ D

    nXiD0

    ifix.x, u/C F

    x.x, u/y D 0,

    L.x, u, 0, : : : , n,y/ D min

    u2UL.x, u, 0, : : : , n,y

    /,

    ifi.x, u/ D 0 for i D 1, : : : , n.

    If, in addition to the conditions formulated,

    (d) the image of the setX Uunder the mapping

    .x, u/ ! Fx

    .x, u/xC F.x, u/

    contains a neighborhood of the origin ofY, and if there exists a point.x, u/such that

    Fx.x, u/xC F.x, u/ D 0,

    hfix.x, u/,xi C fi.x, u/

  • 8/12/2019 Fracrional Pontryagin - Copy

    5/19

    nw:a, b !Rn; w.t/ D

    Qd.ta/1

    fort2 .a, b/ a.e. with some Qd2Rno

    , satisfying the equation connected with this problem a.e. on

    a, band initial condition.

    We have the following technical result.

    Lemma 1

    Ifg./ 2 Lp.a, b, Rn/, 1 p< 1, > 0, then

    j IaCg .t/j

    p cIaCjgj

    p

    .t/, t2 a, b a.e., (15)withcD

    .ba/

    .C1/

    p1.

    Consequently,

    IaCg

    ./ 2 Lp.a, b, Rn/.

    Proof

    Let 1

  • 8/12/2019 Fracrional Pontryagin - Copy

    6/19

    R. KAMOCKI

    3. the functiona, b 3 t! h.t, 0/ 2Rn belongs toLp.a, b, Rn/,

    then problem (17) possesses a unique solutionx./ 2 IaC.Lp/.

    Proof

    Let 0< 0 is a fixed constant. Using once again Lemma 1, Assumptions 13, and assumptions of Theorem 1, we obtain

    jjS.'/ S. /jjpkD

    bZa

    ekpth

    t,

    IaC'

    .t/ h

    t,

    IaC

    .t/p

    dt NpbZ

    a

    ekpt

    IaC.' /.t/p

    dt

    cNpbZ

    a

    ekpt

    IaCj' jp

    .t/dtD cNpbZ

    a

    j'.t/ .t/jp

    Ibekp

    .t/dt

    D cNpbZ

    a

    j'.t/ .t/jp

    0@ 1./

    bZt

    ekp

    . t/1d

    1Adt.Note that

    bZt

    ekp

    . t/1dD

    btZ0

    ekp.tCs/

    s1 ds D ekpt

    btZ0

    ekpss1ds D ekpt

    kp.bt/Z0

    err1 1

    .kp/11

    kpdr

    D ekpt

    .kp/

    kp.bt/Z0

    err1dr ekpt

    .kp/

    1Z0

    err1drD ./ekpt.kp/ .

    So

    jjS.'/ S./jjpk cNp

    bZa

    j'.t/ .t/jp

    1

    ././ekpt.kp/

    dt

    D cNp.kp/bZ

    a

    ekptj'.t/ .t/jpdtD cNp.kp/ jj' jjpk

    ,

    wherecD .ba/.C1/p1. Let us notice thatN.c.kp// 1p 2 .0, 1/for sufficiently largekand consequently the operatorShas a uniquefixed point. This means that problem (17) possesses a unique solutionx./ 2 IaC.L

    p/.

    Now, we consider the following Cauchy problem:(DaCy

    .t/ DQh.t,y.t//, t2 a, b a.e.

    I1aC y

    .a/ D d,(18)

    whered2Rnnf0g andQh:a, bRn !Rn.

    It easy to show that ifx./ 2 IaC.Lp/is a solution to problem (17) with the function hof the form

    h.t,x, u/ DQh

    t,xC

    d

    ./

    1

    .t a/1

    , (19)

    Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    7/19

    then the function

    y./ Dx./C d

    ./

    1

    .t a/1 (20)

    is a solution to problem (18). Conversely, ify./ 2 IaC.Lp/C

    n Qd

    .ta/1; Qd2Rn

    ois a solution to problem (18) with thefunction Qh of the

    form

    Qh.t,y, u/ D h

    t,yQd

    .t a/1!

