73

Follow us on Twitter! - NEWBio: Northeast … Guest network offers short‐term access for non‐WVU individuals who have legi mate need for wireless connec vity while on campus,

  • Upload
    ledieu

  • View
    220

  • Download
    4

Embed Size (px)

Citation preview

Follow us on Twitter! @NEWBioProject

Follow all USDA NIFA AFRI CAPs:

@AgCenterSUBI

@AHB_NW

@BANR_Bioenergy

@NARA_Renewables

@cenusabioenergy

@IBSS6

–– 3 –– 

Acknowledgements

NEWBio thanks our West Virginia University hosts:

Davis College of Agriculture, Natural Resources and Design Division of Forestry and Natural Resources

David DeVallance, Assistant Professor, Wood Science & Technology

Stephen DiFazio, Associate Professor, Biology

Shawn Grushecky, Program Coordinator for Energy Land Management

Joseph McNeel, Director, WVU School of Natural Resources

Steffany Scagline, Graduate Student, Environmental Services

Jamie Schuler, Assistant Professor, Silviculture Jeff Skousen, Professor of Soil Science

Jingxin Wang, Professor of Wood Science and Technology

Xinfeng Xie, Postdoctoral Fellow

Westvaco Natural Resources Center Robert Driscole, Forest Manager

Erickson Alumni Center

Mary Kinsley, Facility Director

NEWBio also gratefully acknowledges

USDA NIFA’s Agriculture and Food Research Initiative

for its essential role in supporting the Consortium.

NEWBio is supported by USDA NIFA AFRI

Competitive Grant #2012-68005-19703.

 

West Virginia University Guest Wireless The Guest network offers short‐term access for non‐WVU individuals who have legi mate need for wireless connec vity while on campus, such as visi ng parents, guest lecturers, vendors, and others. WVU guest wireless is neither secure nor encrypted and technical support is not provided. To con‐nect to WVU.Guest, point your wireless device to “WVU.Guest,” open a web browser, read and ac‐cept the terms of use, and supply a valid email address. This service is not intended for WVU faculty, 

SALONS 

A                 B                 C 

ERICKSON ALUMNI CENTER 

MAIN FLOORPLAN 

Club Room and Room 203  

are on upper floors. 

 

ALMA MATER ROOM 

(Poster Session) 

MOUNTAINEER 

COURTYARD 

ENTRANCE 

–– 5 –– 

Table of Contents

6 Agenda 8 Attendees, Alphabetical 16 Attendees, Alphabetical by Institution SESSION INFORMATION 23 Opening Session: Welcome and Introductions 23 Thrust Short Reports 24 Panel Discussion on Commercialization and Barriers to Scale-Up of Bioenergy in the NE 26 Cross-Thrust Interactions Schedule and Room Assignments 26 Poster Session Sample Ballot 27 Poster Presenters and Abstracts 37 Team Huddle: Advisory Board Report Out 37 TEA/LCA/Ecosystem Services Updates 37 Invited Guest Presentations 39 Closing Session: Thrusts Report Out and Meeting Wrap Up PROJECT INFORMATION 42 NEWBio Objectives 44 NEWBio Accomplishments as Related to Objectives 47 2014 Advisory Board Recommendations 48 2014 External Evaluation Team Recommendations THRUST INFORMATION

Team Members, Objectives, Accomplishments, Plans for Year Four 52 Human Systems 54 Feedstock Improvement 56 Harvest, Preprocessing and Logistics 59 System Performance and Sustainability Metrics 61 Safety and Health in Biomass Feedstock Production/Processing Ops 63 Extension 66 Education 68 Leadership, Stakeholder Involvement, K2A, and Evaluation APPENDICES 73 Meeting Evaluation 73 Travel Reimbursement Forms and Instructions

–– 6 –– 

AGENDA TIME ACTIVITY LOCATION

MONDAY, AUGUST 3, 2015  

02:00 PM—06:00 PM WVU Field Tours: Mylan Park Reclaimed Mineland, Greene Team Pellet Facility, Butcher Switchgrass Fields (tentative), and WVU Agronomy Farm Willow Trials.

Depart Erickson Alumni Center

06:00 PM

WVU/Westvaco Natural Resources Center Facility Tour with Bob Driscole, Forest Manager Group Dinner Concurrent meeting to discuss Penn State winter harvest of willow trials by Feedstock/HPL/Sustainability sub-group. Arranged by Armen Kemanian. Post-dinner executive committee meeting

The Natural Resource Center is located within the WVU Research Forest. Directions available online: http://westvacocenter.wvu.edu/directions-and-contacts

07:30 AM—08:30 AM

BREAKFAST Buffet- Loggia outside Salons A + B

Concurrent Education Thrust Meeting (Room 203)

Concurrent Poster Session Set-up (Alma Mater Room)

08:30 AM—08:45 AM Welcome and Introductions

Salons A + B

08:45 AM—09:45 AM

Thrust Short Reports Wei Jiang, Penn State, Human Systems (Economic) Morey Burnham, SUNY ESF, fHuman Systems (Social) Lindsey Hoffman, Rutgers, Feedstock Improvement Xinfeng Xie, West Virginia, Harvest, Preprocess, Logistics Kristie Dennison, Penn State, Sustainability Pankaj Kuhar, Penn State, Safety and Health Sarah Wurzbacher, Penn State, Extension Nathan Sleight, SUNY ESF, Education

09:45 AM—10:00 AM BREAK

10:00 AM—12:00 PM

Panel Discussion Commercialization: Barriers to Scale-Up for Bioenergy in the Northeast Panelists: Manuk Colakyan, Renmatix Kevin Comer, Antares Group Inc. Tim Foust, NREL Tim Rials, University of Tennessee

12:00 PM—01:00 PM

GROUP LUNCH Lunch set-up in Salon C; attendees eat in Salons A + B or outside, weather permitting

Concurrent Feedstock Improvement Meeting Concurrent Harvest, Preprocess, Logistics Meeting

Room 203 Room TBD

TUESDAY, AUGUST 4, 2015  

–– 7 –– 

AGENDA TIME ACTIVITY LOCATION

TUESDAY, AUGUST 4, 2015

01:00 PM—01:50 PM Cross-Thrust Interaction Session #1 Feedstock Improvement and HPL (Salon A) Human Systems and Sustainability (Salon B)

Salons A + B will be divided for cross-thrust meetings after lunch 01:50 PM—02:40 PM

Cross-Thrust Interaction Session #2 Feedstock Improvement and Sustainability (Salon A) Human Systems and HPL (Salon B)

02:40 PM—03:30 PM Cross-Thrust Interaction Session #3 Sustainability and HPL (Salon A) Human Systems and Feedstock Improvement (Salon B)

03:30 PM—03:45 PM BREAK

03:45 PM—05:00 PM Poster Session Alma Mater Room

05:00 PM—06:00 PM Advisory Board Meeting Room 203

05:00 PM—06:00 PM Social Hour Club Room

06:00 PM GROUP DINNER Mountaineer Courtyard, weather permitting; otherwise, Salon C

WEDNESDAY, AUGUST 5, 2015

07:30 AM—08:30 AM BREAKFAST Buffet— Loggia outside Salons A+B

Concurrent Extension Thrust Meeting Room 203

08:30 AM—09:00 AM Advisory Board Report Out Salons A + B

09:00 AM—10:00 AM

TEA/LCA/Ecosystem Services Project Update Peter Woodbury, Cornell Matt Langholtz, ORNL Sabrina Spatari, Drexel Tristan Brown, SUNY ESF Jingxin Wang, West Virginia

Salons A + B

10:00 AM—10:15 AM BREAK

10:15 AM—10:45 AM Invited Guest Presentation Brian Stanton, Greenwood Resources, AHB-NW CAP

10:45 AM—11:15 AM Invited Guest Presentation Mike Wolcott, Washington State University, NARA Renewables CAP

11:15 AM—12:15 PM Closing Session: Thrust Leads Report Out

12:15 PM—12:30 PM Meeting Wrap Up

12:30 PM Adjourn BOXED LUNCH TO GO!

Salons A + B

–– 8 –– 

Saurabh Bansal Penn State University [email protected] Human Systems

Ryan Baxter Penn State University [email protected] Harvest, Preprocessing and Logistics

Pieter Billen Drexel University [email protected] System Performance and Sustainability

Akwasi Boateng USDA—ARS ERRC [email protected] Harvest, Preprocessing and Logistics

Tais Braz Nascimento West Virginia University [email protected] Harvest, Preprocessing and Logistics

Leah Bug Penn State University [email protected] Education

Robert Barricelli West Virginia University [email protected] Education

Anahita Bharadwaj Penn State University [email protected] Harvest, Preprocessing, and Lo-gistics

Lars Bjoernebo Drexel University [email protected] System Performance and Sustainability

Stacy Bonos Rutgers University [email protected] Feedstock Improvement

Tristan Brown SUNY-ESF [email protected] Harvest, Preprocessing and Logistics

Morey Burnham SUNY-ESF [email protected] Human Systems

Attendees Alphabetical

–– 9 –– 

Attendees Alphabetical

John Carlson Penn State University [email protected] Feedstock Improvement

Daniel Ciolkosz Penn State University [email protected] Education

Kevin Comer Antares Group Inc. [email protected] Invited Guest

Austine Decker Penn State University [email protected] Leadership, Stakeholder Involvement, K2A, Evaluation

David DeVallance West Virginia University [email protected] Education

Stephen DiFazio West Virginia University [email protected] Feedstock Improvement

Steve Caudill West Virginia University [email protected] WVU Division of Forestry and Natural Resources

Manuk Colakyan Renmatix [email protected] Leadership, Stakeholder Involvement, K2A, Evaluation

Ryan Crawford Cornell University [email protected] Feedstock Improvement

Kristie Dennison Penn State University [email protected] System Performance and Sustainability

Donna DeWitt West Virginia University [email protected] WVU Division of Forestry and Natural Resources

Kay DiMarco Penn State University [email protected] Harvest, Preprocessing and Logistics

–– 10 –– 

Bob Driscole West Virginia University [email protected] Forest Manager WVU Research Forest

Calvin Ernst Ernst Conservation Seeds, Inc. [email protected] Advisory Board

Eric Fabio Cornell University [email protected] Feedstock Improvement

Thomas Foust National Renewable Energy Laboratory [email protected] Leadership, Stakeholder Involvement, K2A, Evaluation

