4
FORMULA SHEET: Fatigue, Fracture Mechanics Structural Mechanics σ i = M x y i I xx M y x i I yy + F A ε x = σ x E ν E ( σ y +σ z ) + αΔT Fatigue: Machined Components S m N=C S 1 m N 1 =S 2 m N 2 m= log ( N 2 N 1 ) log ( S 1 S 2 ) N R = { ( S 1 S a ) m N 1 0.9 f ut ≥S R ≥S e S R <S e Endurance limit estimates: S e = { 0.25 BHN ksi for BHN ≤ 400 100 ksi for BHN >400 Steel S e = { 0.5 S ut for S ut 200 ksi ( 1 100 ksi( 700 MPa) for S ut >200 ksi ( 1 Cast Iron + Cast Steels: S e = { 0.45 S ut forS ut 600 MPa 275 MPa for S ut >600 MPa Stress concentrations σ max =K t σ K t = σ sc σ K f = S e ( unnotched) S e (nothced ) K f =1+ K t 1 ( 1+ a r ) a= [ 300 f u [ ksi ] ] 1.8 × 10 3 . K f ' 1 K f 1 =f ( f ut ) S 1000 ' = S 1000 K f ' S e ' = S e K f Mean stress: σ a S e + σ m S ut =1 Modifying factors S e =S e ' C ¿ C load C surf C T C rel ¿ S 10 3 =S 10 3 ' C load C T C rel Size: C ¿¿ { 1.0,ifd≤ 8 mm 1.189 d 0.097 , if8 mm<d≤250 mm ¿ Load: S e, axial =0.70 S e , bending C load =0.7 if SNcurve is ¿ bendingtests

FORMULA SHEET: Fatigue, Fracture Mechanics Memos/Formula Sheet... · Web viewFORMULA SHEET: Fatigue, Fracture Mechanics Structural Mechanics σ i = M x y i I xx - M y x i I yy + F

Embed Size (px)

Citation preview

Page 1: FORMULA SHEET: Fatigue, Fracture Mechanics Memos/Formula Sheet... · Web viewFORMULA SHEET: Fatigue, Fracture Mechanics Structural Mechanics σ i = M x y i I xx - M y x i I yy + F

FORMULA SHEET: Fatigue, Fracture Mechanics

Structural Mechanics

σ i=M x y i

I xx−

M y x i

I yy+ FA

ε x=σ x

E− νE (σ y+σz )+α ΔT

Fatigue: Machined Components

SmN=CS1mN1=S2

mN2m=

log( N2

N1)

log( S1S2 )N R={( S1Sa )

m

N 1 0.9 f ut≥SR≥Se

∞ SR<Se

Endurance limit estimates:

Se={0.25BHN ksi for BHN ≤400100 ksi for BHN>400

Steel

Se={ 0.5Sut for Sut≤200 ksi(1400MPa)100 ksi(700MPa) for Sut>200 ksi(1400MPa)

Cast Iron + Cast Steels:

Se={ 0.45Sut for Sut≤600MPa275MPa for Sut>600MPa

Stress concentrations

σ max=K t σK t=σ sc

σK f=

Se(un−notched )

Se(nothced )

K f=1+K t−1

(1+ ar )a=[ 300f u [ksi ] ]

1.8

×10−3∈.

K f' −1

K f−1=f ( f ut)

S1000' =

S1000K f

' Se' =

Se

K f

Mean stress:

σa

Se+σm

Sut=1

Modifying factors

Se=Se' C¿C loadC surf CTC rel…¿S103=S103

' CloadCTC rel

Size:

C¿¿{ 1.0 ,if d≤ 8mm1.189d−0.097 , if 8mm<d≤ 250mm

¿

Load:

Se ,axial=0.70 Se , bendingC load=0.7 if S−N curve is¿ bendingtests

Page 2: FORMULA SHEET: Fatigue, Fracture Mechanics Memos/Formula Sheet... · Web viewFORMULA SHEET: Fatigue, Fracture Mechanics Structural Mechanics σ i = M x y i I xx - M y x i I yy + F

Temperature:

CT=1.0 for T ≤450℃

1−5.8−3 (T−450 ) , for 450<T ≤550℃Reliability:

Fatigue: Large scale manufactured componentsN R=¿NC=2×10

6 cyclesN D=5×106 cycles

N L=100×106 cycles

Partial factor for fatigue:

Assessment Consequence of failureLow High

Damage tolerant 1.0 1.15

Safe life 1.15 1.35

Temperature:

ΔC , HT=ΔσC

EHT

E20° C

Grinding & TIG dressing:

Steel:

Δ σC=min {1.3×ΔσC

112Aluminium:

Δ σC=min {1.3×ΔσC

45Peening:

0.8

0.6

0.4

Page 3: FORMULA SHEET: Fatigue, Fracture Mechanics Memos/Formula Sheet... · Web viewFORMULA SHEET: Fatigue, Fracture Mechanics Structural Mechanics σ i = M x y i I xx - M y x i I yy + F

Δ σc=¿

Fracture MechanicsUniversal equation: K=βσ √πa

Plastic collapse: F pc=f y

Anett

Fracture:

K=K IcK Ic=βσ √π a fa f=1π (K Ic

βσ )2

σ f=K Ic

β √π a fr

acri=min {apc for plastic collapseaf for fracture

Stress concentration factors:

Centre cracked plate:

β=1+0.256 ( aW )−1.152( aW )

2

+12.2( aW )

3

Single edge crack:

β=1.12−0.23( aW )+10.56( aW )

2

−21.74( aW )

3

+30.42( aW )4

Double edge crack:

β=1.12+0.43( aW )−4.79( aW )

2

+15.46( aW )

3

LEFM

B ,W−a ,a≥2.5( K Ic

f yt)2

W ≥5.0( K Ic

f yt)2

Fracture toughness estimation: K IC=11.4 √C v

Lower limit: K IC=21.6 (C v )0.17

Note, C v in Joule, K IC in MPa .√mCrack growth

dadN

=C p¿¿

Page 4: FORMULA SHEET: Fatigue, Fracture Mechanics Memos/Formula Sheet... · Web viewFORMULA SHEET: Fatigue, Fracture Mechanics Structural Mechanics σ i = M x y i I xx - M y x i I yy + F

∫0

N

dN=∫ai

ae 1Cp (β Δσ √πa )mp

da

Pressure equipmentPdes=P+ ρgh