87
Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig and Stefan Huber Basque Center for Applied Mathematics Bilbao, Spain QMath13: Mathematical Results in Quantum Physics October 10 Atlanta, Georgia

for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum analogues of geometric inequalities

for Information Theory

Anna Vershynina

based on a joint work with Robert Koenig and Stefan Huber

Basque Center for Applied Mathematics

Bilbao, Spain

QMath13: Mathematical Results in Quantum Physics

October 10

Atlanta, Georgia

Page 2: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Outline of the talk

Introduction

Geometric inequalities in information theory

Classical vs quantum inequalities

Quantum inequalities

Application to the quantum Ornstein-Uhlenbeck semigroup

Optimizing entropy rates of the quantum attenuator semigroup

Entropy power inequality

Concavity of the entropy power of diffusion semigroup

Quantum isoperimetric inequality

Page 3: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric inequalities

Brunn-Minkowski inequality

A B A +B

A+B = a+ b|a ∈ A, b ∈ B

Rn = R2

vol(A)1/n vol(B)1/n+ vol(A+B)1/n≤

Isoperimetric inequality

A area(A) ≤ 14π length(∂A)2

Page 4: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry vs Information theory

Set A ⊂ Ω Random variable X on Ω

with prob. mass function px = Pr[X = x]

volume vol(A) entropy power 2H(X)

Shannon entropy H(X) = −∑px log px

Page 5: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry vs Information theory

Set A ⊂ Ω Random variable X on Ω

with prob. mass function px = Pr[X = x]

volume vol(A) entropy power 2H(X)

Shannon entropy H(X) = −∑px log px

Consider a set An = A× · · · ×A ∈ Ωn Consider n i.i.d. with PXn = PX · · · · · PXhas the following property:

∀ε > 0 ∃Mn,ε ⊂ Ωn s.t.

and Pr[Xn ∈Mn,ε] ≥ 1− ε

|Mn,ε| ∼(2H(X)

)nvol(An) = (vol(A))n

Page 6: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry vs Information theory

Set A ∈ Rn Random variable X on Rnwith prob. density function fX

volume vol(A) entropy power e2H(X)/n

entropy H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y has a density function

fX+Y (x) =∫fX(x− z)fY (z)dz

fX fY fX+Y

Page 7: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric inequalitiesBrunn-Minkowski inequality

vol(A)1/n + vol(B)1/n ≤ vol(A+B)1/n

Shannon‘s entropy power inequality [‘48]

e2H(X)/n + e2H(Y )/n ≤ e2H(X+Y )/n

Page 8: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric inequalitiesBrunn-Minkowski inequality

vol(A)1/n + vol(B)1/n ≤ vol(A+B)1/n

Shannon‘s entropy power inequality [‘48]

e2H(X)/n + e2H(Y )/n ≤ e2H(X+Y )/n

Isoperimetric inequality

area(A) ≤ 14π length(∂A)2

length(∂A) = limε→0area(A+Bε(0))−area(A)

ε“length“ limε→0

e2H(X+√εZ)/n−e2H(X)/d

ε

+ =A

Bε(0)

A+Bε(0)

fX f√εZ fX+√εZ

ε

Page 9: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric inequalitiesBrunn-Minkowski inequality

vol(A)1/n + vol(B)1/n ≤ vol(A+B)1/n

Shannon‘s entropy power inequality [‘48]

e2H(X)/n + e2H(Y )/n ≤ e2H(X+Y )/n

Isoperimetric inequality

area(A) ≤ 14π length(∂A)2

length(∂A) = limε→0area(A+Bε(0))−area(A)

ε“length“ limε→0

e2H(X+√εZ)/n−e2H(X)/d

ε

limε→0e2H(X+

√εZ)/n−e2H(X)/n

ε ≥ limε→0e2H(X)/n+e2H(

√εZ)/n−e2H(X)/n

ε = 2π e

Page 10: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric inequalitiesBrunn-Minkowski inequality

vol(A)1/n + vol(B)1/n ≤ vol(A+B)1/n

Shannon‘s entropy power inequality [‘48]

e2H(X)/n + e2H(Y )/n ≤ e2H(X+Y )/n

Isoperimetric inequality

area(A) ≤ 14π length(∂A)2

length(∂A) = limε→0area(A+Bε(0))−area(A)

ε“length“ limε→0

e2H(X+√εZ)/n−e2H(X)/d

ε

limε→0e2H(X+

√εZ)/n−e2H(X)/n

ε ≥ limε→0e2H(X)/n+e2H(

√εZ)/n−e2H(X)/n

ε = 2π e

ddε

∣∣ε=0

e2H(X+√εZ)/n = 2

ne2H(X)/n d

∣∣ε=0

H(X +√εZ)

Fisher information

J(X) = 2 ddε

∣∣ε=0

H(X +√εZ)

Page 11: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric inequalitiesBrunn-Minkowski inequality

vol(A)1/n + vol(B)1/n ≤ vol(A+B)1/n

Shannon‘s entropy power inequality [‘48]

e2H(X)/n + e2H(Y )/n ≤ e2H(X+Y )/n

Isoperimetric inequality

area(A) ≤ 14π length(∂A)2

length(∂A) = limε→0area(A+Bε(0))−area(A)

ε“length“ limε→0

e2H(X+√εZ)/n−e2H(X)/d

ε

limε→0e2H(X+

√εZ)/n−e2H(X)/n

ε ≥ limε→0e2H(X)/n+e2H(

√εZ)/n−e2H(X)/n

ε = 2π e

ddε

∣∣ε=0

e2H(X+√εZ)/n = 2

ne2H(X)/n d

∣∣ε=0

H(X +√εZ)

Fisher information

J(X) = 2 ddε

∣∣ε=0

H(X +√εZ)

Isoperimetric inequality for entropies

1nJ(X)e2H(X)/n ≥ 2π e

Page 12: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric analogue of Fisher information

x2

x1

A ε

ε

A+ ε ~x1

A+ ε ~x2

D(A1, A2) =“difference“ between A1 and A2

“Fisher Information“= d2

dε2

∣∣∣ε=0

∑2j=1D(A,A+ ε ~xj)

A

A

Page 13: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometric analogue of Fisher information

x2

x1

A ε

ε

A+ ε ~x1

A+ ε ~x2

D(A1, A2) =“difference“ between A1 and A2

“Fisher Information“= d2

dε2

∣∣∣ε=0

∑2j=1D(A,A+ ε ~xj)