Fred Gouker Cornell University [email protected] Feedstock Improvement

Marvin Hall Penn State University [email protected] Feedstock Improvement

Weston Eaton Michigan State University [email protected] Human Systems

Marcia Ernst Ernst Conservation Seeds, Inc. Invited Guest

Katrina Fandrich SUNY-ESF [email protected] Harvest, Preprocessing and Logistics

Lara Fowler Penn State University [email protected] Human Systems

Shawn Grushecky West Virginia University [email protected] Extension

Karl Hallen SUNY-ESF [email protected] Harvest, Preprocessing and Logistics

Attendees Alphabetical

–– 11 –– 

Julie Hansen Cornell University [email protected] Feedstock Improvement

Susan Hawkins University of Vermont [email protected] Extension

Ryan Hilton Penn State University [email protected] Extension

Lindsey Hoffman Rutgers University [email protected] Feedstock Improvement

Michael Jacobson Penn State University [email protected] Extension

Matthew Johnson Penn State University [email protected] Education

Damon Hartley Idaho National Laboratory [email protected] Harvest, Preprocessing and Logistics

Justin Heavey SUNY-ESF [email protected] Extension

Clare Hinrichs Penn State University [email protected] Human Systems

Fen Hunt National Institute of Food and Agriculture [email protected] Leadership, Stakeholder Involvement, K2A, Evaluation

Wei Jiang Penn State University [email protected] Human Systems

Edward Johnstonbaugh Penn State University [email protected] Extension

Attendees Alphabetical

–– 12 –– 

Ty Kallfelz Syracuse University [email protected] Harvest, Preprocessing and Logistics

Armen Kemanian Penn State University [email protected] System Performance and Sustainability

Pankaj Kuhar Penn State University [email protected] Safety and Health

Jessica Leahy University of Maine [email protected] Leadership, Stakeholder Involvement, K2A, Evaluation

Weiguo Liu West Virginia University [email protected] Harvest, Preprocessing and Logistics

Joseph McNeel West Virginia University [email protected] WVU Division of Forestry and Natural Resources

Melanie Kammerer Penn State University [email protected] System Performance and Sustainability

Barbara Kinne Penn State University [email protected] Leadership, Stakeholder Involvement, K2A, Evaluation

Matthew Langholtz Oak Ridge National Laboratory [email protected] Human Systems

Gad Lee Rutgers University [email protected] System Performance and Sustainability

Jessica McCord University of Tennessee [email protected] Education

Tyler Mock SUNY-ESF [email protected] Harvest, Preprocessing and Logistics

Attendees Alphabetical

–– 13 –– 

Dave Mortensen Penn State University [email protected] System Performance and Sustainability

Timothy Rials University of Tennessee [email protected] Leadership, Stakeholder Improvement, K2A, Evaluation

Brian Richards Cornell University [email protected] System Performance and Sustainability

Steffany Scagline West Virginia University [email protected] Education

Jamie Schuler West Virginia University [email protected] WVU Guest

Michelle Serapiglia USDA-ARS [email protected] Harvest, Preprocessing and Logistics

Dennis Rak Double A Willow [email protected] Feedstock Improvement

Tom Richard Penn State University [email protected] Harvest, Preprocessing and Logistics

Logan Rohr Cornell University [email protected] Feedstock Improvement

Douglas Schaufler Penn State University [email protected] Safety & Health

Theresa Selfa SUNY-ESF [email protected] Human Systems

Jeff Skousen West Virginia University [email protected] Extension

Attendees Alphabetical

–– 14 –– 

Nathan Sleight SUNY-ESF [email protected] System Performance and Sustainability

Kevin Smith CNH Industrial [email protected] Harvest, Preprocessing and Logistics

Sabrina Spatari Drexel University [email protected] Harvest, Preprocessing and Logistics

Evelyn Thomchick Penn State University [email protected] Human Systems

Timothy Volk SUNY College of Environmental Science and Forestry [email protected] Harvest, Preprocessing and Logistics

Wanyan Wang Penn State University [email protected] System Performance and Sustainability

Larry Smart Cornell University [email protected] Feedstock Improvement

Kittikun Songsomboon Cornell University [email protected] Feedstock Improvement

Brian Stanton Greenwood Resources [email protected] Feedstock Improvement

John Vance West Virginia University [email protected] Harvest, Preprocessing and Logistics

Jingxin Wang West Virginia University [email protected] Harvest, Preprocessing and Logistics

Yuxi Wang West Virginia University [email protected] Harvest, Preprocessing and Logistics

Attendees Alphabetical

–– 15 –– 

Charlynn White Penn State University [email protected] Harvest, Preprocessing and Logistics

Peter Woodbury Cornell University [email protected] System Performance and Sustainability

Xinfeng Xie West Virginia University [email protected] Harvest, Preprocessing and Logistics

Zhen Yu West Virginia University [email protected] Harvest, Preprocessing and Logistics

Mike Wolcott Washington State University [email protected]

Sarah Wurzbacher Penn State University [email protected] Extension

Junming Xu West Virginia University [email protected] Extension

Ran Zhou West Virginia University [email protected] Feedstock Improvement

Attendees Alphabetical

–– 16 –– 

Antares Group inc. Kevin Comer [email protected]

CNH Industrial America LLC Kevin Smith [email protected]

Cornell University Ryan Crawford [email protected]

Eric Fabio [email protected]

Fred Gouker [email protected]

Julie Hansen [email protected]

Brian Richards [email protected]

Logan Rohr [email protected]

Larry Smart [email protected]

Kittikun Songsomboon [email protected]

Peter Woodbury [email protected]

Double A Willow Abram Rak [email protected]

Drexel University Pieter Billen [email protected]

Lars Bjoernebo [email protected]

Sabrina Spatari [email protected]

Ernst Conservation Seeds, Inc. Calvin Ernst [email protected]

Marcia Ernst

Attendees By Institution/Organization

–– 17 –– 

Attendees Institutions/Organizations

Greenwood Resources Brian Stanton [email protected]

Idaho National Laboratory Damon Hartley [email protected]

Michigan State University Weston Easton [email protected]

National Renewable Energy Laboratory

Thomas Foust [email protected]

Oak Ridge National Laboratory Matthew Langholtz [email protected]

Penn State University Saurabh Bansal [email protected]

Ryan Baxter [email protected]

Anahita Bharadwaj [email protected]

Leah Bug [email protected]

John Carlson [email protected]

Daniel Ciolkosz [email protected]

Austine Decker [email protected]

Kristie Dennison [email protected]

Kay DiMarco [email protected]

Lara Fowler [email protected]

Marvin Hall [email protected]

Ryan Hilton [email protected]

Clare Hinrichs [email protected]

–– 18 –– 

Attendees Institutions/Organizations

Penn State University (continued) Michael Jacobson [email protected]

Wei Jiang [email protected]

Matthew Johnson [email protected]

Edward Johnstonbaugh [email protected]

Melanie Kammerer [email protected]

Armen Kemanian [email protected]

Barbara Kinne [email protected]

Pankaj Kuhar [email protected]

Dave Mortensen [email protected]

Tom Richard [email protected]

Douglas Schaufler [email protected]

Evelyn Thomchick [email protected]

Wanyan Wang [email protected]

Charlynn White [email protected]

Sarah Wurzbacher [email protected]

Renmatix Manuk Colakyan [email protected]

Rutgers University Stacy Bonos [email protected]

Lindsey Hoffman [email protected]

SUNY College of Environmental Science and Forestry Tristan Brown [email protected]

Morey Burnham [email protected]

Katrina Fandrich [email protected]

Karl Hallen [email protected]

Justin Heavey [email protected]

Tyler Mock [email protected]

–– 19 –– 

Attendees Institutions/Organizations

SUNY-ESF (cont.)

Nathan Sleight [email protected]

Timothy Volk [email protected]

Syracuse University Ty Kallfelz [email protected]

University of Maine Jessica Leahy [email protected]

University of Tennessee Jessica McCord [email protected]

Timothy Rials [email protected]

University of Vermont: Extension Sue Hawkins [email protected]

USDA Agriculture Research Service, Eastern Regional Research Center

Akwasi Boateng [email protected]

Michelle Serapiglia [email protected]

National Institute of Food and Agriculture

Fen Hunt [email protected]

Washington State University Mike Wolcott [email protected]

Theresa Selfa [email protected]

–– 20 –– 

Attendees Institutions/Organizations

West Virginia University

David DeVallance [email protected]

Stephen DiFazio [email protected]

Shawn Grushecky [email protected]

Weiguo Liu [email protected]

Joseph McNeel [email protected]

Jingxin Wang [email protected]

Yuxi Wang [email protected]

Ran Zhou [email protected]

Steve Caudill [email protected]

Donna DeWitt [email protected]

Bob Driscole [email protected]

Zhen Yu [email protected]

Steffany Scagline [email protected]

Jeff Skousen [email protected]

John Vance [email protected]

Tais Braz Nascimento [email protected]

Robert Barricelli [email protected]

Jamie Schuler [email protected]

–– 21 –– 

SESSION INFORMATION

Opening Session Overview and Thrust Short Reports Panel Discussion: Barriers to Scale-Up of Bioenergy in the NE

Cross-Thrust Interaction Schedule Poster Session with Student Competition

TEA/LCA/Ecosystem Services Activity Update Invited Guest Presentations

Thrusts Report Out and Meeting Wrap-Up

–– 23 –– 

Opening Session

Welcome and Introductions

Tom Richard, Project Director, Penn State University  

Tom will introduce members of the NEWBio Advisory Board and invited guests, and provide an 

overview and a brief project status update. 

 

NEWBio Thrust Short Reports   Thrusts will offer remarks on thrust ac vi es and highlights from NEWBio’s third year. 

Wei Jiang, Penn State University 

Human Systems in the Northeast Regional Bioeconomy  

 

Eric Fabio, Cornell University 

Feedstock Improvement  

 

Xinfeng Xie, West Virginia University 

Harvest, Preprocessing and Logis cs  

 

Kris e Dennison, Penn State University 

System Performance and Sustainability Metrics 

 

Pankaj Kuhar, Penn State University 

Safety and Health  

 

Sarah Wurzbacher, Penn State University 

Extension 

                          

Nathan Sleight, SUNY ESF 

Educa on                           

 

Tom Richard, Penn State University 

Leadership, Stakeholder Involvement, K2A and Evalua on  

 

 

 

–– 24 –– 

Panel Discussion

Commercialization: Barriers to Scale-up for Bioenergy in the Northeast This interac ve session promises to deliver a vital exchange of informa on. To begin the session, our 

panelists will share a few thoughts on their experiences and ac vi es related to biomass, bioenergy 

and the overall bioeconomy. Q&A will follow. Panelists are Manuk Colakyan, Kevin Comer, Tom Foust, 

Tim Rials and Kevin Smith. The session will be moderated by Tom Richard, with assistance from Lara 

Fowler. 