    ,

    then QdD d./

    and

    x./ Dy./ d

    ./

    1

    .t a/1

    is a solution to problem (17).

    So, in an analogous way as in [17, theorem 3.2], we can prove the following

    Theorem 5

    Let2 .0, 1/and 1 p< 11 . If

    1. the functionQh.,y/is measurable for anyy2Rn;

    2. there exists a constantN>0 such that

    j Qh.t,y1/Qh.t,y2/j Njy1 y2j

    fort2 a, ba.e. and ally1,y22 Rn ;

    3. the functiona, b 3 t!Qh.t, 0/ 2Rn belongs toLp.a, b, Rn/,

    then problem (18) possesses a unique solutiony./ 2 IaC.Lp/C

    n Qd

    .ta/1; Qd2Rn

    o.

    4. The Pontryagin maximum principle

    Let us consider the following FOCP: D

    aCx

    .t/ D f.t,x.t/, u.t//, t2 a, b a.e. (21)

    I1aC

    x

    .a/ D 0, (22)

    u.t/ 2M Rm, t2 a, b, (23)

    J.x, u/ D

    b

    Za f0.t,x.t/, u.t//dt! min, (24)wheref: a, bRn M !Rn,f0: a, bR

    n M !R, 0< 0 such that

    jf.t,x1, u/ f.t,x2, u/j Njx1 x2j

    fort2 a, ba.e. and allx1,x22 Rn,u 2M;

    Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    8/19

    R. KAMOCKI

    (c) there existr./ 2 Lp.a, b, R/and 0 such that

    jf.t, 0, u/j r.t/C juj

    fort2 a, ba.e. and allu 2 M,

    then problems (21)(22) possess a unique solution x./ 2 IaC.Lp/corresponding to any controlu./ 2 Lp.a, b, M/.

    Let

    UMD fu./ 2 L1.a, b, Rm/; u.t/ 2 M, t2 a, bg.

    We say, that a pair.x./, u.//2 IaC.Lp/ UMis a locally optimal solution to problem (21)(24), ifx./is the solution of (21)-(22),

    corresponding to the controlu./and there exists a neighborhoodVof pointx./inIaC.Lp/such that

    J.x./, u.//J.x./, u.//

    for every pair.x./, u.// 2 V UMsatisfying (21)(22).

    In the proof of the maximum principle, we use the following three lemmas.

    Lemma 2

    Let u./ 2 UMand ': a, bM !R be such that '., u/ is measurable on a, b for any u 2 M and '.t, / is continuous on M for t2 a, b

    a.e. If

    10,p 1. The operatorIaCis

    1. Bounded inLp.a, b, Rn/, that is,

    jjIaCfjjLp KjjfjjLp

    forf2 Lp.a, b, Rn/, whereKD .ba/

    .C1/.

    Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    9/19

    2. If2 .0, 1/and 1

  • 8/12/2019 Fracrional Pontryagin - Copy

    10/19

    R. KAMOCKI

    Let us notice that Lemma 3, applied to the function h D .f, f0/, guarantees fulfillment of the following condition: for any u1./, u2./ 2

    UM,x./ 2 IaC.L

    p/and2 0, 1there existseu./ 2 UMsuch thatF0.x./,eu.//D F0.x./, u1.//C .1/F0.x./, u2.//,

    F.x./,eu.//D F.x./, u1.//C .1/F.x./, u2.//.Of course, this condition implies conditions (13) and (14). So, Assumption (b) of Theorem 3 is satisfied.

    Moreover, the mappingF is continuously differentiable in the Gteaux sense (and consequently continuously Frchet differentiable)

    with respect tox./ 2 IaC.Lp/. Indeed, note that

    F.x./, u.// D F1.x./, u.// F2.x./, u.//,

    where

    F1.x./, u.//D

    DaCx

    ./,

    F2.x./, u.//D f.,x./, u.//.

