46
EE3054 Signals and Systems Fourier Transform: Important Properties Yao Wang Polytechnic University Some slides included are extracted from lecture presentations prepared by McClellan and Schafer

Fourier Transform: Important Propertiesyao/EE3054/Chap11.5... · 2008. 4. 4. · Fourier Transform: Important Properties Yao Wang ... Basic properties of Fourier transforms Duality,

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • EE3054

    Signals and Systems

    Fourier Transform: Important Properties

    Yao Wang

    Polytechnic University

    Some slides included are extracted from lecture presentations prepared by McClellan and Schafer

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 2

    License Info for SPFirst Slides

    � This work released under a Creative Commons Licensewith the following terms:

    � Attribution� The licensor permits others to copy, distribute, display, and perform

    the work. In return, licensees must give the original authors credit.

    � Non-Commercial� The licensor permits others to copy, distribute, display, and perform

    the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.

    � Share Alike� The licensor permits others to distribute derivative works only under

    a license identical to the one that governs the licensor's work.

    � Full Text of the License

    � This (hidden) page should be kept with the presentation

  • LECTURE OBJECTIVES

    � Basic properties of Fourier transforms

    � Duality, Delay, Freq. Shifting, Scaling

    � Convolution property

    � Multiplication property

    � Differentiation property

    � Freq. Response of Differential Equation System

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 4

    Fourier Transform Defined

    � For non-periodic signals

    Fourier Synthesis

    Fourier Analysis

    ∫∞

    ∞−

    −= dtetxjX tjωω )()(

    ∫∞

    ∞−

    = ωω ωπ

    dejXtxtj)()(

    21

  • Table of Fourier Transforms

    )()()()cos()( ccc jXttx ωωπδωωπδωω ++−=⇔=

    1)()()( =⇔= ωδ jXttx

    >

    <=⇔=

    b

    bb jX

    t

    ttx

    ωω

    ωωω

    π

    ω

    0

    1)(

    )sin()(

    2/

    )2/sin()(

    2/0

    2/1)(

    ω

    ωω

    TjX

    Tt

    Tttx =⇔

    >

    <=

    ωω

    jjXtuetx

    t

    +=⇔= −

    1

    1)()()(

    )(2)()( ctj

    jXetx c ωωπδωω −=⇔=

    )()()()sin()( ccc jjjXttx ωωπδωωπδωω ++−−=⇔=

    0)()()( 0tj

    ejXtttxωωδ −=⇔−=

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 6

    Duality of FT Pairs

    ∫∞

    ∞−

    −= dtetxjX tjωω )()(∫∞

    ∞−

    = ωω ωπ

    dejXtxtj)()(

    21

    ( ))(2)( Then

    )( If

    ωπ

    ω

    −⇔

    xtg

    gtx

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 7

    Fourier Transform of a

    General Periodic Signal

    � If x(t) is periodic with period T0 ,

    ∫∑−

    −∞=

    ==0

    00

    00

    )(1

    )(

    T

    tjkk

    k

    tjkk dtetx

    Taeatx

    ωω

    )(2 since Therefore, 00 ωωπδω ke tjk −⇔

    ∑∞

    −∞=

    −=k

    k kajX )(2)( 0ωωδπω

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 8

    Square Wave Signal

    x(t) = x(t + T0 )

    T0−2T0 −T0 2T00t

    ak =e

    − jω0kt

    − jω0kT0 0

    T0 / 2

    −e

    − jω 0kt

    − jω0kT0 T0 /2

    T0

    =1− e− jπk

    jπk

    ak =1

    T0(1)e

    − jω0 ktdt +1

    T0(−1)e

    − jω 0ktdtT0 / 2

    T0

    ∫0

    T0 / 2

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 9

    Square Wave Fourier Transform

    X( jω ) = 2π akδ(ω − kω0 )k =−∞

    x(t) = x(t + T0 )

    T0−2T0 −T0 2T00 t

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 10

    FT of Impulse Train

    � The periodic impulse train is

    p(t) = δ (t − nT0 ) =n=−∞

    ∑ akejkω0t

    n=−∞

    ak =1

    T0δ (t)e

    − jω0tdt =−T0 /2

    T0 /2

    ∫1

    T0 for all k

    ∴ P( jω) =2π

    T0

    δ (k = −∞

    ∞∑ ω − kω0 )