 

K  C , PE A  G  I .  Associate Principal 

Mr. Comer is a mechanical engineer specializing in energy and environmental systems.  He is experienced in: 

R&D and market assessments for advanced energy systems; power plant performance tes ng and analysis; 

biomass fuel supply studies; biomass repowering and cofiring in fossil fuel‐fired boilers; energy use evalua on and energy au‐

di ng (including ligh ng system upgrade evalua ons); performance and economic modeling for energy systems; developing cus‐

tom spreadsheets and models for evalua ng technical and economic performance of energy systems; environmental permi ng 

for power genera on projects; feasibility and design studies for solar photovoltaic systems; feasibility and design studies for an‐

aerobic diges on systems; project management and performance assessment for installa on of solar photovoltaic systems; and 

public outreach for “green” energy. Founded in 1992 as a private, professional‐services firm, Antares is unique in its con nuous 

dedica on to implemen ng cost‐effec ve clean energy solu ons.  

h p://antaresgroupinc.com/ 

M  C , P D R , I .  Chief Science Officer  

Chair, Renma x Scien fic Advisory Board 

Manuk joined Renma x in 2010 and has more than 25 years of industrial experience at Union Carbide and Dow Chemical where 

he has held senior posi ons in the R&D and Engineering Departments, leading the Solids Processing and Reac on Engineering 

Groups, and as a resident Fellow. Dr. Colakyan’s areas of exper se include reac on engineering, catalysis, solids processing, pro‐

cess development and scale‐up, fluidiza on, mathema cal modeling and computa onal fluid dynamics. He has led a number of 

major capital projects involving the commercializa on of new catalysts or cataly c processes and processes involving solids and 

supercri cal hydrolysis of biomass. With three degrees in chemical engineering, Dr. Colakyan is ac ve in the American Ins tute 

of Chemical Engineers (AIChE), having served in various divisions, as chapter president, group chair, and programming chair for 

the Par cle Technology Forum. He is the recipient of AIChE’s “Fluidiza on Processing Recogni on”, AIChE "Lippin Service 

Award" and Oregon State University’s “Academy of Dis nguished Engineers” Awards. 

h p://renma x.com/ 

–– 25 –– 

Panel Discussion  

T  R , P D U    T   Professor and Director, Center for Renewable Carbon, University of Tennessee 

Execu ve Team, Southeastern Partnership for Integrated Biomass Supply Systems 

Tim Rials is Director of the Center for Renewable Carbon in The University of Tennessee, Ins tute of Agri‐

culture.  He joined the university following 13 years with the U.S. Forest Service, Southern Research Sta on 

in Pineville, Louisiana, a er two years on the faculty of the University of California at Berkeley.  Tim’s research career has 

focused on the efficient and effec ve u liza on of renewable resources in advanced composite materials, including develop‐

ment of high throughput analy cal methods for characterizing wood. 

h ps://ag.tennessee.edu/crc/Pages/default.aspx 

h p://www.se‐ibss.org/ 

T  F , P D N  R  E     Director, Na onal Bioenergy Center 

Dr. Thomas Foust is an interna onally recognized expert in the biomass field. His areas of exper se include 

feedstock produc on, biomass‐to‐fuels conversion technologies, and environmental and societal sustaina‐

bility issues associated with biofuels. He has more than 20 years of research and research management experience, specializ‐

ing in biomass feedstocks and conversion technologies. As Na onal Bioenergy Center Director, Dr. Foust guides and directs 

the Na onal Renewable Energy Laboratory's research efforts to develop biomass conversion technologies via biochemical 

and thermochemical routes, as well as cri cal research areas addressing the sustainability of biofuels. This research focuses 

on developing the necessary science and technology for conver ng biomass to biofuels, bioproducts, and biopower in an 

economical and environmentally sustainable manner. 

h p://www.nrel.gov/biomass/staff_pages/thomas_foust.html 

h p://www.nrel.gov/biomass/ 

K  S  CNH I  LLC  BS and MS in Agricultural and Biological Engineering, Penn State University. 

With CNH for 18 years at New Holland PA site. 

In his current posi on at CNH, Kevin Smith is Project Engineer for the Innova on Group, which focuses on 

Hay and Forage Equipment.  His exper se is in round balers and biomass harves ng. CNH is an important 

partner for NEWBio, most recently con nuing a ten‐year partnership with SUNY ESF on biomass research by furnishing SUNY 

researchers with an FR9080 self‐propelled forage harvester with 130FB coppice header for use in a SUNY project recently 

funded by the U.S. Department of Energy. 

CNH Partners wit SUNY ESF 

h p://www.cnhindustrial.com/en‐US/Pages/HomePage.aspx 

–– 26 –– 

Poster Session Poster Ballot Example

Ballots will be available at the poster session.

TUESDAY AUGUST 4, 2015

01:00 PM to

01:50 PM

Cross-Thrust Interaction Session #1

Feedstock Improvement and HPL (Salon A)

Human Systems and Sustainability (Salon B)

Cross-Thrust Interaction Session #2

Feedstock Improvement and Sustainability (Salon A)

Human Systems and HPL (Salon B)

Cross-Thrust Interaction Session #3

Sustainability and HPL (Salon A) Human Systems and Feedstock Im-

provement (Salon B)

01:50 PM to

02:40 PM

02:40 PM to

03:30 PM

Cross-Thrust Interaction Schedule

–– 27 –– 

Poster Session

Student Presenters and Abstracts  

Stephanie Aniyika, Delaware State University                 S 1 

Spa al Analysis of Abandoned Cropland 

AUTHORS: Stephanie Anyika (Delaware State) 

 

This research focuses on the presence of DRM1 expression in Alamor switchgrass under salinity stress using QPCR analysis. 

Our goal is to understand the role these enzymes play in de novo methyla on to determine the presence of DRM1 in 

switchgrass. 

 

Ryan Baxter, Penn State University                  S 2 

Spa al Analysis of Abandoned Cropland 

AUTHORS: R. Baxter (Penn State University); K. Calvert (University of Guelph) 

 

The analysis, visualiza on and interpreta on of spa al informa on can have profound implica ons on its applica on in 

policy‐making. This poster presents the spa al analysis methods used to quan fy and depict the amount of abandoned 

cropland in the United States that is poten ally available for the produc on of energy crops. Maps illustrate the spa al 

distribu on of total cropland change based on historical census data, es mates of the conversion of cropland to urban 

development, the conversion of cropland to permanent pasture, and the abandoned cropland area ul mately available for 

energy crop produc on. The resul ng map of available abandoned cropland is depicted using four cartographic visualiza‐

on methods that illustrate the variety of possible interpreta ons of the results. An addi onal visualiza on shows the re‐

sults of a cluster analysis of available abandoned cropland that draws a en on to regional concentra ons of land, which 

may be of par cular interest to policy‐makers. A spa ally con nuous model of switchgrass yield and standard conversion 

factors are used to es mate total liquid fuel produc on on the available abandoned cropland. This total is compared 

against the liquid fuel produc on calculated from other published es mates of abandoned cropland. Finally, the contribu‐

ons each es mate makes to current na onal energy consump on in various transporta on sectors are compared. This 

study presents a rigorous es mate of available abandoned cropland, and shows that differences in data, analysis and visu‐

aliza on can have significant impacts on the quan ta ve es mates of energy produc on as well as the qualita ve inter‐

preta on of its spa al distribu on. 

 

Anahita Bharadwaj, Penn State University                  S 3 

Produc on and Separa on of Carboxylic Acids from Acidogenic Digestate of Lignocellulosic Biomass 

AUTHORS: A. Bharadwaj (Penn State University); T. Richard (Penn State University); Manish Kumar (Penn State University) 

 

Lignocellulosic biomass is a promising source of important bioproducts and biofuels due to its low cost and easy availabil‐

ity. In this study, biomass resources such as immature grasses and pretreated willow were used to produce organic acids. 

These acids are important bioproducts and may also serve as intermediate molecules to be converted to other industrial 

chemicals  and fuels through further processing. The biomass was digested using a mixed culture of microorganisms in 

anaerobic condi ons to produce small‐ and medium‐chain length carboxylic acids. These acids were separated from the 

fermenta on digestate impuri es, par cularly sugars, using nanofiltra on membranes. Our results indicated that lignocel‐

lulosic biomass can be converted into carboxylic acids at high yields, and that nanofiltra on is an effec ve process for car‐

boxylic acid separa on and purifica on. 

 

Lars Bjoernebo, Drexel University                    S 4 

Quan fica on and Analysis of the Poten al of District Hea ng in the Northeastern USA 

AUTHORS: L. Bjoernebo (Drexel University); S. Spatari (Drexel University) 

 

–– 28 –– 

District hea ng (DH) is a flexible hea ng solu on common in several European countries, but not yet become widespread 

in the USA. The poten al of biomass‐based (forest residues, urban wood waste, mill residues, and short‐rota on willow) 

and natural gas‐based DH) to sa sfy space and water hea ng loads in the northeastern USA (New York and New England 

states) was assessed. In this geographical area, winters are cold and access to natural gas pipelines is sparser than in other 

parts of the United States. Heat demand, heat distribu on costs, and appropriate CHP (combined heat and power) plants 

and heat‐only boilers for 580 different loca ons were iden fied. A comparison of the costs of poten al DH with conven‐

onal hea ng methods was undertaken in loca ons where DH could be economically viable for consumers and producers. 

Addi onally, life cycle global warming poten al was assessed. The results indicate a significant poten al for DH to reduce 

costs and greenhouse gas emissions in the studied region. The most promising loca ons can be selected for further case 

studies and implementa on. 

 

Tais Braz Nascimento, West Virginia University              S 5 

Total Lignin and Moisture Content in Willow, Red Oak, White Pine and Miscanthus Biomass 

AUTHORS: T. Braz Nascimento (West Virginia University) 

 

The search for new sources of energy and satura on of using fossil fuels have become stronger with passing days. One of 

the alterna ves to place fossil fuels is the use of lignocellulosic biomass which has in its composi on cellulose that can be 

converted into sugars to obtain biofuels and bio‐based products. Besides cellulose, biomass is composed by hemicellulose 

and lignin. Those three components differ chemically, physically, and structurally, and can vary accord with specie of bio‐

mass. The degrada on of cellulose can be highly influenced by lignin amount in biomass, therefore, it is important to 

know it previously to apply any treatment to convert biomass into biofuel. This work have analyzed the lignin content, 

using 72% H2SO4  hydrolysis, and also moisture content in four different biomass species: willow, red oak, white pine and 

miscanthus. The results show that the greater results were obtained by miscanthus, that is, the lower lignin amount and 

moisture content was obtained from a grass instead of wood. 