    It is easy to check that the operatorF1 is linear and continuous with respect to x./, so it is continuously differentiable in the Frchet

    sense with respect tox./, and its differential at a point.x./, u.//is given by

    F1x.x./, u.//h./ D DaCh ./, h./ 2 I

    aC.L

    p/.

    The mapping

    F2G.x./, u.//:IaC.L

    p/ ! Lp.a, b, Rn/

    given by

    F2G.x./, u.//h./ D fx.,x./, u.//h./

    is Gteaux differential ofF2.x./, u.//with respect tox./for any fixedu./2 UM. Indeed, it is clear that it is linear. From Lemma 4 p. 1,

    Proposition 1 p. 2, and the fact thatfxis bounded (by the constant nN, whereNis a constant from Assumption (b)), it follows that

    jjF2G.x./, u.//h./jjpLp D

    b

    Zajfx.t,x.t/, u.t//j

    pjh.t/jpdt .nN/pb

    Zajh.t/jpdtD .nN/p

    b

    ZajIaC

    DaCh.t/jpdt

    D .nN/pjjIaC

    DaCh./jj

    pLp .nNK/

    pjj

    DaCh

    ./jjpLp D .nNK/

    pjjh./jjp

    IaC

    .Lp/.

    This implies the continuity ofF2G.x./, u.//.

    Using the dominated convergence theorem, it is easy to show that F2.x./C nh./, u.// F2.x./, u.//n F2G.x./, u.//h./

    Lp! 0,

    asn !n!1

    0. Consequently,F2G.x./, u.//is the Gteaux differential ofF2 with respect tox./.

    Now, we shall show that the mapping

    IaC.Lp/ 3x./ 7! F2G.x./, u.// 2 L I

    aC.L

    p/, Lpis continuous (here L

    IaC.L

    p/, Lp

    is the space of linear and continuous mappings F : IaC.Lp/ ! Lp considered with the operator

    topology). Indeed, letxn./ !n!1

    Qx./inIaC.Lp/. Then, using Lemma 4 p. 1, we obtain

    jjxn./Qx./jjLp D jjIaC

    DaC.xn.t/Qx.t//

    jjLp KjjD

    aC.xn./Qx.//jjLp D Kjjxn./Qx./jjIaC.L

    p/ !n!10.

    It means thatxn./ !n!1

    Qx./wLp. Moreover,

    bZa

    jfx.t,x.t/, u.t//jpdt .b a/.nN/p.

    Let us consider three cases:p> 1 , 1

  • 8/12/2019 Fracrional Pontryagin - Copy

    11/19

    Letp> 1 . From the earlier inequality follows that, the Nemytskii operator

    N :Lp.a, b, Rn/ ! Lp.a, b, Rnn/

    given by

    N.x.//.t/ D fx.t,x.t/, u.t//, t2 a, b a.e.

    forx./ 2 Lp

    .a, b, Rn

    /is well defined, so it is continuous. Thus

    "nD

    bZa

    jfx.t,xn.t/, u.t// fx.t, Qx.t/, u.t//jpdt !

    n!10. (30)

    Besides, ifh./ 2 IaC.Lp/, the Hlder inequality (withpandp0 D

    pp1 ) implies

    jh.t/j D jIaC.

    DaC

    h/.t/j 1

    ./

    tZa

    j

    DaCh

    .t/j

    .t /1 d k

    DaCh

    ./kLp

    1

    ./

    0@ tZa

    .t /.1/p0d

    1A1

    p0

    (31)

    D 1

    ./.. 1/p0C 1/1

    p0

    .t a/

    1 1p0

    jjh./jjI

    aC.Lp/

    1

    ./.. 1/p0C 1/1

    p0

    .b a/

    1

    p

    jjh./jjI

    aC.Lp/D cjjh./jjI

    aC.Lp/

    fort2 a, ba.e., wherecD 1

    ./..1/p0C1/1

    p0.b a/

    1p

    .

    Thus, from (30), for anyh./ 2 IaC.Lp/, we have

    bZa

    jfx.t,xn.t/, u.t// fx.t, Qx.t/, u.t//jpjh.t/jpdt "nc

    pjjh./jjp

    IaC

    .Lp/,

    so

    F2G.xn./, u.// F2G.Qx./, u.//

    L

    IaC

    .Lp/,Lp c."n/ 1p !

    n!10.