A

A

J(X) =∑nj=1

∂2

∂ε2

∣∣∣ε=0

D(f ||f ε ~xj )

distribution translated in ~xj direction by ε

de Bruijn‘s identity

= 2 ddε

∣∣ε=0

H(X +√εZ)

Page 14: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry Classical Quantum

Set A ∈ Rn Random variable X on Rn

with prob. density function fX

volume vol(A) entropy power e2H(X)/n

H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y

fX+Y (x) =∫fX(x− z)fY (z)dz

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

S(ρ) = −Tr(ρ log ρ)

N(ρ) = expS(ρ)/n

Page 15: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry Classical Quantum

Set A ∈ Rn Random variable X on Rn

with prob. density function fX

volume vol(A) entropy power e2H(X)/n

H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y

fX+Y (x) =∫fX(x− z)fY (z)dz

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

S(ρ) = −Tr(ρ log ρ)

N(ρ) = expS(ρ)/n

ρX + ρY ??

Page 16: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry Classical Quantum

Set A ∈ Rn Random variable X on Rn

with prob. density function fX

volume vol(A) entropy power e2H(X)/n

H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y

fX+Y (x) =∫fX(x− z)fY (z)dz

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

S(ρ) = −Tr(ρ log ρ)

N(ρ) = expS(ρ)/n

ρXλY = TrY

(Uλ(ρX ⊗ ρY )U†λ

)beamsplitter with transmissivity λ ∈ [0, 1]

U†λ,1Q1(2)Uλ,1 =√λQ1(2) +

√1− λQ2(1)

U†λ,1P1(2)Uλ,1 =√λP1(2) +

√1− λP2(1)

Uλ,n = U⊗nλ,1

Page 17: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry Classical Quantum

Set A ∈ Rn Random variable X on Rn

with prob. density function fX

volume vol(A) entropy power e2H(X)/n

H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y

fX+Y (x) =∫fX(x− z)fY (z)dz

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

S(ρ) = −Tr(ρ log ρ)

N(ρ) = expS(ρ)/n

ρXλY = TrY

(Uλ(ρX ⊗ ρY )U†λ

)beamsplitter with transmissivity λ ∈ [0, 1]

Quantum entropy power inequality

λeS(X)/n + (1− λ)eS(Y )/n ≤ eS(XλY )/n

[Koenig, Smith 14] λ = 1/2

[de Palma et al 15]

Brunn-Minkowski inequality

vol(A)1/n + vol(B)1/n

Shannon entropy power inequality

e2H(X)/d + e2H(Y )/d ≤ e2H(X+Y )/d

≤ vol(A+B)1/n

Page 18: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry Classical Quantum

Set A ∈ Rn Random variable X on Rn

with prob. density function fX

volume vol(A) entropy power e2H(X)/n

H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y

fX+Y (x) =∫fX(x− z)fY (z)dz

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

S(ρ) = −Tr(ρ log ρ)

N(ρ) = expS(ρ)/n

ρXλY = TrY

(Uλ(ρX ⊗ ρY )U†λ

)beamsplitter with transmissivity λ ∈ [0, 1]

Quantum entropy power inequality

λeS(X)/n + (1− λ)eS(Y )/n ≤ eS(XλY )/n

[Koenig, Smith 14] λ = 1/2

[de Palma et al 15]

Brunn-Minkowski inequality

vol(A)1/n + vol(B)1/n

Shannon entropy power inequality

e2H(X)/d + e2H(Y )/d ≤ e2H(X+Y )/d

Isoperimetric inequality

area(A) ≤ 14π length(∂A)2

Isoperimetric inequality for entropies

1nJ(X)e2H(X)/n ≥ 2π e

≤ vol(A+B)1/n

???

Page 19: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry Classical Quantum

Set A ∈ Rn Random variable X on Rn

with prob. density function fX

volume vol(A) entropy power e2H(X)/n

H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y

fX+Y (x) =∫fX(x− z)fY (z)dz

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

S(ρ) = −Tr(ρ log ρ)

N(ρ) = expS(ρ)/n

Brunn-Minkowski inequality

vol(A)1/n + vol(B)1/n

Shannon entropy power inequality

e2H(X)/d + e2H(Y )/d ≤ e2H(X+Y )/d

Isoperimetric inequality

area(A) ≤ 14π length(∂A)2

Isoperimetric inequality for entropies

1nJ(X)e2H(X)/n ≥ 2π e

≤ vol(A+B)1/n

f ?t ρ =∫f(ξ)W (

√tξ)ρW †(

√tξ)dξ

classical-quantum

Page 20: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Geometry Classical Quantum

Set A ∈ Rn Random variable X on Rn

with prob. density function fX

volume vol(A) entropy power e2H(X)/n

H(X) = −∫Rn fX(x) log fX(x)dx

addition A+B convolution: X + Y

fX+Y (x) =∫fX(x− z)fY (z)dz

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

S(ρ) = −Tr(ρ log ρ)

N(ρ) = expS(ρ)/n

Brunn-Minkowski inequality

vol(A)1/n + vol(B)1/n

Shannon entropy power inequality

e2H(X)/d + e2H(Y )/d ≤ e2H(X+Y )/d

Isoperimetric inequality

area(A) ≤ 14π length(∂A)2

Isoperimetric inequality for entropies

1nJ(X)e2H(X)/n ≥ 2π e

≤ vol(A+B)1/n

f ?t ρ =∫f(ξ)W (

√tξ)ρW †(

√tξ)dξ

classical-quantum

Classical-quantum entropy power inequality

teH(f)/n + eS(ρ)/n ≤ eS(f?tρ)/n t ≥ 0

Isoperimetric inequality for entropies

1nJ(ρ)eS(ρ)/n ≥ 4π e

Page 21: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical vs Quantum information theory

Entropy

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

H(X) = H(f) = −∫f(x) log f(x)dx S(ρ) = −Tr(ρ log ρ)

Entropy Power N(f) = exp2H(f)/n N(ρ) = expS(ρ)/n

Relative entropy D(f ||g) =∫f(x) log f(x)

g(x)dx D(ρ||σ) = Tr(ρ log ρ− ρ log σ)

Classical QuantumX - Rn-valued r.v. with a prob. density function fX .