 

Ryne Davis, Delaware State University                  S 6 

Iden fying transcrip onally ac ve regulatory DNase I hypersensi ve sites in switchgrass (Panicum virgatum L.) geno‐

types AP13 and VS16 

AUTHORS: Ryne Davis (Delaware State), Mollee Crampton (Delaware State) and Venu Kalavacharla (Delaware State) 

 

We use fragmented chroma n to prepare a DNase‐seq library that can be sequenced and mapped back to a reference 

genome to iden fy ac ve site loca ons responsible for gene regula on. 

 

Eric Fabio, Cornell University                    S 7 

Genotype x environment interac ons in first‐rota on yields of improved shrub willow cul vars in North America 

AUTHORS: E. Fabio (Cornell University); T.A. Volk (SUNY ESF); R.O. Miller (Michigan State University); M.J. Serapiglia (USDA

‐ARS); H.G. Gauch (Cornell University); K. Van Rees (University of Saskatchewan); R.D. Hangs (University of Saskatchewan); 

B.Y. Amichev (University of Saskatchewan); J.A. Kuzovkina (University of Connec cut); M. Labrecque (University of Mon‐

treal); G.A. Johnson (University of Minnesota); R.G. Ewy (SUNY Potsdam); G.J. Kling (University of Illinois); L.B. Smart 

(Cornell University) 

 

Shrub willow has shown promise as a viable regionally‐based feedstock for sustainable bioenergy produc on on marginal 

land, due to its large poten al for improvement through breeding and rela vely high yields in cool, moist climates with 

short growing seasons. In addi on, recent studies have highlighted several posi ve environmental impacts associated with 

growing shrub willow as a dedicated bioenergy crop. Yield is perhaps the most important factor determining the environ‐

mental and economic impacts associated with growing shrub willow. Despite substan al gains in poten al yield through 

breeding efforts, actual yields are unpredictable due to a lack of understanding of how willow interacts with the environ‐

ment. Exploring these genotype by environment interac ons will help to iden fy cul vars with stable yields and adaptabil‐

ity to local condi ons. It will also help to isolate the site variables that most impact yield. We present the most compre‐

–– 29 –– 

hensive analysis to date of shrub willow yields from North America. We applied the addi ve main effects and mul plica‐

ve interac ons (AMMI) model to a shrub willow yield trial network dataset containing first rota on yields of 22 cul vars 

in 16 environments. The ANOVA indicated significant main effects and interac on. PCA showed that the first axis account‐

ed for 69% of the interac on pa ern sums of squares, and was two thirds as important as the genotype main effect. The 

winning cul vars iden fied by the AMMI analysis were triploid hybrids, specifically of a Salix viminalis x S. miyabeana pedi‐

gree. The environmental factors that were most closely associated with the PCA scores were temperature and growing 

degree days. The first rota on yield data from this network of trials will provide valuable informa on for cul var‐site 

matching recommenda ons and for future breeding efforts. 

 

Isaac Fisher, Delaware State University                S 8 

Dissec on of Genotypic and Phenotypic Varia on in Shrub Willow (Salix purpurea) 

AUTHORS: Isaac Fisher (Delaware State) 

 

Drought treatments were performed on different switchgrass genotypes to measure their expression of abio c stress re‐

lated genes. 

 

Fred Gouker, Cornell University                  S 9 

Dissec on of Genotypic and Phenotypic Varia on in Shrub Willow (Salix purpurea) 

AUTHORS: F.E. Gouker (Cornell University); R. Zhou (West Virginia University); L. Evans (West Virginia University); E. Rodg‐

ers‐Melnick (West Virginia University); S. DiFazio (West Virginia University); L.B. Smart (Cornell University)  

 

The recent comple on of the shrub willow genome (Salix purpurea clone ID 94006) has provided an opportunity to ex‐

pand the genomic resources that are available. S. purpurea is a core reference species for breeding shrub willow bioener‐

gy crops in North America, and has been used in over 30% of all intra‐ and inter‐specific hybrids produced within our 

breeding program. Due to the large presence of this species within many pedigrees, all of the 112 S. purpurea accessions 

within the germplasm collec on at Cornell University were used to develop an associa on mapping panel that was geno‐

typed using GBS and extensively phenotyped for physical and chemical wood proper es, key growth, physiological, and 

disease resistance traits across two years and three experimental sites. Unfiltered data produced >300K SNPs where filter‐

ing produced ~25K high quality SNPs used for analysis. Naive GWAS analyses using mixed‐linear models allowed detec on 

of mul ple associa ons for traits that reached genome‐wide significance. Broad‐sense heritability es mates ranged from 

0.29‐0.72 sugges ng implementa on of genome‐wide predic on for traits with moderate to high heritability could lead to 

high predic on accuracies. The gene c dissec on of natural phenotypic varia ons in shrub willow have allowed us to find 

the several loci involved in these complex traits that will complement ongoing QTL studies and future use of genomic se‐

lec on. 

 

Ryan Hilton, Penn State University                 S 10 

The Impact of Material Proper es of Switchgrass, Giant Miscanthus, and Shrub Willow on Sorp on Performance for Oil 

Spill Cleanup 

AUTHORS: R. Hilton (Penn State University) 

 

Fluid spills in natural and industrial environments cause environmental, ecological, and safety concerns.  Therefore the 

demand for environmentally friendly sorbents to effec vely clean up oil contamina on is increasing.  This study inves ‐

gates the impact of torrefac on and par cle size (3mm, 6mm, and 12mm) on the sorp on capacity of three bioenergy 

feedstocks: switchgrass, giant miscanthus, and shrub willow.  Sorp on capacity is inves gated using a modified version of 

Bowden et al (2013) test method of sorp on performance using switchgrass pellets and wood pellets.  Dr. Bowden’s 

method is a modified version of ASTM Standard F726‐12 test method for sorbent performance.  Sorp on capacity is deter‐

mined by submerging biomass samples in water for 2 hours; followed by a 3 hour desorp on period.  Sorp on and desorp‐

on is analyzed using two‐way ANOVA to determine variance between treatment and par cle size.  Further analysis using 

Fisher’s Least Significant Difference test is required to iden fy significant differences for sorp on capacity and desorp on.    

–– 30 –– 

Each raw sample type yielded approximately the same sorp on capacity.  Increasing the par cle size of the raw sorbent 

samples decreased the sorp on capacity.  The lowest sorp on capaci es are obtained from torrefied material, which re‐

main fairly constant with increasing par cle size.  The highest sorp on capaci es are obtained from raw ground biomass 

with a par cle size of 3 mm. 

 

Ty Kallfelz, Syracuse University                    S 11 

Carbonized Woody Biomass for Capaci ve Deioniza on 

AUTHORS: T. Kallfelz (Syracuse University); X. Xie (West Virginia University); J. Wang 

 (West Virginia University) 

 

Carbonized wood samples prepared using different sources of biomass are compared to determine which is best for use in 

a capaci ve deioniza on (CDI) system. Carbonized samples will be evaluated by measuring their adsorp on and desorp‐

on capabili es using a lab scale CDI cell. Samples used in this experiment include oak, maple solid wood, and eastern 

white pine medium density fiberboard, each carbonized using the hea ng schedule developed by the team at West Virgin‐

ia University to create mesoporous structures in the carbon. The carbonized samples are machined to equal dimensions 

(1/4” thick X 1/2"" wide, 3” length), and then used as the electrode in the CDI system. 

 

Adsorp on of the porous carbon electrodes is measured by opera ng the CDI system in a Copper (II) Sulfate solu on with 

a known ion concentra on. Each carbonized sample used in the CDI cell is subjected to the same opera on parameters. 

The ion concentra on of the Copper (II) Sulfate solu on is measured a er opera on, and the difference in ion concentra‐

on shows the adsorp on capacity of the carbonized wood. Measuring ion desorp on is an important aspect of this pro‐

ject because it will determine the regenera ng ability of the materials tested. To evaluate this the CDI cell will be placed 

into a deionized water a er the adsorp on step is complete, with no applied voltage. It will then be removed and the ion 

concentra on of the deionized water will be measured in order to account for ions that have adhered to the porous car‐

bon electrodes. These ions are not considered to have been adsorbed and therefore will not be considered when measur‐

ing adsorp on or desorp on performance. To prompt desorp on of the porous carbon electrodes the cell will be placed 

back into deionized water, and voltage will again be applied to the system a er reversing the polarity. This causes the ad‐

sorbed ions to be released from the porous carbon electrodes. The resul ng ion concentra on will show the desorp on 

capacity of the carbonized wood. Results for each wood sample tested will be compared with one another and with pure 

graphite to define which is most suitable for use in a CDI water purifica on system.  

 

Gad Lee, Rutgers University                    S 12 

Influence of Anthracnose on Biomass Quality in Switchgrass 

AUTHORS: G. Lee (Rutgers University; L. Hoffman (Rutgers University; E.N. Weibel (Rutgers University);  S.A. Bonos 

(Rutgers University) 

 

Anthracnose (caused by Colletotrichum navitas) has been iden fied as a destruc ve plant pathogen of switchgrass 

(Panicum virgatum L.).  Research is necessary to fully understand the impact anthracnose will have on biomass quan ty 

and quality among switchgrass cul vars grown in the United States.  

 

Weiguo Liu, West Virginia University                  S 13 

A Life Cycle Assessment of Hybrid Willow Harvest and Logis cs in the Northeastern U.S. 

AUTHORS: W. Liu (West Virginia University); J. Wang (West Virginia University); K. Cafferty (Idaho Na onal Laboratory); S. 

Spatari (Drexel University); T. Volk (SUNY‐ESF) 

 

A modeling process was developed to examine the environmental impacts of u lizing hybrid willow for bio‐fuels and bio‐

products. Hybrid willow that can poten ally grow on marginal agricultural land or abandoned mine land in the Northeast‐

ern U.S. was considered in the analy cal process for the produc on of biofuels, bio‐power and pellet fuel. The supply 

chain components for the life cycle modeling processes included feedstock establishment, harvest, transporta on, stor‐

–– 31 –– 

age, preprocessing, energy conversion, distribu on and final usage. Sensi vity analysis was conducted to assess the 

effects of energy crop yield, transporta on, conversion rate on the produc on of bioenergy products. The results the bio‐

energy produc on using hybrid willow demonstrated low environmental impacts. Conversion rate and transporta on dis‐

tance of feedstock had great effects on environmental impacts when biomass was used for liquid fuels and electricity. 