    Now, let 1 p is bounded. Thus and because of the fact that h D IaCD

    aCh and D

    aCh 2 L

    p.a, b, Rn/, we assert that

    h 2 Lq.a, b, Rn/. Consequently, the function jhjp 2 Lr.a, b, Rn/, whererD qp > 1. Moreover, from the fact that fsatisfies the Lipschitz

    condition with respect tox, it follows that

    fx.,x./, u.// 2 L1.a, b, Rnn/, (32)

    so

    jfx.,x./, u.//jp 2 L1.a, b, R/ Lr

    0.a, b, R/,

    where 1rC 1r0 D 1. Consequently,

    bZa

    jfx.t,xn.t/, u.t// fx.t, Qx.t/, u.t//jp jh.t/jpdt

    0@ bZa

    jfx.t,xn.t/, u.t// fx.t, Qx.t/, u.t//j

    pr0

    dt

    1A1r00@ bZ

    a

    jh.t/jp

    rdt

    1A1r

    Dkfx.,xn./, u.// fx., Qx./, u.//kLpr0

    p.khkLpr/

    p

    Dkfx.,xn./, u.// fx., Qx./, u.//kLpr0

    p.khkLq /

    p

    Dkfx.,xn./, u.// fx., Qx./, u.//kLpr0

    p IaCDaChLqpkfx.,xn./, u.// fx., Qx./, u.//kLpr0

    pcppq

    DaChLppD

    kfx.,xn./, u.// fx., Qx./, u.//kLpr0

    pcppq

    khkI

    aC.Lp/

    p

    ,

    Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    12/19

    R. KAMOCKI

    wherecpqis such that IaC'Lq cpqk'kLp , '2 Lp.a, b, Rn/(existence of the constantcpqfollows from Lemma 4 p. 2). Using (32), we assert that the Nemytskii operator

    Lp.a, b, Rn/ 3x./ ! fx.,x./, u.// 2 Lpr0.a, b, Rn/

    is well defined, so it is continuous. Then,F2G.xn./, u.// F2G.Qx./, u.//L

    IaC

    .Lp/,Lp cpq kfx.,xn./, u.// fx., Qx./, u.//kLpr0 !n!1 0.

    LetpD 1 . Ifz2 Lp.a, b, Rn/, thenz2 LQp.a, b, Rn/for any 1 < Qp< pand consequently, using Lemma 4 p. 2, IaCz2 L

    Qq.a, b, Rn/,

    where QqD Qp1Qp

    . Let note that ifQp2 .1,p/then Qq2

    11 ,1

    . It means thatIaCz2 L

    Qq.a, b, Rn/for any 11 < Qq< 1. Moreover, if

    z2 Lp.a, b, Rn/ LQp.a, b, Rn/, then, using Lemma 4 p. 2 once again, we obtainIaCzLQq cQpQq kzkLQp cpQqkzkLp ,wherec

    pQq

    D cQpQq

    .b a/pQp

    pQp Hence, ifp D 1

    , then for any 1

    1

    < Qq< 1 the operatorIaC

    : Lp.a, b, Rn/ ! LQq.a, b, Rn/is well defined

    and bounded. So let fix any Qq > max p, 11 in considered case p D 1 and repeat argument as in the previous case 1

  • 8/12/2019 Fracrional Pontryagin - Copy

    13/19

    Because ImFx.x./, u.// D Lp.a, b, Rn/, the Assumption (d) of Theorem 3 is satisfied and consequently 0 0. Without loss of

    generality, we can assume that0D 1. Accounting this fact, we can transform the formula (33) in the following way:

    bZa

    V.t/h.t/dtC

    bZa

    T.t/

    DaCh

    .t/dtD 0, (35)

    forh./ 2 IaC.Lp/, whereV.t/ D .f0/x.t,x.t/, u.t//

    T.t/fx.t,x.t/, u.t//fort2 a, ba.e.