Shannon von Neumann

Page 22: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical vs Quantum information theory

Entropy

ρ - n-mode state.[Qj , Pk] = −[Pk, Qj ] = iδj,kI[Qj , Qk] = [Pj , Pk] = 0 1 ≤ j, k,≤ n

H(X) = H(f) = −∫f(x) log f(x)dx S(ρ) = −Tr(ρ log ρ)

Entropy Power N(f) = exp2H(f)/n N(ρ) = expS(ρ)/n

Relative entropy D(f ||g) =∫f(x) log f(x)

g(x)dx D(ρ||σ) = Tr(ρ log ρ− ρ log σ)

Fisher information matrix For ~θ ∈ Rn, define

f (θ)(x) = f(x− θ)

J(f (θ))∣∣θ=θ0

=(

∂2

∂θi∂θj

∣∣θ=θ0

D(f (θ0)||f (θ)

))2ni,j=1

Fisher information

J(f) = Tr(J(f (θ))

∣∣θ=θ0

)

Classical QuantumX - Rn-valued r.v. with a prob. density function fX .

Shannon von Neumann

Page 23: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Fisher information

W (~θ) = expi√

2π (θ1P1 − θ2Q1 + · · ·+ θ2n−1Pn − θ2nQn)

ρ(θ) = W (θ)ρW †(θ)

For ~θ ∈ R2n the Weyl displacement operators are defined as

Translated state is

Page 24: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Fisher information

W (~θ) = expi√

2π (θ1P1 − θ2Q1 + · · ·+ θ2n−1Pn − θ2nQn)

ρ(θ) = W (θ)ρW †(θ)

For ~θ ∈ R2n the Weyl displacement operators are defined as

Translated state is

Weyl operators translate position and momentum operators

W (~θ)QjW†(~θ) = Qj + θI W (~θ)PjW

†(~θ) = Pj + θI

Page 25: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Fisher information

W (~θ) = expi√

2π (θ1P1 − θ2Q1 + · · ·+ θ2n−1Pn − θ2nQn)

ρ(θ) = W (θ)ρW †(θ)

J(ρ(θ))∣∣θ=θ0

=(

∂2

∂θi∂θj

∣∣θ=θ0

D(ρ(θ0)||ρ(θ)

))2ni,j=1

J(ρ) = Tr(J(ρ(θ))

∣∣θ=θ0

)

For ~θ ∈ R2n the Weyl displacement operators are defined as

Translated state is

Weyl operators translate position and momentum operators

W (~θ)QjW†(~θ) = Qj + θI

Fisher information matrix

Fisher information

W (~θ)PjW†(~θ) = Pj + θI

Page 26: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Inequalities

Classical

(fX , fY )→ fX+Y (z) =∫fX(z − x)fY (x)dx

Quantum

(f, ρ)→ f ?t ρ =∫f(ξ)W (

√tξ)ρW †(

√tξ)dξt = 1 [Werner ‘84]

Page 27: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Inequalities

Classical

(fX , fY )→ fX+Y (z) =∫fX(z − x)fY (x)dx

the Fisher information ineq.

Quantum

(f, ρ)→ f ?t ρ =∫f(ξ)W (

√tξ)ρW †(

√tξ)dξ

J(√

λX +√

1− λY)≤ λJ(X) + (1− λ)J(Y )

Stam inequality

J (X + Y )−1 ≥ J(X)−1 + J(Y )−1

the Fisher information ineq.

ω2J(f?tρ) ≤ ω2cJ(f)+ω2

qJ(ρ)

Stam inequality

J(f ?t ρ)−1 ≥ tJ(f)−1 + J(ρ)−1

t = 1 [Werner ‘84]

for λ ∈ [0, 1] for ω =√tωc + ωq

Page 28: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Inequalities

Classical

(fX , fY )→ fX+Y (z) =∫fX(z − x)fY (x)dx

the Fisher information ineq.

Quantum

(f, ρ)→ f ?t ρ =∫f(ξ)W (

√tξ)ρW †(

√tξ)dξ

J(√

λX +√

1− λY)≤ λJ(X) + (1− λ)J(Y )

Stam inequality

J (X + Y )−1 ≥ J(X)−1 + J(Y )−1

the Fisher information ineq.

ω2J(f?tρ) ≤ ω2cJ(f)+ω2

qJ(ρ)

Stam inequality

J(f ?t ρ)−1 ≥ tJ(f)−1 + J(ρ)−1

Z - Gaussian r.v. : fZ(~ξ) = (2π)−n/2e−|ξ|2/2

t = 1 [Werner ‘84]

Z - Gaussian r.v. : fZ(~ξ) = (2π)−ne−|ξ|2/2

for λ ∈ [0, 1] for ω =√tωc + ωq

Page 29: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Diffusion Semigroup

fZ ?t ρ = 1(2π)n

∫e−‖

~ξ‖2/2W (√t~ξ) ρW †(

√t~ξ)d~ξ

For Z - Gaussian r.v. : fZ(~ξ) = (2π)−ne−|ξ|2/2

Page 30: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Diffusion Semigroup

for a Liouvillean

ρ(t) = etL(ρ) : ddtρ(t) = L(ρ(t))

fZ ?t ρ = 1(2π)n

∫e−‖

~ξ‖2/2W (√t~ξ) ρW †(

√t~ξ)d~ξ

For Z - Gaussian r.v. : fZ(~ξ) = (2π)−ne−|ξ|2/2

= etL(ρ)

The state satisfies

L(ρ) = −π∑2nj=1[Qj , [Qj , ρ]] + [Pj , [Pj , ρ]]

Page 31: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Inequalities

de Bruijn identity

J(X +

√tZ)

= 2 ∂∂tH

(X +

√tZ)

J(ρ) = 2 ddtS

(etL(ρ)

)∣∣t=0

Classical Quantum

Entropy power inequality

N(X + Y ) ≥ N(X) +N(Y ) N(f ?t ρ) ≥ tN(f) +N(ρ)

Concavity of the entropy power

d2

dε2

∣∣∣∣ε=0

N(X +√εZ) ≤ 0 d2

dt2

∣∣∣∣t=0

N(etL(ρ)) ≤ 0

Fisher information isoperimetric inequality

ddε

∣∣∣∣ε=0

[1n J(X +

√εZ)

]−1 ≥ 1 ddt

∣∣∣∣t=0

[12nJ(etL(ρ))

]−1≥ 1

Isoperimetric inequality

1nJ(X)N(X) ≥ 2πe 1

nJ(ρ)N(ρ) ≥ 4πe

etL(ρ) = fZ ?t ρ

[Koenig, Smith ‘14]