Crop yield also had obvious effect on the impacts of the u liza on of hybrid willow. 

 

Tyler Mock, SUNY‐ESF                      S 14 

Commercial Shrub Willow Crop Monitoring in New York State 

AUTHORS: T. Mock (SUNY‐ESF) 

 

There are approximately 1,200 acres of established shrub willow in northern New York State. ESF and NEWBio are provid‐

ing extension services, which include crop  monitoring  of commercial‐scale willow fields. Crop monitoring of shrub willow 

has occurred on approximately 800 acres so far this year and entails collec ng data via field observa ons, GPS‐enabled 

cameras, and GPS units to inform willow growers about crop health and  growth. This data will be used to conduct anal‐

yses of areas with low willow vigor in rela on to soil characteris cs. 

 

Logan Rohr, Cornell University                    S 15 

Impacts of Soil Moisture on Bioenergy Crop Produc on 

AUTHORS: L. Rohr (Cornell University) 

 

Produc on of perennial bioenergy grasses on marginal lands in the Northeast avoids compe on for prime farmland.  

Many marginal soils in New York are characterized as seasonally wet and poorly drained.  The thin research base on per‐

ennial bioenergy crop produc on on these marginal soils prompted us to inves gate the effects of soil moisture on several 

aspects of bioenergy crop produc on including: biomass yield, weed compe on, crop composi on, disease and pest sus‐

cep bility, as well as emergence of recently‐planted miscanthus. The primary field site is a large historically underu lized 

wetness‐prone field with a gradient of drainage condi ons ranging from poorly drained to moderately well‐drained. Crop 

treatments include switchgrass (Panicum virgatum, v. Shawnee), reed canarygrass (Phalaris arundinaceae v. Bellevue) and, 

since spring 2015, miscanthus (Miscanthus x Giganteus v. Illinois).  Soil moisture condi ons were tracked via  me‐domain 

reflectometry. Soil moisture has strongly affected switchgrass biomass yield as well as first‐year emergence of miscanthus, 

but has had li le effect on crop composi on (fiber and ash) and weed compe on.  

 

Debasish Saha, Penn State University                  S 16 

Global Warming and Bioenergy: It's About Hot Spots and Hot Moments 

AUTHORS: D. Saha (Penn State University); B.M. Rau (USDA‐ARS); F. Montes (Penn State University); P.R. Adler (USDA‐

ARS); A.R. Kemanian (Penn State University) 

 

In pursuit of Congress‐mandated bioenergy goals, the United States needs 21 billion gal of liquid fuel from renewable 

sources (US‐EPA, 2010), one of which is bioenergy crops. To avoid compe on with food produc on, land currently under 

the Conserva on Reserve Program (CRP) can be dedicated to bioenergy crops. But nitrous oxide (N2O), the laughing gas, 

but also a powerful greenhouse gas, might be on the way. Low emissions of this gas from fields growing bioenergy crops 

are needed for the fuel label ""renewable” to apply. N2O emissions occur in hot moments (highly ac ve temporal win‐

dows) and hot spots (highly ac ve zones in a field). In this research we measure emissions of N2O from CRP and from CRP 

converted to grass bioenergy crops, switchgrass and miscanthus, and quan fy hot spots and hot moments of N2O emis‐

sions. Over the growing season, CRP had the lowest emission (0.9 kg N/ha), followed by switchgrass (1.2 kg N/ha) and mis‐

canthus (1.8 kg N/ha). Footslopes in the landscape were the hotspots for emission, where miscanthus plots emi ed >5 kg 

N/ha.  The Gini coefficient of inequality shows that the footslope (hotspot) and the  me around tropical storms with high 

precipita on (hot moment) account for the majority of the growing season N2O flux. Footslope posi ons in the landscape 

seem to be the Achilles heel of bioenergy crops established in lands currently in CRP. Managing energy crops in these 

landscape posi ons can enable the produc on of truly renewable fuel from these lands. 

–– 32 –– 

 

 

Steffany Scagline, West Virginia University                S 17 

Switchgrass and Miscanthus Yields on Reclaimed Surface Mines for Bioenergy Produc on 

AUTHORS: S. Scagline (West Virginia University); J. Skousen (West Virginia University); T. Griggs (West Virginia University) 

 

Legisla on passed by the U.S. Congress in 2007 mandates that 25% of transporta on fuels must be made from renewable 

sources by 2022.  Two bioenergy crops that have the poten al to meet this mandate are switchgrass (Panicum virgatum) 

and Miscanthus (Miscanthus x giganteus).  Both species are warm‐season perennial grasses and have high biomass pro‐

duc on poten al under low soil fer lity requirements.  Biofeedstocks for transporta on fuels should be grown on margin‐

al lands rather than prime agricultural land best suited for growing food crops.  West Virginia provides an abundance of 

reclaimed surface mine lands that could be used to produce bioenergy crops. In 2010, two varie es each of switchgrass 

and Miscanthus were planted in 0.4‐ha plots with five replica ons.  This study determined dry ma er yields of switchgrass 

varie es Kanlow and BoMaster and Public and Private varie es of Miscanthus a er five growing seasons.  All species and 

varie es were established at Alton, a reclaimed surface mine in central West Virginia.  This site was reclaimed in 1985 with 

15 cm of soil being placed over mixed overburden. Grass and legume species were planted and soils were ini ally fer lized 

and limed according to recommenda ons.  Miscanthus yields a er the 5th year averaged 13.7 Mg ha‐1 for Private and 

14.4 Mg ha‐1 for Public.  Switchgrass yields a er five years averaged 7.9 Mg ha‐1 for Kanlow and 7.3 Mg ha‐1 for BoMas‐

ter, which is approaching the yields of switchgrass on agricultural soils in the region. With these recorded biomass yields, 

switchgrass and Miscanthus are able to provide alterna ve, more sustainable energy sources, whilst providing a more 

profitable post‐mining land opportunity for surface mined land‐owners.  

 

Nathan Sleight, SUNY‐ESF                   S 18 

Biomass Inventory of Willow Biomass Cul vars assessing Above‐ and Belowground Biomass Quan es, Distribu on, 

and Carbon Storage 

AUTHORS: N.J. Sleight (SUNY‐ESF); T.A. Volk (SUNY‐ESF); K. Fandrich (SUNY‐ESF); M.H. Eisenbies (SUNY‐ESF) 

 

Recently bred cul vars of willow biomass crops have superior aboveground yield that can be used as a feedstock for re‐

newable energy, however there is li le knowledge about belowground biomass produc on.  Belowground biomass im‐

pacts the morphology and physiology of the willow and the amount of carbon sequestered in the root‐stool system.  A 

complete biomass inventory determining the quan es and distribu on of the components (leaves, stems, above‐ and 

belowground stool, coarse roots, and fine roots) of three willow cul vars (Fish Creek, Oneida, and SX61) was taken at two 

sites in NY (Tully and Belleville) with three year old stems on a 10 year old root‐stool system.  Biomass quan es varied 

significantly by cul var for total biomass (p=0.0006), aboveground biomass (p=0.0004), and belowground biomass 

(p=0.0177).  However, the root‐stool:stem ra o (R:S) was not sta s cally different across sites (p=0.3369) nor cul vars 

(p=0.0613).  The mean value of the R:S ra o was 0.91 (SE=0.07).  Percent distribu on of belowground biomass varied by 

site with Belleville having 52.2% stool, 26.7% coarse roots, and 21.2% fine roots, and Tully having  35.8% stool, 27.7% 

coarse roots, and 36.5% fine roots.  Carbon:nitrogen ra os are being determined for the different plant components to 

assess changes between sites and cul vars and to be able to es mate carbon storage in these systems. 

 

Ki kun Songsomboon, Cornell University                S 15 

Techniques for Screening Switchgrass for Resistance to Diseases Caused by Bipolaris oryzae  

AUTHORS: K. Songsomboon (Cornell University); J. Crawford (Cornell University); J. Cummings (Cornell University); G. 

Bergstrom (Cornell University); D. Viands (Cornell University) 

 

Switchgrass (Panicum virgatum L.) has been introduced and developed for biomass and agronomic improvement for three 

decades. However, switchgrass diseases, especially ones affec ng biomass, were neglected. One major disease of 

switchgrass is leaf spot caused by Bipolaris oryzae (Breda de Haan) Shoemaker that can reduce seed germina on as much 

as 82% and biomass produc on up to 33%. Therefore, the objec ves of this study are to determine inocula on techniques 

–– 33 –– 

for evalua ng resistance to Bipolaris leaf spot and seed rot and to u lize these techniques for screening seeds and seed‐

lings for resistance to the diseases. Seed germina on reduc on was determined 21 days a er soaking seeds with 105 co‐

nidia·mL‐1 inoculum for 10 minutes. ‘Shawnee’ was the most suscep ble to seed rot with the highest germina on reduc‐

on by 82%, and ‘Kanlow’ was the most resistant with the lowest reduc on 33%. Seedling inocula on was conducted to 

determine the seedling resistance to leaf spot by spraying with 105 conidia·mL‐1 inoculum thoroughly on three‐week‐old 

seedlings. Then, percentage of a leaf covered by lesions (PLC) at 7 day post inocula on (dpi) and area under disease pro‐

gress curve (AUDPC) among 1, 4, 7 and 11 dpi were evaluated. The high correla on between PCL and AUDPC (R2=0.67) 

indicated that PLC (which is easier to assess) can be used to evaluate seedling resistance. ‘Blackwell’ was the most suscep‐

ble to leaf spot with the highest PLC at 50%, and ‘Kanlow’ was the most resistant with the lowest PCL at 20%. Due to the 

low correla on between seed and seedling resistance to the diseases (R2=0.24), the screening techniques will be done 

separately for two to three cycles of recurrent phenotypic selec on. Because of their high biomass yield in NY, ‘Cave‐in‐

Rock’ and ‘Shelter’ will be screened. Heritability and breeding progress will be evaluated. 