    Note that becausefxis bounded and.f0/x2 Lp0.a, b, Rn/(it follows from the condition (26)), thereforeV./ 2 Lp0 .a, b, Rn/. Putting

    w.t/ D .IbV/.t/,

    we assert thatw./ 2 Ib.Lp0/. Moreover, from Theorem 2 and Proposition 1 p. 1, we obtain

    bZa

    V.t/h.t/dtD

    bZa

    Dbw

    .t/h.t/dtD

    bZa

    w.t/

    DaCh

    .t/dt,

    for anyh./ 2 IaC.Lp/. Thus, condition (35) implies

    b

    ZaT.t/Cw.t/ DaCh .t/dtD 0,

    for anyh./ 2 IaC.Lp/. Consequently,

    bZa

    T.t/Cw.t/

    l.t/dtD 0,

    for anyl./ 2 Lp.a, b, Rn/. Thus

    T.t/ Dw.t/ D

    Ib.V/

    .t/, t2 a, b a.e.

    So,./ 2 Ib.Lp0/and we obtain the condition (27). Proposition 3 implies the condition (28).

    To prove the condition (29), let us observe that the condition (34) can be written as

    bZa

    f0.t,x.t/, u.t//

    T.t/f.t,x.t/, u.t//

    dtD minu./2UM

    8

  • 8/12/2019 Fracrional Pontryagin - Copy

    14/19

    R. KAMOCKI

    From Theorem 5, we immediately obtain

    Theorem 8

    Let2 .0, 1/and 1 p< 11 . If

    (a) g.,y, u/is measurable ona, bfor ally2 Rn,u 2 M,g.t,y, /is continuous onMfort2 a, ba.e. and ally2 Rn;

    (b) there existsN>0 such that

    jg.t,y1, u/ g.t,y2, u/j Njy1 y2j

    fort2 a, ba.e. and ally1,y22 Rn,u 2M;

    (c) there existr./ 2 Lp.a, b, R/and 0 such that

    jg.t, 0, u/j r.t/C juj

    fort2 a, ba.e. and allu 2 M,

    then problem (36)(37) possesses a unique solution x./ 2 IaC.Lp/ C

    n Qd

    .ta/1; Qd2Rn

    ocorresponding to any control u./ 2

    Lp.a, b, M/.

    We say, that a pair .y./, u.// 2

    IaC.Lp/C

    n Qd

    .ta/1; Qd2Rn

    o UM is a locally optimal solution to problem (36)(39), if

    y./is the solution of (36)(37), corresponding to the control u./and there exists a neighborhood QVof point y./in IaC.Lp/Cn Qd

    .ta/1; Qd2Rno such that

    H.y./, u.// H.y./, u.//

    for every pair.y./, u.// 2QV UMsatisfying (36)(37).

    It easy to show that if a pair.x./, u.//2IaC

    .Lp/UMis a locally optimal solution to problem (21)(24) with functions fand f0of

    the form

    f.t,x, u/ D g

    t,xC

    y0

    ./

    1

    .t a/1, u

    , (40)

    f0.t,x, u/ D g0

    t,xC

    y0

    ./

    1

    .t a/1, u

    , (41)

    then the pair

    .y./, u.// D .x./C y0

    ./

    1

    .t a/1, u.// 2

    IaC

    .Lp/C

    ( Qd

    .t a/1; Qd2Rn

    )!UM (42)

    is a locally optimal solution to problem (36)(39). Conversely, if a pair .y./, u.//2

    IaC

    .Lp/Cn

    Qd.ta/1

    ; Qd2RnoUMis a locally

    solution to problem (36)(39) with functionsgandg0of the form

    g.t,y, u/ D f

    t,y

    Qd

    .t a/1, u

    !,

    g0.t,x, u/ D f0 t,y Qd.t a/1

    , u! ,then QdD

    y0./

    and the pair

    .x./, u.// D

    y./

    y0

    ./

    1

    .t a/1, u./

    2 I

    aC.Lp/UM

    is a locally solution to problem (21)(24).