Page 32: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Inequalities

Rescaling

fX ?t ρ = f√tX ?1 ρ

If fX is a prob. density function of a r.v. X, then

here the r.v.√tX is given by f√tX(ζ) = f(ζ/

√t)/(√t)2n

AdditionfX ?1 (fY ?1 ρ) = fX+Y ?1 ρ

where (fX , fY )→ fX+Y (z) =∫fX(z − x)fY (x)dx

TranslationLet ωc, ωq > 0, and t ≥ 0. Then for all θ ∈ R2n

(f ?t ρ)(ωθ) = f (ωcθ) ?t ρ(ωqθ) ω =

√tωc + ωq

Page 33: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Inequalities

Data Processing Inequality

D (f ?t ρ‖ g ?t σ) ≤ D (f‖ g) +D (ρ‖σ)

Rescaling

fX ?t ρ = f√tX ?1 ρ

If fX is a prob. density function of a r.v. X, then

here the r.v.√tX is given by f√tX(ζ) = f(ζ/

√t)/(√t)2n

AdditionfX ?1 (fY ?1 ρ) = fX+Y ?1 ρ

where (fX , fY )→ fX+Y (z) =∫fX(z − x)fY (x)dx

TranslationLet ωc, ωq > 0, and t ≥ 0. Then for all θ ∈ R2n

(f ?t ρ)(ωθ) = f (ωcθ) ?t ρ(ωqθ) ω =

√tωc + ωq

Page 34: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Stam InequalityTheorem

Let ωc, ωq ∈ R, and t ≥ 0. Then

ω2J(f ?t ρ) ≤ ω2cJ(f) + ω2

qJ(ρ)In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

for ω =√tωc + ωq

Page 35: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Stam InequalityTheorem

Let ωc, ωq ∈ R, and t ≥ 0. Then

ω2J(f ?t ρ) ≤ ω2cJ(f) + ω2

qJ(ρ)In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

for ω =√tωc + ωq

ProofBy Data processing inequality

Tr(J(f (ωc

~θ) ?t ρ(ωq~θ)); ~θ)

∣∣∣~θ= ~θ0

)≤ Tr

(J(f (ωc

~θ); ~θ)∣∣∣~θ= ~θ0

)+ Tr

(J(ρ(ωq

~θ); ~θ)∣∣∣~θ= ~θ0

)

Page 36: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Stam InequalityTheorem

Let ωc, ωq ∈ R, and t ≥ 0. Then

ω2J(f ?t ρ) ≤ ω2cJ(f) + ω2

qJ(ρ)In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

for ω =√tωc + ωq

ProofBy Data processing inequality

Tr(J(f (ωc

~θ) ?t ρ(ωq~θ)); ~θ)

∣∣∣~θ= ~θ0

)≤ Tr

(J(f (ωc

~θ); ~θ)∣∣∣~θ= ~θ0

)+ Tr

(J(ρ(ωq

~θ); ~θ)∣∣∣~θ= ~θ0

)Tr

(J(f ?t ρ(ω

~θ); ~θ)

∣∣∣∣~θ=~0

)

Page 37: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Stam InequalityTheorem

Let ωc, ωq ∈ R, and t ≥ 0. Then

ω2J(f ?t ρ) ≤ ω2cJ(f) + ω2

qJ(ρ)In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

for ω =√tωc + ωq

ProofBy Data processing inequality

Tr(J(f (ωc

~θ) ?t ρ(ωq~θ)); ~θ)

∣∣∣~θ= ~θ0

)≤ Tr

(J(f (ωc

~θ); ~θ)∣∣∣~θ= ~θ0

)+ Tr

(J(ρ(ωq

~θ); ~θ)∣∣∣~θ= ~θ0

)Tr

(J(f ?t ρ(ω

~θ); ~θ)

∣∣∣∣~θ=~0

)

ω2J(f ?t ρ)

Page 38: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Stam InequalityTheorem

Let ωc, ωq ∈ R, and t ≥ 0. Then

ω2J(f ?t ρ) ≤ ω2cJ(f) + ω2

qJ(ρ)In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

for ω =√tωc + ωq

ProofBy Data processing inequality

Tr(J(f (ωc

~θ) ?t ρ(ωq~θ)); ~θ)

∣∣∣~θ= ~θ0

)≤ Tr

(J(f (ωc

~θ); ~θ)∣∣∣~θ= ~θ0

)+ Tr

(J(ρ(ωq

~θ); ~θ)∣∣∣~θ= ~θ0

)Tr

(J(f ?t ρ(ω

~θ); ~θ)

∣∣∣∣~θ=~0

)

ω2J(f ?t ρ)

J(f (ωc~θ); ~θ) = ω2

cJ(f (~θ); ~θ)

ω2cJ(f)

Page 39: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Stam InequalityTheorem

Let ωc, ωq ∈ R, and t ≥ 0. Then

ω2J(f ?t ρ) ≤ ω2cJ(f) + ω2

qJ(ρ)In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

for ω =√tωc + ωq

ProofBy Data processing inequality

Tr(J(f (ωc

~θ) ?t ρ(ωq~θ)); ~θ)

∣∣∣~θ= ~θ0

)≤ Tr

(J(f (ωc

~θ); ~θ)∣∣∣~θ= ~θ0

)+ Tr

(J(ρ(ωq

~θ); ~θ)∣∣∣~θ= ~θ0

)Tr

(J(f ?t ρ(ω

~θ); ~θ)

∣∣∣∣~θ=~0

)

ω2J(f ?t ρ)

J(f (ωc~θ); ~θ) = ω2

cJ(f (~θ); ~θ)

ω2cJ(f)

J(ρ(ωq~θ); ~θ) = ω2

qJ(ρ(~θ); ~θ)

ω2qJ(ρ)

Page 40: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Stam InequalityTheorem

Let ωc, ωq ∈ R, and t ≥ 0. Then

ω2J(f ?t ρ) ≤ ω2cJ(f) + ω2

qJ(ρ)In particular,

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

for ω =√tωc + ωq

ProofBy Data processing inequality

Tr(J(f (ωc

~θ) ?t ρ(ωq~θ)); ~θ)

∣∣∣~θ= ~θ0

)≤ Tr

(J(f (ωc

~θ); ~θ)∣∣∣~θ= ~θ0

)+ Tr

(J(ρ(ωq

~θ); ~θ)∣∣∣~θ= ~θ0

)