    ω0 = 2π / T0

  • Plot of impulse train in time

    and frequency

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 12

    Table of Easy FT Properties

    ax1(t) + bx2 (t) ⇔ aX1( jω) + bX2 ( jω )

    x(t − td ) ⇔ e− jωtd X( jω )

    x(t)ejω0t ⇔ X( j(ω − ω0 ))

    Delay Property

    Frequency Shifting

    Linearity Property

    x(at) ⇔ 1|a | X( j(ωa ))

    Scaling

    Duality

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 13

    Delay Property

    x(t − td ) ⇔ e− jωtd X( jω )

    x(t − td )e− jωtdt

    −∞

    ∫ = x(τ )e− jω(τ +td )dτ

    −∞

    = e− jω td X( jω )

    For example, e−a(t−5)

    u(t − 5) ⇔e− jω 5

    a + jω

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 14

    Multiply by e^jw0

    x(t)ejω0t ⇔ X( j(ω − ω0 ))

    ))((

    )()(

    0

    )( 00

    ωω

    ωωωω

    −=

    = ∫∫∞

    ∞−

    −−∞

    ∞−

    jX

    dtetxdtetxetjtjtj

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 15

    Multiply by cos(w0)?

    ( )

    ( )))(())((2

    1

    )()(2

    1)cos()(

    ))(()(

    ))(()(

    00

    0

    0

    0

    00

    0

    0

    ωωωω

    ω

    ωω

    ωω

    ωω

    ω

    ω

    ++−

    ⇔+=

    +⇔

    −⇔

    jXjX

    etxetxttx

    jXetx

    jXetx

    tjtj

    tj

    tj

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 16

    Shifting in frequency by

    multiply by cos()

    = (Amplitude Modulation)

    � Illustrate the spectrum in class

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 17

    y(t) = x(t)cos(ω0t) ⇔

    Y( jω ) =1

    2X( j(ω − ω0 )) +

    1

    2X( j(ω + ω0 ))

    x(t)

    x(t) =1 t < T / 2

    0 t > T / 2

    ⇔ X( jω ) =sin(ωT / 2)

    ω / 2( )

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 18

    Another example

    � x(t)=cos (w0 t)

    � What is y(t)=x(t) * cos (w1 t)

    � Consider w1 >w0 and w1

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 19

    What about multiply by sin( )?

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 20

    Scaling Property

    expands)(shrinks;)2(22

    1 ωjXtx

    )(

    )()(

    1

    )/(

    aa

    adajtj

    jX

    exdteatx

    ω

    λλωω λ

    =

    = ∫∫∞

    ∞−

    −∞

    ∞−

    )()( 1aa

    jXatx ω⇔

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 21

    Scaling Property

    )()( 1aa

    jXatx ω⇔

    )2()( 12 txtx =

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 22

    Uncertainty Principle

    � Try to make x(t) shorter

    � Then X(jωωωω) will get wider

    � Narrow pulses have wide bandwidth

    � Try to make X(jωωωω) narrower

    � Then x(t) will have longer duration

    �� Cannot simultaneously reduce time Cannot simultaneously reduce time

    duration and bandwidthduration and bandwidth

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 23

    Table of Easy FT Properties

    ax1(t) + bx2 (t) ⇔ aX1( jω) + bX2 ( jω )

    x(t − td ) ⇔ e− jωtd X( jω )

    x(t)ejω0t ⇔ X( j(ω − ω0 ))

    Delay Property

    Frequency Shifting

    Linearity Property

    x(at) ⇔ 1|a | X( j(ωa ))

    Scaling

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 24

    Significant FT Properties

    x(t) ∗h(t) ⇔ H( jω )X( jω )

    x(t)ejω0t ⇔ X( j(ω − ω0 ))

    x(t)p(t) ⇔1

    2πX( jω )∗ P( jω )

    dx(t)

    dt⇔ ( jω)X( jω)

