6
Formulae Sheet Fundamental constants R = 0.08314 dm 3 bar K -1 mol -1 ; R = 0.08206 dm 3 atm K -1 mol -1 ; R = 8.314 J K -1 mol -1 Boltzmann constant k B 1.381 x 10  –23 J K  –1 Avogadro constant  N A 6.022 x 10 23 mol  –1 Gas Laws Boyle’s law: PV = constant, at constant n, T Avogadro’s principle: V = constant x n, at constant P, T Charles’s law: V = constant x T, at constant n, P or P = constant x T, at constant n, V Density of a gas: ρ = M × P/ RT Dalton’s law of partial pressures : P total = P 1 + P 2 + P 3 + ... Partial pressure P 1 = x 1 . P total Mole fraction x 1 = total 1 n n Barometric distribution law: Molar kinetic energy : Molecular Speed Most probable speed M  R T * u 2 = Mean speed M  RT u π  8 = Root mean square speed M  R T u rm s 3 = Molecular collision rate: mean free path: i M 1  effusion of rate α M 1  diffusion o f rate α h  RT  g M   P  P ln i  , i i = 0  RT  E 2 3 = ( ) ( ) 2 / 1 A 2 / 1 B MR T 2 PA N T mk 2 PA /s) (molecules effusion of rate π = π = 2 m ol d u ] X [ 2 Z π = 2 mo l d ] X [ 2 1 Z u π = = λ

Formula sheet_Final

Embed Size (px)

Citation preview

Page 1: Formula sheet_Final

8/7/2019 Formula sheet_Final

http://slidepdf.com/reader/full/formula-sheetfinal 1/6

Formulae Sheet

Fundamental constants

R = 0.08314 dm3 bar K -1 mol-1; R = 0.08206 dm3 atm K -1 mol-1; R = 8.314 J K -1 mol-1

Boltzmann constant k B 1.381 x 10 –23 J K  –1 Avogadro constant N A 6.022 x 1023 mol –1

Gas Laws

Boyle’s law: PV = constant, at constant n, T

Avogadro’s principle: V = constant x n, at constant P, T

Charles’s law: V = constant x T, at constant n, P or P = constant x T, at constant n, V

Density of a gas: ρ = M × P/ RT

Dalton’s law of partial pressures : Ptotal = P1 + P2 + P3 + ...

Partial pressure P1 = x1 . Ptotal Mole fraction x1 =total

1

n

n

Barometric distribution law:

Molar kinetic energy :

Molecular Speed

Most probable speedM 

 RT *u

2= Mean speed

 RT u

π  

8=

Root mean square speedM 

 RT urms

3=

Molecular collision rate: mean free path:

i

M

1 effusionof rate α

M

1 diffusionof rate α

h RT 

 g M  

 P 

 P ln i

 ,i

i ⋅⋅

−=0

 RT  E 2

3=

( ) ( ) 2/1

A

2/1B MRT2

PAN

Tmk 2

PA/s)(moleculeseffusionof rate

π

=

π

=

2mol du]X[2Z π= 2

mol d]X[2

1

Z

u

π==λ

Page 2: Formula sheet_Final

8/7/2019 Formula sheet_Final

http://slidepdf.com/reader/full/formula-sheetfinal 2/6

Equation of State

Virial equation of state:

van der Waals equation of state

Critical constants

Reduced variables

Boyle temperature

First law of thermodynamics

Work 

Definition

Reversible isothermal expansion

Heat capacities

Heat capacity at constant volume qv = CvΔT

Heat capacity at constant pressure

ii

...)V

C

V

B1(RTPV

...)P'CP'B1(RTPV

2

mm

m

2

m

+++=

+++=

Bm

m

Bm

RT pV

...)V

01(RT pV

++=

2

mm

2

V

a

 bV

RTP 

V

na

nbV

nRTP −

−= 

  

  −

−=

Rb27

a8 T 

 b27

a P  b3V c2cc ===

c

c

mr 

c

r T

TT 

V

VV 

P

PP ===

wqU +=∆

 ∫ ∫ ∫ ∫  −=−=⋅= dV  P dAdl  P dl  F w external external 

i

V

VV

VlnnRT

V

dVnRTw

i

−=−= ∫ 

V

vT

UC  

 

 

 

 

∂=

P

 pT

HC  

  

  ∂∂

=

R CC nR CC m,vm, pv p =−=−

RT

PV

V

VZfactor nCompressio m

o

m

m ==

∫ ∫  ==∆=−f 

i

i

T

T

m,v

T

T

viif f  dTCndTCU)V,T(U)V,T(U

Page 3: Formula sheet_Final

8/7/2019 Formula sheet_Final

http://slidepdf.com/reader/full/formula-sheetfinal 3/6

Debye extrapolation: C p = aT3

Enthalpy

Enthalpy H = U + PV ΔH = q p = C  p ΔT 

Reaction enthalpy

Temperature dependence of reaction enthalpy

Adiabatic changes

Calorimetry q = c x mass x ∆ T

Internal pressure

Expansion coefficient Isothermal compressibility 

Joule-Thomson coefficient   µ  = (δT/δP) H  

Isothermal Joule-Thomson coefficient   µ  T  = (δH/δP)T  

 µ  T  = -C  P  µ   

Entropy

S = k ln W

iii

mv,m p,

1

i

i

f  /CCwhereV

V

T

T=γ   

 

 

 