Taking ωc =√tJ(f)−1

J(ρ)−1+tJ(f)−1 and ωq = J(ρ)−1

J(ρ)−1+tJ(f)−1 , we obtain

J(f ?t ρ)−1 − J(ρ)−1 − tJ(f)−1 ≥ 0

Tr

(J(f ?t ρ(ω

~θ); ~θ)

∣∣∣∣~θ=~0

)

ω2J(f ?t ρ)

J(f (ωc~θ); ~θ) = ω2

cJ(f (~θ); ~θ)

ω2cJ(f)

J(ρ(ωq~θ); ~θ) = ω2

qJ(ρ(~θ); ~θ)

ω2qJ(ρ)

Page 41: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Concavity of entropy power of heat diffusion semigroup

Classical heat diffusion semigroup

∂∂tft = ∆ft where ∆ =

∑j∂2

∂x2j

Page 42: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Concavity of entropy power of heat diffusion semigroup

Classical heat diffusion semigroup

∂∂tft = ∆ft where ∆ =

∑j∂2

∂x2j

t

e2H(ft)/n

t

e2H(ft)/n

or

Page 43: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Concavity of entropy power of heat diffusion semigroup

Classical heat diffusion semigroup

∂∂tft = ∆ft where ∆ =

∑j∂2

∂x2j

t

e2H(ft)/nTheorem

d2

dt2 e2H(ft)/n ≤ 0

Dembo, Thomas, Cover ’91

Villan ’00

Page 44: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Concavity of entropy power of diffusion semigroup

Quantum diffusion semigroup

ddtρt = L(ρt) with L(ρ) = −π

∑2nj=1[Qj , [Qj , ρ]] + [Pj , [Pj , ρ]]

Page 45: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Concavity of entropy power of diffusion semigroup

d2

dt2

∣∣∣∣t=0

N(etL(ρ)) ≤ 0

Recall that for a Gaussian r.v. Z we have

d2

dt2

∣∣∣∣t=0

N(fZ ?t ρ) ≤ 0

Quantum diffusion semigroup

ddtρt = L(ρt) with L(ρ) = −π

∑2nj=1[Qj , [Qj , ρ]] + [Pj , [Pj , ρ]]

Theorem

etL(ρ) = fZ ?t ρ

Therefore,

t

eS(ρt)/n

Page 46: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Fisher information isoperimetric inequality

ddt

∣∣∣∣t=0

[12nJ(etL(ρ))

]−1≥ 1

Page 47: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Fisher information isoperimetric inequality

ddt

∣∣∣∣t=0

[12nJ(fZ ?t ρ)

]−1≥ 1

Recall that for a Gaussian r.v. Z we have etL(ρ) = fZ ?t ρ. Then

Page 48: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Fisher information isoperimetric inequality

Proof:

ddt

∣∣∣∣t=0

[12nJ(fZ ?t ρ)

]−1≥ 1

Take f = fZ in q. Stam inequality:

1t

J(fZ ?t ρ)−1 − J(ρ)−1

≥ J(fZ)−1 = (2n)−1

Take a limit t→∞.

Recall that for a Gaussian r.v. Z we have etL(ρ) = fZ ?t ρ. Then

Page 49: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Entropy power inequality

N(f ?t ρ) ≤ tN(f) +N(ρ)

eS(f?tρ)/n ≤ te2H(f)/n + eS(ρ)/n

Page 50: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Entropy power inequality

N(etL(ρ)) ≥ N(ρ) + t 2πeIn particular,

N(f ?t ρ) ≤ tN(f) +N(ρ)

eS(f?tρ)/n ≤ te2H(f)/n + eS(ρ)/n

Page 51: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Isoperimetric Inequality for Entropies1nJ(ρ)N(ρ) ≥ 4πe

Page 52: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Isoperimetric Inequality for Entropies1nJ(ρ)N(ρ) ≥ 4πe

Proof:from de Bruijn identity:

ddt

∣∣∣∣t=0

N(ρ(t)) = 12nJ(ρ)N(ρ)

denoting ρ(t) = etL(ρ), t ≥ 0, the entropy power inequality yields:

1t [N(ρ(t))−N(ρ)] ≥ 2πe

take a limit t→∞.

Page 53: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Isoperimetric Inequality for Entropies1nJ(ρ)N(ρ) ≥ 4πe

Optimality: let ρ = ωn be a Gaussian thermal state with a mean photon number n

Then S(ωn) = g(n) = (n + 1) log(n + 1)− n logn

Page 54: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Isoperimetric Inequality for Entropies1nJ(ρ)N(ρ) ≥ 4πe

Optimality: let ρ = ωn be a Gaussian thermal state with a mean photon number n

Then S(ωn) = g(n) = (n + 1) log(n + 1)− n logn

Under L the state evolves as etL(ωn) = ωnt where nt = n + 2πt

In particular, by de Bruijn identity

J(ωn) = 2 ddt

∣∣∣∣t=0

S(etL(ωn)) = 4π log(n+1n

)

Page 55: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Isoperimetric Inequality for Entropies1nJ(ρ)N(ρ) ≥ 4πe

Optimality: let ρ = ωn be a Gaussian thermal state with a mean photon number n

Then S(ωn) = g(n) = (n + 1) log(n + 1)− n logn

Under L the state evolves as etL(ωn) = ωnt where nt = n + 2πt

In particular, by de Bruijn identity

J(ωn) = 2 ddt

∣∣∣∣t=0

S(etL(ωn)) = 4π log(n+1n

)N(ωn) = exp(S(ωn)/1) = (n+1)n+1

nn

Also

J(ωn)N(ωn) = 4π(n+1n

)nlog(n+1n

)n+1 →n→∞

4πe

Therefore

Page 56: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Independent results by Rouze, Datta, Pautrat

Quantum Nash Inequality

Non-commutative ultracontractivity

Quantum Blachman-Stam inequality

For n-mode Gaussian states ρjN1 , and λj ∈ C, let A =∑j λjρj

‖A‖2+2/n2 ≤ −C‖A‖2/n1 Tr(A∗L(A))

There exists κn > 0, s.t. for any t > 0:

‖etL‖1→2 ≤ κnt−n/2

‖etL‖1→∞ ≤ 2nκ2nt−n

here ‖Λ‖p→q = sup‖A‖p=1 ‖Λ(A)‖q

‖A‖pp = Tr(|A|p)