    Now, using Theorem 7, we shall derive necessary optimality conditions for a problems (36)(39).

    Theorem 9

    Let2 .0, 1/, 1

  • 8/12/2019 Fracrional Pontryagin - Copy

    15/19

    .2g/ g0.,y, u/is measurable ona, bfor ally2Rn,u 2 Mandg0.t,y, /is continuous onMfor a.e.t2 a, band ally2 R

    n,

    .3g/ g02 C1 with respect toy2Rn and

    jg0.t,y, u/j a1.t/C C1jyjp,

    j.g0/x.t,y, u/j a2.t/C C2jyjp1

    for a.e.t2 a, band ally2 Rn,u 2 M, wherea22 Lp0

    a, b, RC0

    ,

    1

    p C 1p0D 1

    ,a12 L

    1

    a, b, RC0

    ,C1, C2 0,

    .4g/ gy.,y, u/,.g0/y.,y, u/are measurable ona, bfor ally2 Rn

    ,u 2 M,.5g/ gy.t,y, /,.g0/y.t,y, /are continuous onMfor a.e.t2 a, band ally2R

    n,

    .6g/ for a.e.t2 a, band ally2 Rn the set

    QZ:Dn

    .g0.t,y, u/, g.t,y, u// 2RnC1, u 2 M

    ois convex.

    If the pair

    .y./, u.// 2

    IaC

    .Lp/C

    ( Qd

    .t a/1; Qd2Rn

    )!UM

    is a locally optimal solution of problem.36/.39/, then there exists a function 2 Ib.Lp0/, such that

    Db

    .t/ D gTy.t,y.t/, u.t//.t/ .g0/y.t,y.t/, u.t// (43)

    for a.e.t2 a, band I1b

    .b/ D 0. (44)

    Moreover,

    g0.t,y.t/, u.t// .t/g.t,y.t/, u.t// D minu2M

    fg0.t,y.t/, u/ .t/g.t,y.t/, u/g (45)

    for a.e.t2 a, b.

    Proof

    To prove the earlier theorem, it suffices to show that if functionsg and g0 satisfy the Assumptions .1g/.6g/, then functionsfandf0given by (40) and (41) satisfy conditions .1f/.6f/. Indeed, condition.6f/ follows directly from condition.6g/. Moreover, functionsf,

    f0 2C1 with respect toxas a superposition of functions belonging to C1. The second part of condition.1f/follows from the second

    part Assumption.1g/in an analogous way as in [17, proof of theorem 3.2]. The fact that fxand .f0/xare measurable intfollows from

    Assumptions .2g/, .4g/ and from measurability of the functionxC y0./

    1.ta/1

    . Moreover, condition .5g/ implies .5f/ and continuous

    of functiong0 with respect tou 2 M implies continuous off0 onM. Now, we shall show that the Assumption .3f/ follows from the

    Assumption.3g/. Indeed, we have

    jf0.t,x, u/j D

    g0

    t,xC

    y0

    ./

    1

    .t a/1, u

    a1.t/C C1

    xC

    y0

    ./

    1

    .t a/1

    p a1.t/C C12

    p1

    jy0j

    ./

    1

    .t a/1

    pC C12

    p1jxjp D a1.t/C C1jxjp,

    for a.e.t2 a, band allx2 Rn,u 2 M, where

    a1.t/:D a1.t/C C12p1

    jy0j

    ./

    1

    .t a/1

    pfor a.e.t2 a, band

    C1D C12p1.

    Moreover,

    j.f0/x.t,x, u/j D

    .g0/x

    t,xC

    y0

    ./

    1

    .t a/1, u

    a2.t/C C2

    xC

    y0

    ./

    1

    .t a/1

    p1 a2.t/C C2C3

    jy0j

    ./

    p1 1.t a/.1/.p1/

    C C2C3jxjp1 D a2.t/C C2jxj

    p1

    Copyright 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci.2013

  • 8/12/2019 Fracrional Pontryagin - Copy

    16/19

    R. KAMOCKI

    for a.e.t2 a, band allx2 Rn,u 2 M, where

    C3:D

    1 1

  • 8/12/2019 Fracrional Pontryagin - Copy

    17/19

    H.y, u/ D

    2Z0

    .y1.t/y2.t/C u.t//dt! min, (52)

    wherey2R2,A D

    0 1

    0 0

    ,B D

    1

    1

    ,y0D

    0

    1

    ,D 12 ,p D

    32 .