 =

γ −γ γ = f f ii VPVP

∑∑

∫ −=∆

∆+∆=∆

tstanreac

o

m, p

 products

o

m, p

o

 pr 

T

T

o

 pr 1

o

r 2

o

vCvCCwhere

dTC)T(H)T(H2

1

T

TV

U   

  ∂∂=π

dTCdVdU VT +π=

 T

V

V

1

P

   

  ∂∂

T

T

P

V

V

1   

  ∂∂

−=κ 

T

2

VPk TVCC α=−

 dTCdPCdH p p

+µ−=

T

dqdS rev=

∑ ∑ ∆−∆=∆ products tstanreac

o

o

o

r HvHvH

Page 4: Formula sheet_Final

8/7/2019 Formula sheet_Final

http://slidepdf.com/reader/full/formula-sheetfinal 4/6

Second law of thermodynamics ∆ Suniverse = ∆ Ssystem + ∆ Ssurroundings > 0

Clausius inequality dS >dq/T

For reversible isothermal changes,

For reversible change in temperature at constant volume,

For a reversible change in temperature at constant P,

For a change V iT i → V  f T  f  ,

For a change P iT i → P  f T  f ,

Liquid to gas

Solid to liquid

Absolute entropy

Standard reaction entropy

iv

i

i

P

PlnnR ΔS

V

VlnnR ΔS

−=

=

i

f V,m

V,m

Vreversible

T

TlnnC

T

dTnCΔS

dTCdq

≈=

=

∫ 

i

f m,P

m,P

Preversible

TTlnnC

TdTnCS

dTCdq

≈=∆

=

∫ 

i

f V,m

i

T

TlnnC

V

VlnnR ΔS +=

i

f P,m

i

T

TlnnC

P

PlnnR ΔS +−=

onvaporizati

onvaporizati

onvaporizati

reversiblereversibleonvaporizati

T

H

T

q

T

dqΔS

∆=== ∫ 

fusion

fusion

fusion

reversiblereversiblefusion

T

H

T

q

T

dqΔS

∆=== ∫ 

∫ ∫ ∫  +∆

++∆

++=T

T

 p

 b

vap

T

T

 p

fusion

T

0

 p

 b

 b

T

dT)g(C

T

H

T

dT)liq(C

T

H

T

dT)s(C)0(S)T(S

∑∑ −=∆tstanreac

m

 products

m

o

r  vSvSS

Page 5: Formula sheet_Final

8/7/2019 Formula sheet_Final

http://slidepdf.com/reader/full/formula-sheetfinal 5/6

Efficiency

 T

T

q

q

hot

cold

hot

cold −=

Maximum performance factor for refrigerator =w

q

TT

T

coldhot

cold =−

Helmholtz energy A = U – TS

Gibbs energy 

G = H – TS

Standard reaction Gibbs energy ∆ r GO = Δr H

o –  TΔr So

dU = TdS – PdV dG = VdP – SdT

Gibbs-Helmholtz equation

Chemical potential

Fundamental equation

Extent of reaction P T 

GG

,

 energy,reactionGibbs     

  ∂∂=∆ξ 

v

 T

T1

q

w

hot

cold

hot

cycle −==−

∑∑ −=tstanreac

o f 

 products

o f r  GvGvG ∆∆∆

  

 

 

 

 −∆+

∆=

∆∆−= 

  

  

∂∆∂

12

1

1

)1

2

)2

2

P T

1

T

1)T(H

T

T(G

T

T(G

T

H

T

)T/G( 

∫ ∫  ===∆f 

i

i

P

P i

P

PP

PlnnRT

P

dPnRTdP

P

nRTGgases,idealFor 

)(,, i  jn P T i

i

  j

n

G

≠   

  

 ∂∂

= µ 

∑+= i

iidn μVdP -SdT dG

)/ln(gases,idealFor  mbar  P  RT o

m +=  µ  µ 

o

o

P

f RTlngases,realFor tcoefficienfugacityPf Fugacity, +== µ  µ φ φ 

i

oii nn

υ ξ  ,−=

 ln o

 P 

o

r  K  RT G Δ −=Q RT GGo

r r  ln+∆=∆

Page 6: Formula sheet_Final

8/7/2019 Formula sheet_Final

http://slidepdf.com/reader/full/formula-sheetfinal 6/6

van’t Hoff  equation    

 

 

 

 −−=

121

2 11ln

T T  R

 H  Δ

 K 

 K o

Rate laws

First order :kt 

ot  e A A −= ][][   Second order: kt  A A o

=−][

1

][

1  kt  A B

 A A

 B Boo

o

o )][]([]/[][

]/[][ln −=  

 

  

 

Zero order: [A]t = -kt + [A]o

Half-life

First-order:k k 

t  693.02ln2/1 ==   Second-order:o Ak 

t ][

12/1 = Zero-order:

Arrhenius equation:

Enzyme kinetics:

Clapeyron equation: m

m

 ΔV 

 ΔS 

dT 

dP =

m

m

T ln

 ΔH P 

∆∆ =

Clausius-Clapeyron equation:

Raoult’s law: Psolvent = xsolventPosolvent 

Henry’s law: PB = bBK B

Colligative properties:

Boiling point elevation: ∆ T = K bb

Freezing point depression : ∆ T = K  f b

van’t Hoff equation: ΠV  soln = n solute RT  

vi

∑= υ )( RT  K  K  c p

k  At  o

2][2/1 =

 RT a E 

 Aek −

=

   

  

 −

∆−=

i  f  

vap

i

  f  

T T  R

 H 

 P 

 P  11ln

]/[1

][2

S  K 

 E k v

o

+=

][

111

maxmax S V 

 K 

vv

   

  

 +=