Therefore,S(etL(ρ)) ≥ n log(2πκ

− 2n

n t)

For any α, β > 0 and t > 0,

(α+ β)2J(etL(ρ)) ≤ α2J(ρ) + 2nβ2

t

Follows directly from Stam Inequality

Tr(etL(ρ)2) ≤ κ2nt−n

Then

Page 57: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Ornstein-Uhlenbeck semigroup

Quantum Attenuator:

L−(ρ) = aρa† − 12a†a, ρ

Quantum Amplifier:

L+(ρ) = a†ρa− 12aa

†, ρ

n = 1

Let ρ = ωn be a Gaussian thermal state with a mean photon number n. Then ρ±(t) = ωn±(t)

Page 58: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Ornstein-Uhlenbeck semigroup

Quantum Attenuator:

L−(ρ) = aρa† − 12a†a, ρ

Quantum Amplifier:

L+(ρ) = a†ρa− 12aa

†, ρ

n = 1

Let ρ = ωn be a Gaussian thermal state with a mean photon number n. Then ρ±(t) = ωn±(t)

Under L−n−(t) = e−tn

Under L+

n+(t) = etn + et − 1

nn

tt

Page 59: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Ornstein-Uhlebeck semigroup

One-parameter group of CPTP maps eLµ,λt≥0, generated by

Lµ,λ = µ2L− + λ2L+ for µ > λ > 0

Page 60: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Ornstein-Uhlebeck semigroup

One-parameter group of CPTP maps eLµ,λt≥0, generated by

Lµ,λ = µ2L− + λ2L+ for µ > λ > 0

Fixed point of Lµ,λ is σµ,λ = (1− ν)∑∞n=0 ν

n|n〉〈n|, with ν = λ2/µ2

Page 61: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Ornstein-Uhlebeck semigroup

One-parameter group of CPTP maps eLµ,λt≥0, generated by

Lµ,λ = µ2L− + λ2L+ for µ > λ > 0

Then ωn(t) is s.t.

n(t) = e−(µ2−λ2)tn + (1− e−(µ2−λ2)t)n∞ with n∞ = tr(σµ,λn) = λ2

µ2−λ2

Fixed point of Lµ,λ is σµ,λ = (1− ν)∑∞n=0 ν

n|n〉〈n|, with ν = λ2/µ2

n∞

t

Page 62: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of qOU semigroup

Theorem

D(etLµ,λ(ρ)‖σµ,λ) ≤ e−(µ2−λ2)tD(ρ‖σµ,λ) for all t ≥ 0

For any one-mode Gaussian state ρ we have

ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ) ≤ −(µ2 − λ2)D(ρ||σµ,λ)

Moreover, for any ζ > µ2 − λ2 there exists a Gaussian state ρ s.t.

ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ) > −ζD(ρ||σµ,λ)

In other words,

Page 63: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of qOU semigroup

Theorem

D(etLµ,λ(ρ)‖σµ,λ) ≤ e−(µ2−λ2)tD(ρ‖σµ,λ) for all t ≥ 0

For any one-mode Gaussian state ρ we have

ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ) ≤ −(µ2 − λ2)D(ρ||σµ,λ)

Moreover, for any ζ > µ2 − λ2 there exists a Gaussian state ρ s.t.

ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ) > −ζD(ρ||σµ,λ)

In other words,

D(etLµ,λ(ρ)‖σµ,λ) ≤ e−(µ2−λ2)tD(ρ‖σµ,λ) for all t ≥ 0

Conjecture (June ’16)

For any state ρ we have

Page 64: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of qOU semigroup

Theorem

D(etLµ,λ(ρ)‖σµ,λ) ≤ e−(µ2−λ2)tD(ρ‖σµ,λ) for all t ≥ 0

For any one-mode Gaussian state ρ we have

ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ) ≤ −(µ2 − λ2)D(ρ||σµ,λ)

Moreover, for any ζ > µ2 − λ2 there exists a Gaussian state ρ s.t.

ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ) > −ζD(ρ||σµ,λ)

In other words,

D(etLµ,λ(ρ)‖σµ,λ) ≤ e−(µ2−λ2)tD(ρ‖σµ,λ) for all t ≥ 0

Conjecture (June ’16)

For any state ρ we have

Proved by Calren, Mass in Sep ’16

Page 65: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Log-Sobolev inequality

From Isoperimetric inequality for entropies

−S(ρ) ≤ AJ(ρ)− (2 + log(4πA))

for A > 0

Page 66: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Log-Sobolev inequality

From Isoperimetric inequality for entropies

−S(ρ) ≤ AJ(ρ)− (2 + log(4πA))

for A > 0

−S(ρ) ≤ log

14πeJ(ρ)

using log x ≤ x− 1

log(

14πeJ(ρ)

)= log

(AJ(ρ)4πeA

)= log

(1

4πeA

)+ log

(AJ(ρ)

)≤ AJ(ρ)− 2− log(4πA)

Page 67: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Quantum Log-Sobolev inequality

From Isoperimetric inequality for entropies

−S(ρ) ≤ AJ(ρ)− (2 + log(4πA))

for A > 0

Note that

D(ρ‖σµ,λ) = −S(ρ)− (log ν)n− log(1− ν)

Therefore

D(ρ‖σµ,λ) ≤ AJ(ρ)− 2− log(4πA) + n log 1ν − log(1− ν)

ν = λ2/µ2 < 1

Page 68: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical Log-Sobolev inequality

∫|f |2 log |f |2e−π|x|2dx ≤ 1

π

∫| 5 f |2e−π|x|2dx for

∫|f |2e−π|x|2dx = 1

Let g(x) = f(x)e−π|x|2/2. Then

Gross‘ logarithmic Sobolev inequality is[Carlen ‘91]

∫|g|2 log |g|2dx ≤ 1

π

∫| 5 g|2dx− n with

∫|g|2dx = 1

Page 69: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical Log-Sobolev inequality

∫|f |2 log |f |2e−π|x|2dx ≤ 1

π

∫| 5 f |2e−π|x|2dx for

∫|f |2e−π|x|2dx = 1

Let g(x) = f(x)e−π|x|2/2. Then

Gross‘ logarithmic Sobolev inequality is[Carlen ‘91]

∫|g|2 log |g|2dx ≤ 1

π

∫| 5 g|2dx− n with

∫|g|2dx = 1

Let r.v. X has density hX(x) = |g(x)|2 and r.v. Y has density hY (x) = e−π|x|2

. Then

H(X|Y )