    Differentiation Property

    Duality

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 25

    Convolution Property

    � Convolution in the time-domain

    corresponds to MULTIPLICATIONMULTIPLICATION in the

    frequency-domain

    y(t) = h(t) ∗ x(t) = h(τ )−∞

    ∫ x(t − τ )dτ

    Y( jω ) = H( jω )X( jω )

    y(t) = h(t) ∗ x(t)x(t)

    Y( jω ) = H( jω )X( jω )X( jω)

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 26

    Proof (in class)

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 27

    Convolution Example

    � Bandlimited Input Signal� “sinc” function

    � Ideal LPF (Lowpass Filter)� h(t) is a “sinc”

    � Output is Bandlimited� Convolve “sincs”

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 28

    Ideally Bandlimited Signal

    >

    <=⇔=

    πω

    πωω

    π

    π

    1000

    1001)(

    )100sin()( jX

    t

    ttx

    πω 100=b

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 29

    Ex: x(t) and y(t) are both sinc

    sin(100π t)

    πt∗

    sin(200πt)

    π t=

    x(t) ∗h(t) ⇔ H( jω )X( jω )

    sin(100π t)

    πt

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 30

    Ex. x(t) and y(t) are both rect.

    pulse

    Y( jω ) =sin(ω / 2)

    ω / 2

    2

    y(t) = x(t) ∗ h(t)

    Y( jω ) = H( jω )X( jω )

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 31

    Cosine Input to LTI System

    Y (jω) = H( jω )X( jω)

    = H( jω )[πδ(ω − ω0 ) +πδ(ω +ω 0)]

    = H( jω0 )πδ (ω −ω0 ) + H(− jω0 )πδ (ω +ω0 )

    y(t) = H (jω0 )12 e

    jω0t + H(− jω0 )12 e

    − jω 0t

    = H( jω0 )12 e

    jω0t + H*( jω 0)

    12 e

    − jω0t

    = H( jω0 ) cos(ω 0t +∠H( jω0 ))

    )cos(*)()( 0tthty ω=

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 32

    Ideal Lowpass Filter

    Hlp( jω)

    ωco−ωco

    y(t) = x(t) if ω0 < ωco

    y(t) = 0 if ω0 > ωco

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 33

    Ideal Lowpass Filter

    y(t) =4

    πsin 50πt( ) +

    4

    3πsin 150πt( )

    fco "cutoff freq."

    H( jω ) =1 ω < ωco

    0 ω > ωco

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 34

    Multiplier

    � Multiplication in the time-domain corresponds to convolution in the frequency-domain.

    Y( jω ) =1

    2πX( jω) ∗ P( jω )

    y(t) = p(t)x(t)

    X( jω )

    x(t)

    p(t)

    Y( jω ) =1

    2πX( jθ )

    −∞

    ∫ P( j(ω −θ ))dθ

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 35

    p(t) = cos(ω0t) ⇔ P( jω) = πδ (ω − ω0 )

    + πδ (ω + ω0 )

    y(t) = x(t)p(t) ⇔ Y( jω ) =1

    2πX( jω )∗ P( jω)

    y(t) = x(t)cos(ω0t) ⇔

    Y( jω ) =1

    2πX( jω ) ∗[πδ (ω − ω0 ) + πδ (ω + ω0 )]

    Y( jω ) =1

    2X( j(ω − ω0 )) +

    1

    2X( j(ω + ω0 ))

    Multiply by cos(w0 t)

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 36

    Differentiation Property

    dx (t )

    dt=

    d

    dt

    1

    2πX ( jω )e jω t dω

    −∞

    =1

    2π( jω ) X( jω )e jω tdω

    −∞

    Multiply by jωωωωdx(t)

    dt⇔ ( jω)X( jω)

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 37

    Example

    d

    dte

    −atu(t)( )= −ae−atu(t) + e−atδ (t)

    = δ (t) − ae−atu(t)

    ωjatue

    at

    +⇔−

    1)(

    )(1)( ωωω

    ω

    ωω jXj

    ja

    j

    ja

    ajY =

    +=

    +−=

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 38

    High order differentiation?