    In this case

    g.t,y, u/ DAyC Bu,g0.t,y, u/ D h.1,1/,yi C u.

    Of course,

    AkD .AT/kD 0, k 2,

    gy.t,y, u/ DA, .g0/y.t,y, u/ D 1,1.

    It is easy to check that all assumptions of Theorem 9 are satisfied. Consequently, if.y./, u.//is a locally optimal solution to problem

    (49)(52), then there exists./ 2 I12

    2.L3/such that

    D122

    .t/ DAT.t/C

    1

    1

    , t2 0, 2 a.e. (53)

    I

    12

    2

    .2/ D 0. (54)

    Moreover,

    u.t/ .t/Bu.t/ D minu20,1

    fu .t/Bug (55)

    fort2 0, 2a.e.

    Now, we formulate a theorem, which will be used later on.

    Theorem 10

    Let 0<

  • 8/12/2019 Fracrional Pontryagin - Copy

    18/19

    R. KAMOCKI

    From Theorem 11, it follows that a solution of problem (53)(54) is given by

    1.t/

    2.t/

    D

    264 .2t/12

    . 32 /

    .2t/12

    . 32 /

    .2t/.2/

    375 , t2 0, 2.Consequently, condition (55) is equivalent to the following one

    u.t/ .2 t/u.t/ D minu20,1

    fu .2 t/ug D t 1 t2 0, 1

    0 t2 1, 2

    fort2 0, 2a.e.

    Thus

    u.t/ D

    1 t2 0, 1 a.e.

    0 t2 1, 2 a.e.

    From Theorem 10, it follows that a solution of system (49)(50), corresponding tou./is given by

    y.t/ D .t/y0 C

    t

    Z0.t s/Bu.s/ds D .t/

    0

    1 C

    8

  • 8/12/2019 Fracrional Pontryagin - Copy

    19/19

    12. HeymansN, Podlubny I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives.

    RheologicaActa2006; 45:765771.

    13. Tricaud C, Chen Y. Time-optimal control of systems with fractional dynamics.International Journal of Differential Equation 2010:Article ID 461048.

    DOI: 10.1155/2010/461048.

    14. Frederico GSF, Torres DFM. Fractional conservation laws in optimal control theory.Nonlinear Dynamics2008; 53(3):215222.

    15. Frederico GSF, Torres DFM.Fractional Noethers theorem in the Riesz-Caputo sense.Applied Mathematics and Computation 2010; 217(3):10231033.

    16. FredericoGSF, Torres DFM. A formulation of Noethers theorem forfractional problemsof thecalculus of variations.Journal of Mathematical Analysis

    and Applications2007; 334(2):834846.

    17. Idczak D, Kamocki R. On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem inRn

    .Fractional Calculus andApplied Analysis2011; 14(4):538553. DOI: 10.2478/s13540-011-0033-5.

    18. Ioffe AD, Tichomirow BM.Theory of Extremal Problems. North-Holland Pub. Co. Amsterdam: New York, Oxford, 1979.

    19. Idczak D. Optimal control of a coercive Dirichlet problem. SIAMJournal on Control andOptimization1998; 36(4):12501267.

    20. Hardy GH, Littlewood JE. Some properties of fractional integrals. I.Mathematische Zeitschrift1928; 27(4):565606.

    21. Almeida R, Ferreira RAC, Torres DFM. Isoperimetricproblems of thecalculus of variations with fractionalderivatives.Acta Mathematica Scientia. Series

    B. (English Edition)2012; 32(2):619630.

    22. Malinowska AB, Torres DFM. Towards a combined fractional mechanics and quantization. Fractional Calculus and Applied Analysis 2012;

    15(3):407417.