∫hX log hXdx−

∫hX log hY dx

Page 70: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical Log-Sobolev inequality

∫|f |2 log |f |2e−π|x|2dx ≤ 1

π

∫| 5 f |2e−π|x|2dx for

∫|f |2e−π|x|2dx = 1

Let g(x) = f(x)e−π|x|2/2. Then

Gross‘ logarithmic Sobolev inequality is[Carlen ‘91]

∫|g|2 log |g|2dx ≤ 1

π

∫| 5 g|2dx− n with

∫|g|2dx = 1

Let r.v. X has density hX(x) = |g(x)|2 and r.v. Y has density hY (x) = e−π|x|2

. Then

H(X|Y )

∫hX log hXdx−

∫hX log hY dx

≤ 14π4

∫| 5 h

1/2X |2dx− n−

∫hX log hY dx

Page 71: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical Log-Sobolev inequality

∫|f |2 log |f |2e−π|x|2dx ≤ 1

π

∫| 5 f |2e−π|x|2dx for

∫|f |2e−π|x|2dx = 1

Let g(x) = f(x)e−π|x|2/2. Then

Gross‘ logarithmic Sobolev inequality is[Carlen ‘91]

∫|g|2 log |g|2dx ≤ 1

π

∫| 5 g|2dx− n with

∫|g|2dx = 1

Let r.v. X has density hX(x) = |g(x)|2 and r.v. Y has density hY (x) = e−π|x|2

. Then

H(X|Y ) ≤ 14π4

∫| 5 h

1/2X |2dx− n−

∫hX log hY dx

14πJ(X) +πE|X|2

Page 72: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical Log-Sobolev inequality

∫|f |2 log |f |2e−π|x|2dx ≤ 1

π

∫| 5 f |2e−π|x|2dx for

∫|f |2e−π|x|2dx = 1

Let g(x) = f(x)e−π|x|2/2. Then

Gross‘ logarithmic Sobolev inequality is[Carlen ‘91]

∫|g|2 log |g|2dx ≤ 1

π

∫| 5 g|2dx− n with

∫|g|2dx = 1

Let r.v. X has density hX(x) = |g(x)|2 and r.v. Y has density hY (x) = e−π|x|2

. Then

H(X|Y ) ≤ 14πJ(X)− n+ πE|X|2

Page 73: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Classical Log-Sobolev inequality

∫|f |2 log |f |2e−π|x|2dx ≤ 1

π

∫| 5 f |2e−π|x|2dx for

∫|f |2e−π|x|2dx = 1

Let g(x) = f(x)e−π|x|2/2. Then

Gross‘ logarithmic Sobolev inequality is[Carlen ‘91]

∫|g|2 log |g|2dx ≤ 1

π

∫| 5 g|2dx− n with

∫|g|2dx = 1

Let r.v. X has density hX(x) = |g(x)|2 and r.v. Y has density hY (x) = e−π|x|2

. Then

H(X|Y ) ≤ 14πJ(X)− n+ πE|X|2

D(ρ‖σµ,λ) ≤ AJ(ρ)− 2− log(1− ν)− log(4πA) + n log 1ν

Quantum case:

ν = λ2/µ2 < 1

A > 0

Page 74: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of Ornstein-Uhlenbeck semigroup

− ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ)− (µ2 − λ2)D(ρ||σµ,λ) ≥ 0

Page 75: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of Ornstein-Uhlenbeck semigroup

− ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ)− (µ2 − λ2)D(ρ||σµ,λ) ≥ 0

µ2

2 J−(ρ) + λ2

2 J+(ρ)− (log ν)(µ2 − λ2)n + λ2 log ν

J±(ρ) := 2 ddtS(etL±(ρ))

Page 76: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of Ornstein-Uhlenbeck semigroup

− ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ)− (µ2 − λ2)D(ρ||σµ,λ) ≥ 0

µ2

2 J−(ρ) + λ2

2 J+(ρ)− (log ν)(µ2 − λ2)n + λ2 log ν

J±(ρ) := 2 ddtS(etL±(ρ))

−S(ρ)− (log ν)n− log(1− ν)

Page 77: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of Ornstein-Uhlenbeck semigroup

− ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ)− (µ2 − λ2)D(ρ||σµ,λ) ≥ 0

µ2

2 J−(ρ) + λ2

2 J+(ρ)− (log ν)(µ2 − λ2)n + λ2 log ν

J±(ρ) := 2 ddtS(etL±(ρ))

−S(ρ)− (log ν)n− log(1− ν)

[Buscemi et al. 16]:J+(ρ) ≥ 2

[de Palma et al. ’16]:J−(ρ) ≥ f(S(ρ))

For large S(ρ), e.g. µ2 = 2, λ2 = 1: S(ρ) & 0.5

Page 78: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of Ornstein-Uhlenbeck semigroup

− ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ)− (µ2 − λ2)D(ρ||σµ,λ) ≥ 0

µ2

2 J−(ρ) + λ2

2 J+(ρ)− (log ν)(µ2 − λ2)n + λ2 log ν ≤ AJ(ρ)−2− log(4πA)−n log ν − log(1− ν)

J±(ρ) := 2 ddtS(etL±(ρ))

isoperimetric ineq.

Page 79: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of Ornstein-Uhlenbeck semigroup

− ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ)− (µ2 − λ2)D(ρ||σµ,λ) ≥ 0

µ2

2 J−(ρ) + λ2

2 J+(ρ)− (log ν)(µ2 − λ2)n + λ2 log ν ≤ AJ(ρ)−2− log(4πA)−n log ν − log(1− ν)

J±(ρ) := 2 ddtS(etL±(ρ))

J(ρ) = 2π(J−(ρ) + J+(ρ))Note that

Take A = λ2

4π(µ2−λ2)

µ2−λ2

2 J−(ρ) + µ2 log ν + 2(µ2 − λ2)

isoperimetric ineq.

Page 80: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Fast convergence of Ornstein-Uhlenbeck semigroup

− ddt

∣∣∣t=0

D(etLµ,λ(ρ)‖σµ,λ)− (µ2 − λ2)D(ρ||σµ,λ) ≥ 0

µ2

2 J−(ρ) + λ2

2 J+(ρ)− (log ν)(µ2 − λ2)n + λ2 log ν ≤ AJ(ρ)−2− log(4πA)−n log ν − log(1− ν)

J±(ρ) := 2 ddtS(etL±(ρ))

J(ρ) = 2π(J−(ρ) + J+(ρ))Note that

Take A = λ2

4π(µ2−λ2)

µ2−λ2

2 J−(ρ) + µ2 log ν + 2(µ2 − λ2)

isoperimetric ineq.