 

Wanyan Wang, Penn State University                  S 19 

Cul var‐Soil‐Microbiome Interac ons 

AUTHORS: W. Wang (Penn State University) 

 

A core task 2 objec ve is to determine genotype by environment (GxE) interac ons for willow and switchgrass cul vars, as 

a component of NEWBio’s overall predic ve model. The interac on of plants with soil microorganisms is a complex and 

important GxE component, affec ng plant growth and yield while also shaping the below ground microbial community. To 

understand cul var‐soil‐microbiome interac ons, we are conduc ng a  me series of soil metagenome analyses star ng at 

the  me of plan ng through harvest and regrowth. This report is for soil samples collected in 2014 from 3 field sites plant‐

ed to switchgrass. We extracted total DNA from the samples and used shotgun sequencing to profile the microbial taxa 

and gene diversity. Our preliminary analyses suggest differences in microbial community structure between the sites, es‐

pecially in eukaryo c species diversity. 

 

Yuxi Wang, West Virginia University                  S 20 

Economic feasibility of energy‐crop‐based bioenergy plants in the Northeastern U.S. 

AUTHORS: Y. Wang (West Virginia University) 

 

An integrated simula on model named Biomass Logis cs Model (BLM) is adopted to assess the economic feasibility of 

energy‐crop‐based bioenergy plants in the Northeastern U.S. Three products through different bioenergy pathways are 

considered in the analy cal process, which are biofuels from pyrolysis, pellets from pelle ng, and electricity from combus‐

on. And three different energy crops‐short rota on willow, switchgrass and miscanthus‐are the main feedstock for bio‐

energy produc on. Model inputs include supply chain logis cs, biomass handling system, machine and plant investment, 

plant and depot capacity, feedstock pricing, and so on. 

The net present value of each plant type with a demand of 2,000 dry tons of feedstock material per day varies based on 

conversion methods, over a 20‐year plant life. With the same transporta on logis cs process and conversion pathways, 

switchgrass is the most cost‐efficient feedstock material among these three crops. Uncertainty distribu on are developed 

for each pathways by fi ng electricity, facility size, and energy consump on variance distribu on curves. Produc on costs 

are most impacted by plant capacity, conversion rate, and feedstock yield. 

 

Charlynn White, Penn State University                  S 21 

The Effects of Aerobic Storage Condi ons for Dedicated Energy Crops 

AUTHORS: C. White (Penn State University) 

 

Deteriora on of cellulosic feedstock under aerobic and anaerobic storage condi ons has not been fully developed. Mis‐

canthus, Switchgrass, and Willow are promising cellulosic materials that can be converted to fuel and energy. The goal of 

this research is to observe the impacts storage has on dedicated energy crops, specifically to iden fy changes in composi‐

–– 34 –– 

on, dry ma er, and moisture content over a three month period. It is expected that the rate of microbial degrada on will 

depend on the chemical composi on, moisture content, and temperature. 

 

Ran Zhou, West Virginia University                  S 22 

Sex Determina on in Willow 

AUTHORS: R. Zhou (West Virginia University); F. Gouker (Cornell University); C. Carlson (Cornell University); E. Rodgers‐

Melnick (Cornell University); E. Fabio (Cornell University); L. Smart (Cornell University); S. DiFazio (West Virginia University) 

 

One of the salient findings from the Populus genome sequencing project was the iden fica on of a sex determina on 

locus on chromosome 19, a finding that was subsequently confirmed in several other species. This finding received wide‐

spread a en on because sex chromosomes are poorly understood in plants, and the Populus sex chromosome appears to 

be in a very early stage of development.  In Salix purpurea, a sex determina on region has been mapped on chromosome 

15 in two ways in our project. First, we iden fied a Quan ta ve Trait Locus using gene c maps derived from ~8,000 Geno‐

typing by Sequencing (GBS) markers, and gender informa on from ~260 full‐sib progeny. Second, we used 78,423 GBS 

markers from 72 individuals from a S. purpurea associa on popula on to iden fy markers on Chromosome 15 with strong 

associa ons with gender. The sta s cs of heterozygosity and homozygosity across all chromosomes in both analyses indi‐

cates a heterogame c female system (ZW/ZZ) in S. purpurea. Z and W pieces were also predicted from the genomic data. 

Our results suggest that dioecy might be under different gene c control in these two closely‐related species. This is sur‐

prising since both species have 19 chromosomes and very high synteny in their genome sequences. However, syntenic 

por ons of the sex determina on regions are quite different in the two species, though they share some characteris cs of 

sex chromosomes, such as high haplotypic diversity and suppressed recombina on. There are several excellent candidate 

genes for sex determina on in these regions as well. This project demonstrates the u lity of compara ve genomics be‐

tween Populus and Salix, which, despite their highly similar genomes, have contras ng characteris cs in life history such 

as growth form, pollina on mode, and number of species. 

 

Faculty Presenters and Abstracts  

Tristan Brown, SUNY‐ESF                      FAC 1 

Techno‐economic uncertainty and biomass u liza on 

AUTHORS: T. Brown (SUNY‐ESF) 

 

Abstract forthcoming. 

 

Ryan Crawford, Cornell University                    FAC 2 

Fall 2014 Height, Vigor, Quality, and Yield Data from Cornell University NEWBio Switchgrass Nurseries 

AUTHORS: R. Crawford; P. Salon; J. Crawford; J. Hansen; L. Hoffman; S. Bonos; M. Hall; D. Viands 

 

Selected lines from six unique switchgrass popula ons were planted in half sib progeny rows in two nurseries, one on re‐

claimed mine land in Philipsburg, Pennsylvania and one on high clay, poorly drained soil in Ithaca, New York in May and 

June, 2013 respec vely.   In August 2014, measurements were made in the Ithaca and Philipsburg nurseries of canopy 

height and vigor, where vigor is a holis c ra ng encompassing plant size health, and uprightness.  In October 2014, lines 

selected on the basis of their vigor at one or both loca ons were harvested in Philipsburg and their yields were deter‐

mined on a per plant basis.  The following week, all lines were harvested in Ithaca and their yields were determined on a 

per plant basis. Lines in New York were taller, more vigorous, and contained more biomass than lines in Pennsylvania.   

Lines in New York had higher percent dry ma er than lines in Pennsylvania.  Height measurements had a higher correla‐

on coefficient with yield than vigor ra ngs in both loca ons.   Selected lines from both loca ons were sampled and ana‐

lyzed with a near infrared spectrometer to determine their fiber and mineral content.  Lines in New York had higher ash, 

cellulose, and lignin content.  Lines in Pennsylvania had higher sulfur and hemicellulose content.  Differences in yield and 

–– 35 –– 

quality characteris cs were also observed among switchgrass popula ons. 

 

Lara Fowler, Penn State University                   FAC 3 

Overview of U.S. Law & Policy Affec ng Second Genera on Biofuels 

AUTHORS: L. Fowler (Penn State University 

 

Law and policy changes in the U.S. have proven to be a challenge for the biofuel industry. This poster highlights 21st cen‐

tury U.S. policy developments designed to enhance second‐genera on biofuel industry, and briefly explores current feder‐

al policies and assistance programs. The poster then highlights how a demand side driver such as the avia on sector can 

act as a catalyst, especially given avia on’s global impact and a push from Europe. Finally, what might be next for biofuel 

law and policy is discussed. 

 

 

Brian Richards, Cornell University                    FAC 4 

Carbon Sequestra on and Gaseous Emissions in Perennial Grass Bioenergy Cropping Systems in the NE US 

AUTHORS: B. Richards (Cornell University), C.R. Stoof (Cornell University), C. Mason (Cornell University), S. Das (Cornell 

University), R.V. Crawford (Cornell University), , J. L. Hansen (Cornell University),  

J. L. Crawford (Cornell University), H.S. Mayton (Cornell University), T.S. Steenhuis (Cornell University), M.T. Walter 

(Cornell University), D. R. Viands (Cornell University),  

 

Our project seeks to help define the sustainability of perennial grass bioenergy produc on on  wetness‐prone marginal 

lands in the Northeast US. Our primary goals are characterizing crop yields, trends of soil carbon (C), and emissions of ni‐

trous oxide (N2O) and methane (CH4). These impacts are being determined using current produc on prac ces for 

switchgrass (Panicum virgatum Shawnee), reed canarygrass (Phalaris arundinaceae Bellevue), and, star ng spring 2015, 

giant miscanthus (Miscanthus x Giganteus). Permanent sampling subplots established along natural soil moisture gradi‐

ents allow us to examine the effects of soil wetness class on biomass yield, soil characteris cs, emissions, and soil C. Addi‐

onal collabora ve studies include annual tracking of soil health parameters (aggregate stability, available water capacity, 

hardness, ac ve carbon), soil mycorrhizal interac ons, and site hydrology. We are in the fi h year of field‐scale research. 

 

 

Sabrina Spatari, Drexel University                    FAC 5 

Life Cycle Environmental and Energe c Tradeoffs of Pyrolysis Bio‐oil Upgrading 

AUTHORS: Sabrina Spatari (Drexel University), Ida Mannoh (Drexel University), Lars Bjornebo (Linkoping University), A.A. 

Boateng (USDA ARS ERRC), Nelson Macken (Swarthmore College), Charles A. Mullen (USDA ARS ERRC), M.C. Wheeler 

(University of Maine) 

 

Thermochemical conversion of biomass (lignocellulose) is one promising avenue for producing domes c, renewable trans‐

porta on fuels and chemicals to meet na onal energy security policy and climate change goals. Fast pyrolysis of biomass 

produces a bio‐oil high in oxygen. Currently there is much research effort to produce renewable petroleum blendstocks 

for conversion to liquid fuels through different hydrodeoxygena on methods. This talk examines the life cycle environ‐

mental (greenhouse gas emissions) and energe c differences among in‐situ and ex‐situ cataly c upgrading of fast pyrolysis 

bio‐oil. This talk explores how life cycle assessment (LCA) tools have been applied to characterize the environmental per‐

formance of emerging biofuels conversion technologies from biochemical and thermochemical pla orms.  The poster also 

highlights how LCA has been used to guide planning and energy policy for current commercial technology in the U.S. and 

other regions of the world. 

 

Peter Woodbury, Cornell University                  FAC 6 

Improving water quality in the Chesapeake Bay watershed using payments for ecosystem services for perennial bioen‐

ergy feedstock produc on. 