    dx(t)

    dt⇔ ( jω)X( jω ) ( ) ( )ωω jXj

    dx

    txd kk

    k

    ⇔)(

    Proof in class

  • System of Differential

    Equation

    ( ) ( )

    ( )

    ( )∑

    ∑∑

    ∑∑

    =

    =

    ==

    ==

    ==

    =

    =

    N

    k

    kk

    M

    k

    kk

    M

    k

    kk

    N

    k

    kk

    M

    kk

    k

    k

    N

    kk

    k

    k

    ja

    jb

    jX

    jYjH

    jXjbjYja

    dt

    txdb

    dt

    tyda

    0

    0

    00

    00

    )(

    )()(

    )()(

    )()(

    ω

    ω

    ω

    ωω

    ωωωω

    c

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 40

    Recall Difference Equation?

    ( ) ( )

    ( )

    ( )∑

    ∑∑

    ∑∑

    =

    =

    ==

    ==

    ==

    =

    =

    N

    k

    kk

    M

    k

    kk

    M

    k

    kk

    N

    k

    kk

    M

    kk

    k

    k

    N

    kk

    k

    k

    ja

    jb

    jX

    jYjH

    jXjbjYja

    dt

    txdb

    dt

    tyda

    0

    0

    00

    00

    )(

    )()(

    )()(

    )()(

    ω

    ω

    ω

    ωω

    ωωωω

    c

    ∑∑

    ∑∑

    =

    =

    =

    =

    ==

    ==

    =

    −=−

    N

    k

    kk

    M

    k

    kk

    M

    k

    kk

    N

    k

    kk

    M

    k

    k

    N

    k

    k

    za

    zb

    zX

    zYzH

    zXzbzYza

    knxbknya

    0

    0

    00

    00

    )(

    )()(

    )()(

    ][][

    c

    Discrete time system

    (Difference equation)

    Continuous time system

    (Differentiation equation)

  • Example systems

    � Example systems described by low order differential equations

    � How to determine the frequency response

    � How to determine the impulse response

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 42

    Strategy for using the FT

    � Develop a set of known Fourier transform pairs.

    � Develop a set of “theorems” or properties of the Fourier transform.

    � Develop skill in formulating the problem in either the time-domain or the frequency-domain, which ever leads to the simplest solution.

  • Table of Fourier Transforms

    )()()()cos()( ccc jXttx ωωπδωωπδωω ++−=⇔=

    1)()()( =⇔= ωδ jXttx

    >

    <=⇔=

    b

    bb jX

    t

    ttx

    ωω

    ωωω

    π

    ω

    0

    1)(

    )sin()(

    2/

    )2/sin()(

    2/0

    2/1)(

    ω

    ωω

    TjX

    Tt

    Tttx =⇔

    >

    <=

    ωω

    jjXtuetx

    t

    +=⇔= −

    1

    1)()()(

    )(2)()( ctj

    jXetx c ωωπδωω −=⇔=

    )()()()sin()( ccc jjjXttx ωωπδωωπδωω ++−−=⇔=

    0)()()( 0tj

    ejXtttxωωδ −=⇔−=

  • 4/4/2008 © 2003, JH McClellan & RW Schafer 44

    Table of Easy FT Properties

    ax1(t) + bx2 (t) ⇔ aX1( jω) + bX2 ( jω )

    x(t − td ) ⇔ e− jωtd X( jω )

    x(t)ejω0t ⇔ X( j(ω − ω0 ))

    Delay Property

    Frequency Shifting

    Linearity Property

    x(at) ⇔ 1|a | X( j(ωa ))

    Scaling

  • Significant FT Properties

    x(t) ∗h(t) ⇔ H( jω )X( jω )

    x(t)ejω0t ⇔ X( j(ω − ω0 ))

    x(t)p(t) ⇔1

    2πX( jω )∗ P( jω )

    dx(t)

    dt⇔ ( jω)X( jω)

    Duality

    ( ) ( )ωω jXjdx

    txd kk

    k

    ⇔)(

  • READING ASSIGNMENTS

    � This Lecture:

    � Chapter 11, Sects. 11-5 to 11-10

    � Tables in Section 11-9

    � Other Reading:

    � Entire chap 11