≥ J−(ωn) = −2n log(1 + 1/n)

For small n = Tr(ρn), e.g. µ2 = 2, λ2 = 1: n . 0.67

Gaussian optimality:

Page 81: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Thank you!

S. Huber, R. Koenig, A. Vershynina. Geometric inequalities from phase-space translations. arXiv:1606.08603

R. Koenig and G. Smith. The entropy power inequality for quantum systems. Infor- mation Theory, IEEETransactions on, 60(3):1536-1548, March 2014.

G. De Palma, D. Trevisan, and V. Giovannetti. Gaussian states minimize the output entropy of the one-modequantum attenuator. 2016. arXiv:1605.00441

F. Buscemi, S. Das, and M. M. Wilde. Approximate reversibility in the context of entropy gain, information gain, andcomplete positivity. 2016. arXiv:1601.01207

G. De Palma, A. Mari, S. Lloyd, and V. Giovannetti. Multimode quantum entropy power inequality. Phys. Rev. A,91:032320, Mar 2015

R. Werner. Quantum harmonic analysis on phase space. Journal of Mathematical Physics, 25(5):1404-1411, 1984

C. Rouze, N. Datta, Y. Pautrat. Contractivity properties of a quantum diffusion semigroup. arXiv:1607.04242

E. A. Carlen, J. Maas. Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance.arXiv:1609.01254

Page 82: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Gaussian optimality for energy-constrained entropy rates

Quantum Attenuator: L−(ρ) = aρa† − 12a†a, ρ

Theoreminfρ:Tr(nρ)≤n

ddt

∣∣t=0

J−(ρ)) = J−(ωn) = −n log(1 + 1

n

)

Page 83: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Gaussian optimality for energy-constrained entropy rates

Quantum Attenuator: L−(ρ) = aρa† − 12a†a, ρ

Theoreminfρ:Tr(nρ)≤n

ddt

∣∣t=0

J−(ρ)) = J−(ωn) = −n log(1 + 1

n

)Step 1 (Correspondence to classical problem)

Let p = (p0, p1, . . . , ) be a prob. distribution

For ρ =∑n pn|n〉〈n| we have

ρ(t) = etL−(ρ) =∑n pn(t)|n〉〈n|

with pn(t) = −npn(t) + (n+ 1)pn+1(t)

Page 84: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Gaussian optimality for energy-constrained entropy rates

Quantum Attenuator: L−(ρ) = aρa† − 12a†a, ρ

Theoreminfρ:Tr(nρ)≤n

ddt

∣∣t=0

J−(ρ)) = J−(ωn) = −n log(1 + 1

n

)Step 1 (Correspondence to classical problem)

Let p = (p0, p1, . . . , ) be a prob. distribution

For ρ =∑n pn|n〉〈n| we have

ρ(t) = etL−(ρ) =∑n pn(t)|n〉〈n|

with pn(t) = −npn(t) + (n+ 1)pn+1(t)Denote (C−(p))n = −npn + (n+ 1)pn+1

Then p(t) = etC−(p) - pure-death processTheorem

infρ:Tr(nρ)≤nddt

∣∣∣t=0

S(etL−(ρ)) = infp:Ep[N ]≤nddt

∣∣∣t=0

H(etC−(p))

Page 85: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Gaussian optimality for energy-constrained entropy rates

Quantum Attenuator: L−(ρ) = aρa† − 12a†a, ρ

Theoreminfρ:Tr(nρ)≤n

ddt

∣∣t=0

J−(ρ)) = J−(ωn) = −n log(1 + 1

n

)Step 1 (Correspondence to classical problem)

Let p = (p0, p1, . . . , ) be a prob. distribution

Denote (C−(p))n = −npn + (n+ 1)pn+1

Then p(t) = etC−(p) - pure-death processTheorem

infρ:Tr(nρ)≤nddt

∣∣∣t=0

S(etL−(ρ)) = infp:Ep[N ]≤nddt

∣∣∣t=0

H(etC−(p))

H(p) := −∑∞k=0 pk log pk

Page 86: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Gaussian optimality for energy-constrained entropy rates

Quantum Attenuator: L−(ρ) = aρa† − 12a†a, ρ

Theoreminfρ:Tr(nρ)≤n

ddt

∣∣t=0

J−(ρ)) = J−(ωn) = −n log(1 + 1

n

)Step 1 (Correspondence to classical problem)

Let p = (p0, p1, . . . , ) be a prob. distribution

Denote (C−(p))n = −npn + (n+ 1)pn+1

Then p(t) = etC−(p) - pure-death processTheorem

infρ:Tr(nρ)≤nddt

∣∣∣t=0

S(etL−(ρ)) = infp:Ep[N ]≤nddt

∣∣∣t=0

H(etC−(p))

Step 2 (Classical problem)

infp:Ep[N ]≤nddt

∣∣∣t=0

H(etC−(p)) = −n log(1 + 1n )

Page 87: for Information Theory Quantum analogues of geometric ...Quantum analogues of geometric inequalities for Information Theory Anna Vershynina based on a joint work with Robert Koenig

Gaussian optimality for energy-constrained entropy rates

Quantum Attenuator: L−(ρ) = aρa† − 12a†a, ρ

Theoreminfρ:Tr(nρ)≤n

ddt

∣∣t=0

J−(ρ)) = J−(ωn) = −n log(1 + 1

n

)Step 1 (Correspondence to classical problem)

Let p = (p0, p1, . . . , ) be a prob. distribution

Denote (C−(p))n = −npn + (n+ 1)pn+1

Then p(t) = etC−(p) - pure-death processTheorem

infρ:Tr(nρ)≤nddt

∣∣∣t=0

S(etL−(ρ)) = infp:Ep[N ]≤nddt

∣∣∣t=0

H(etC−(p))

Step 2 (Classical problem)

infp:Ep[N ]≤nddt

∣∣∣t=0

H(etC−(p)) = −n log(1 + 1n )

Step 3 (Gaussian optimality) Let ωn be a Gaussian thermal state with a mean-photon number nThen

ddt

∣∣∣t=0

S(etL−(ωn)) = −n log(1 + 1

n

)