–– 36 –– 

AUTHORS: Peter Woodbury (Cornell University) 

 

Producing perennial bioenergy feedstocks can have environmental benefits in addi on to those from producing the bioen‐

ergy itself. One important poten al benefit of producing perennial bioenergy feedstocks compared to annual row crops is 

reducing nitrogen leaching to surface and ground waters. For example, such reduc ons could occur if corn acreage is re‐

placing by switchgrass, because switchgrass may use less added nitrogen and use it more efficiently than does corn. The 

Chesapeake Bay has excessive nutrients and there have been increasing efforts to reduce both nitrogen and phosphorus 

loading to the Bay from both point and non‐point sources. Payments for prac ces to reduce nutrient loading from agricul‐

ture are already occurring in the watershed. We are es ma ng the poten al benefit of replacing enough corn acreage 

with switchgrass to reduce nitrogen loading to the Chesapeake Bay to meet the nutrient reduc on targets. Specifically, we 

are inves ga ng how payment for this ecosystem service of reduced nutrient loading could facilitate the growth of the 

bioenergy industry in the region by increasing the price paid to farmers for producing feedstocks. There are 4 main steps 

in our analysis, as follows. First, quan fy nitrogen loading from corn fields to the Bay. Second, quan fy the nitrogen load‐

ing reduc on when one hectare of corn is replaced with switchgrass. Third, quan fy the switchgrass price required to pro‐

vide the same profit to the farmer as corn with and without a payment for nitrogen loading reduc on. Fourth, quan fy 

the area and total cost required to meet Chesapeake Basin nitrogen targets by 2017 and 2025. We will discuss our prelimi‐

nary results, including the implica ons for increasing the commercial viability of producing bioenergy from perennial feed‐

stocks in the region while improving water quality. 

–– 37 –– 

Team Huddle

Advisory Board Report Out The project team will be provided with a summary of the Advisory Board mee ng. 

Techno-Economic Analysis, Life Cycle Analysis, Ecosystem Services Research Updates  

Team members involved these topical areas will provide updates on their ac vi es . 

TEA and LCA updates will be provided by: 

Tristan Brown, SUNY ESF 

Sabrina Spatari, Drexel University 

Jingxin Wang, West Virginia University 

Ecosystem Services update will be provided by: 

Peter Woodbury, Cornell University 

Ma  Langholtz, Oak Ridge Na onal Laboratory 

 

 

Invited Guest Presentations

B  S , P D G  R   Chief Science Officer 

Co‐PI, Advanced Hardwood Biofuels NW 

Brian Stanton is GreenWood Resources’ Chief Science Officer where he oversees poplar varietal 

development for commercial tree farms in the U.S., Chile, China, and Europe.  Brian is also a Co‐PI 

for the Advanced Hardwoods Biofuels Northwest project in which he leads the feedstock produc‐

on team.  He has authored chapters on poplar breeding and gene c resource management in 

three texts, and has published peer‐reviewed papers in the journals Silvae Gene ca, Canadian 

Journal of Forest Research, Forest Gene cs, and the Journal of Forestry.  Brian is a member of the Advisory Commi ee at 

the School of Forest Resources and Environmental Science, Michigan Technological University.  He is the past chair of the 

Poplar and Willow Gene cs Working Party for the Interna onal Union of Forest Research Organiza ons and the past chair 

for the Society of American Foresters’ Gene cs and Tree Improvement Working Group. Brian received a B.A. in Natural 

Resources from West Chester State College, an M.S. in Forestry from the University of Maine and a Ph.D. in Forest Re‐

sources from The Pennsylvania State University. 

h p://greenwoodresources.com/ 

h p://hardwoodbiofuels.org/ 

–– 38 –– 

Team Huddle

Invited Guest Presentations

M  W , P D W  S  U   Regents Professor, Civil and Environmental Engineering 

Director, Ins tute for Sustainable Design 

Co‐Project Director, NARA Renewables 

Wolco  is an interna onal leader in the field of natural fiber composites and biopolymers.  

He has managed nearly $20‐million in funding and large research teams for numerous fed‐

eral agencies, including the Office of Naval Research, the Department of Energy, the USDA, 

the US Forest Service, and the Federal Highway Administra on. He holds five patents for 

innova ve materials and structures from wood and natural fibers. He has been ac vely 

engaged with industry to commercialize his research and has par cipated in projects for more than 50 companies. In his 

capacity as co‐project director for NARA, he coordinates efforts on the project’s educa on, outreach, and system metrics 

teams, studying the various metrics assessing the sustainability of the biofuels supply chain, engage stakeholders and 

communi es, while developing a regional workforce through educa on programs from K‐12 through to PhD levels. Dr. 

Wolco  works with colleagues on development of new biobased resins and plas cs to add value to the avia on fuel refin‐

eries. He holds a Ph.D. in materials engineering science from Virginia Polytechnic Ins tute & State University and BS/MS 

in Forestry from the University of Maine. A member of the WSU faculty since 1996, he previously served as as an associ‐

ate professor at West Virginia University.  

h p://wolco .wsu.edu/ 

h ps://www.nararenewables.org 

–– 39 –– 

Closing Session

Thrusts Report Out Thrust leads will summarize accomplishments and discussions from the mee ng and plans for 

next year. 

 

Ma  Langholtz (Economic), Theresa Selfa (Social), Human Systems in the Northeast 

Regional Bioeconomy  

 

Stacy Bonos, Rutgers University, for Feedstock Improvement  

 

Jingxin Wang, West Virginia University, Harvest, Preprocessing and Logis cs  

 

Armen Kemanian, System Performance and Sustainability Metrics 

 

Douglas Schaufler, Penn State, for Safety and Health  

 

Michael Jacobson, Extension 

                          

Dan Ciolkosz, Penn State, for Educa on             

             

Meeting Wrap Up

 

Tom Richard, Project Director, Penn State University  

–– 40 –– 

–– 41 –– 

PROJECT INFORMATION

NEWBio Objectives

Accomplishments as Related to Objectives

2014 Advisory Board Annual Meeting Report

2014 Evaluation Team Recommendations

–– 42 –– 

Create a culture of safety in the biomass production, transport and prepro-cessing sectors that addresses machinery hazards and environmental risks to protect workers.

Understand the values, legacies, and motivations that drive perceptions and deci-sions about land management and business development for biomass energy sys-tems to overcome barriers to development of perennial feedstocks.

Generate price-supply curves, facility siting and forward contracting tools to provide entrepreneur and investor confidence in biomass feedstock supply.

Develop and deploy as industry standards sustainable production practices for perennial grasses and short rotation woody crops to improve yield 25% and reduce costs by 20%.

Commercialize the current pipeline of improved willow (Salix spp) and switchgrass varieties and develop genomic tools to accelerate breeding for marginal land.

Develop harvest, transport, storage and preprocessing systems that increase feed-stock value as biomass moves through the supply chain toward advanced biofuel refineries.

NEWBio Objectives

–– 43 –– 

Transform standards of practice for biomass value chains to greatly improve carbon paybacks, net energy yields, soil and water quality, and other ecosystem services.

Deploy safe, efficient and integrated supply chains in four demonstration regions, each providing 500 to 1000 tons/day of high-quality low-cost sustainable biomass.

Create learning communities of farmers, entrepreneurs, employees and investors informed about the best practices and emerging technologies in their bioenergy interest areas.

Provide business support services to generate at least 100 supply contracts and support over 50 new supply chain businesses to harvest, transport and preprocess biomass from short rotation woody crops and warm-season grasses.

Educate students, citizens, landowners and policymakers to increase public understanding of biomass alternatives, including the social, economic, and environmental impacts of sustainable bioenergy systems in the Northeast.

Create a culture of opportunity to support corporate commitments for two commercial-scale advanced biofuels facilities and encourage many more such commitments in the Northeast.

NEWBio’s vision is to build robust, scalable, and sustainable value chains for bio-mass energy in the Northeast. The project directly addresses USDA NIFA’s grand

challenges to break barriers for the expansion of alternatives to fossil fuels while increasing the understanding of ecosystem functions and services for the rapidly

evolving bioenergy industry.

–– 44 –– 

Project Information

NEWBio Accomplishments as Related to Objectives Since NEWBio's start in September 2012, there have been both posi ve and nega ve trends in the external environ‐ment. In the words of one Advisory Board member, the shale gas boom and drop in oil prices has 'crushed' interest in bioenergy. Preliminary analysis of landowner survey data tells us that there are significant numbers who know li le to nothing about energy crops and are unlikely to plant energy crops. At the same  me, there are successes in bioproducts that are providing profitable rewards for current commercial feedstock companies: Aloterra's supplying miscanthus for the compostable dinnerware market, and Ernst Conserva on's switchgrass pellets as absorbents for chemical and wastewater spills are examples.  

 We are seeing success in establishing willow and switchgrass on reclaimed mine lands, which represent an oppor‐tunity of over one million acres in the NEWBio region.  Delta Airlines and Renma x are progressing on commerciali‐za on pathways, and working with NEWBio researchers on assessing feedstock resource and supply chain possibili‐es. With the success of its ini al willow feedstock program and reauthoriza on of BCAP, ReEnergy is planning to 

expand willow acreage in NY. NEWBio is working to couple bioenergy GHG benefits with quan fied water quality benefits, partnering with the Chesapeake Bay Commission to leverage the massive investments in water quality improvements mandated for the Chesapeake Bay watershed. Finally, in concert with our commercializa on part‐ners, NEWBio is closely monitoring several other recently announced EPA regulatory efforts could increase incen‐ves for biofuels, including the 2016 RFS2 cellulosic biofuels target, truck mileage efficiency standards, and avia on 

greenhouse gas emission reduc ons. Project progress to date is outlined here: 

 

Stakeholder Engagement Models NEWBio has partnered with our corporate stakeholders to deliver workshops, field days, webinars, research sum‐

maries and case studies that promote the business of biomass. We worked with other stakeholders such as Penn‐

sylvania's Fuel for Schools and Communi es program, and assisted with a U.S. Forest Service grant to help devel‐

op sustainable wood energy in Pennsylvania. Extension staff facilitated a DOE film crew's shoo ng a bioenergy 

sustainability video at a willow remedia on project area. We are connec ng with these and others to do some 

synergis c work and diversity our pla orm, and to understand their engagement processes and incen ves neces‐

sary to overcome economic and social barriers. 

 

Socioeconomic Analyses and Forecasts A Year Two seed grant studied the poten al economic impact of renewable fuels and sustainable biomass feed‐

stock for the Northeast. Results of the study were presented during a NEWBio All Hands mee ng and in a NEWBio 

webinar, and showed impact summaries (direct, indirect and induced jobs and dollar output) for four Pennsylvania 

coun es should biofuel plants be built in their locales. 

 

Accelerated breeding to develop stress‐resistance & improve yields U.S. Patent PP24,537 was issued in June 2014 for Preble, a willow plant cul var developed in concert with corporate 

stakeholder Double A Willow. The Feedstock Improvement team published new, fundamental knowledge in the publica‐

on "Early selec on of novel triploid hybrids of shrub willow with improved biomass yield rela ve to dip‐

loids."  (Serapiglia, M.J., Gouker, F.E., Smart L.B. 2014. BMC Plant Biology 2014, 14:74. DOI:10.1186/1471‐2229‐14‐74.) 

Injury Surveillance and Hazard Assessment, Safety and Health Management  NEWBio has completed its inventory of biomass produc on and harves ng procedures and is working with partners Ernst 

Conserva on and Aloterra Energy on a safety and health management plan. Of par cular interest now is the inves ga on 

and documenta on of poten al airborne hazards associated with switchgrass and misanthus produc on, storage and pro‐

cessing, as these crops have different biophysical characteris cs than tradi onal agricultural crops. 

 

–– 45 –– 

Project Information

NEWBio Accomplishments, continued Models and Decision Support Systems for Sustainable Biomass Produc on, Harves ng, Prepro‐

cessing and Logis cs Addi onal data collec on con nues to refine the base models for switchgrass, miscanthus and willow. Ecosystems services 

work points to switchgrass as a potent nutrient neutralizer for farms and regions with nutrient imbalances, which has 

broad implica ons for watersheds large and small.  SUNY ESF team members partnered with CNH to develop a single cut 

and pass harves ng technology, applied knowledge that has appeared in a peer‐reviewed publica on: Eisenbies, M. H., 

Volk, T. A., Posselius, J., Foster, C., Shi, S., & Karapetyan, S. 2014. Evalua on of a Single‐Pass, Cut and Chip Harvest System 

on Commercial‐Scale, Short‐Rota on Shrub Willow Biomass Crops. BioEnergy Research, 1‐13, June 3, 2014. DOI:10.1007/

s12155‐014‐9482‐0. 

 

Biomass Cropland Resource Assessments Geospa al analysis has iden fied regions of with high concentra ons of abandoned land, overlaid with regions predicted 

to allow economic produc on of biomass at different biomass price‐points. NEWBio evaluated perennial grass poten al in 

the region for Mascoma and both willow and perennial grasses for Renma x. 

 

Over 90,000 Acres of Perennial Crop Produc on USDA published new rules and guidelines for the BCAP program in February 2015. ReEnergy, a major New York State pow‐

er company with biomass power plants in Black River and Lyonsdale, has indicated a desire to expand the propor on of 

willow biomass in their fuel supply and will likely respond to the an cipated call for expanded or new project areas in 

2015. 

 

Corporate commitments for two commercial biorefineries in the NE Delta Airlines has purchased a conven onal petroleum refinery in Trainor, PA (near Philadelphia) and is working to inte‐

grate bio‐based feedstocks into that exis ng refinery. Renma x received a series D investment from the French energy 

company Total, and purchased the former Mascoma Feedstock Processing Facility in Rome, NY, and this spring hired 12 

employees to work on feedstock evalua on and process scale‐up. 

 

100 Supply Agreement & Pricing Programs, 50 New Small Businesses NEWBio con nues to engage Penn State MBA and law students in assessing contract issues for biomass feedstocks. Small 

business and economic development organiza ons will benefit from "Development of a Two‐Year, Integrated Business De‐

velopment Extension Model" a seed grant proposal by NEWBio Extension team members at Penn State, SUNY ESF, and 

West Virginia that will deliver focused, direct informa on related to biomass energy business development. Penn State's 

Small Business Development Center will assist with program development and business support. This work will take place 

in Years Four and Five. 

 

Educa ng students, ci zens, landowners and policymakers A key objec ve for NEWBio is to increase public understanding of the social, economic and environmental impacts of sus‐

tainable bioenergy is a key NEWBio objec ve. We have a very ac ve outreach to the general public through our Extension 

ac vi es, as outlined in the Extension Thrust sec on. The Educa on Thrust connects with students by coordina ng three high‐

impact delivery vehicles: graduate online biomass courses, undergraduate mentoring via the Bioenergy Scholars, and sec‐

ondary educator training. 

 

 

–– 46 –– 

–– 47 –– 

Project Information

2014 Advisory Board Recommendations  

The NEWBio Advisory Board convened during the August 2014 Annual Mee ng, tasked by the NEWBio Execu ve Com‐

mi ee to provide feedback on project ac vi es to‐date, and to offer guidance going forward. Ann Swanson, Execu ve 

Director of the Chesapeake Bay Commission and Chair of the NEWBio Advisory Board, presented the Board’s recommen‐

da ons and topical areas for current and future project efforts.  

 

Key Board Observa ons from 2014  

Keep NEWBio objec ves front and center, in all mee ngs, in all discussions; project and thrust leaders must reinforce 

what the project is trying to achieve.  

 

 

Decide if the project is going to keep three supply chains; dealing with nuances of all three may be problema c to 

achieving cri cal mass and interest of an end user/partner. 

 

 

Economic informa on is cri cal: stakeholders need datasets in order to make decisions and need to understand 

shortcomings as well as posi ves: 

Target Y4 for to iden fy:   

○ How much it will cost to plant, grow, harvest, transport one or all three of NEWBio feedstocks;  

○ What cons tutes the suite of products that Extension can use to pull in adopters.   

Informa on needs a business orienta on; Consider prospectus format instead of fact sheets 

Emphasize rural development (some of poorest in U.S. live in rural areas) 

 

 

Policy component(s): the more specific the policy the be er your chance to move it . 

Environmental economic proposals: iden fy and quan fy externali es. 

Sustainability and bioenergy are discussed all the  me, but not in the context of agriculture. The benefits of 

switchgrass need to be quan fied in terms of energy and in terms of other uses of the land. 

 

What NEWBio Could Do to Improve  

Focus on economics. Is the market poten ally growable? 

Work with regional organiza ons; have more aggressive outreach. 

Keep the excitement out in front; bioenergy is in it for the long haul; get past the blip of natural gas. 

Iden fy an anchor, a large and willing end user to work with NEWBio and sa sfy their needs (using the shopping mall 

analogy, there is the need for cri cal infrastructure, parking, anchor stores, demand; how do you get Kohl’s there if 

the rest of the commitment isn’t there?) 

Iden fy the policy pieces that might help with all of this.  

–– 48 –– 

Project Information

2014 External Evaluation Recommendations  

Evaluators 

Jessica Leahy, Associate Professor of Human Dimensions of Natural Reources, University of Maine 

Laura Lindenfeld, Director, Margaret Chase Smith Policy Center and Associate Professor of Communica ons and 

Journalism, University of Maine 

 

 

NEWBio’s team of external evaluators focused its Year Two evalua on on the team’s perspec ve of the Consor ‐

um’s progress, and considered the views of the Consor um’s Advisory Board. The following recommenda ons 

come from their report issued in December 2014.   

 

1)  Maintain momentum to keep people energized, but also be pa ent. Interdisciplinary collabora on takes 

me – the benefits will emerge in the end, and maintaining energy and focus will help people remain focused 

and commi ed. Sa sfac on with NEWBio is high. There is also strong support for leadership, the shared goals, 

and current communica on strategies. Take  me to appreciate the successes of this project, and leverage those 

successes to achieve even more posi ve benefits from NEWBio. 

2)  Support innova on, crea vity, and adapta on. The economic and policy landscape for bioenergy is ever 

fluctua ng. The landscape two years ago is different than it is today. NEWBio will need to be vigilant and remain 

poised to respond and adapt to the changing world around it. Consider some strategies to “mix things up” across 

your team in order to generate ideas about how to respond to the changing landscape. Inves ng in cross‐thrust 

communica on and involving par cular stakeholders in targeted face‐to‐face mee ngs might help to spur new 

ideas and move people to think in new ways. Include the graduate students in this ‐ does Penn State have inno‐

va on training? 

3)  Consider enhancing your leadership strategy. People are sa sfied with leadership currently, but the model 

is risky by placing weight on a single individual to lead the team, building stakeholder rela onships, etc. How can 

the project reinforce the leadership of other people on NEWBio who are coleading the project? Especially con‐

sider ways to invest co‐leadership that builds a wider stakeholder network. 

4)  Don’t be complacent about internal communica on. Currently, NEWBio par cipants report high levels of 

effec ve interdisciplinary communica on. However, we did note some concerns about how much team mem‐

bers were crea ng understanding across disciplines. We would encourage NEWBio not to become complacent in 

its internal communica on. It can take years for a large, interdisciplinary team to learn technical jargon and un‐

derstand what each other are doing to advance the common goal of the team. NEWBio should not assume that 

two years is sufficient to build up a common language. Team members should con nue to carefully explain their 

work in a way that is accessible to other team members. 

5)  Develop very targeted communica on for the advisory board. Build a website for them with key infor‐

ma on. Clarify who people are and why they were chosen, and provide them 3 – 4 ques ons to assess rela ve 

to their experience so that they can be of greatest advantage to NEWBio. For example, you might consider 2 – 3 

emails per year with summary materials that the board must read, and u lize a board webpage to deliver this 

with a logical filing system for background and details, should they choose to look at these. As some advisory 

board members disengage from the project, replace them with newly engaged stakeholders. 

6)  Hone NEWBio’s external communica on message. Get people on message together. We recommend in‐

vestment in producing talking points, and advancing strategies for communica on training and strategy develop‐

ment. What should every person involved in NEWBio, whether team or board member, be prepared to say? 

How will you communicate with policymakers? Industry partners? Students? Invest energy in this – it will pay 

off. Consider building some training into your next annual mee ng focused specifically on communica on with 

different stakeholder groups. 

–– 49 –– 

7)  Involve more stakeholders. Develop and communicate strategies for integra ng new and communica ng 

involvement of partners. Consider how you might develop stakeholder rela onships on the policy side, for ex‐

ample with state legislators in your region, but also with the federal congressional delega on. Ongoing efforts to 

establish a rela onship with conversion partners should con nue. A goal for the year 3 evalua on should be to 

increase the number of NEWBio team members that agree that NEWBio is doing a good job mee ng stakeholder 

needs, that NEWBio discussions focus on stakeholder needs, and that stakeholders include more than just indus‐

try partners. 

8)  Outcomes, outcomes, outcomes. The focus on outcomes appeared to vary among NEWBio team members. 

At the end of Year 2, now would be a good  me to remind team members of the desired outcomes, and focus 

on structuring efforts around those cri cal goals. Develop concrete ac vi es toward those outcomes to work on 

as a team, and organize such ac vi es across thrusts around specific stakeholder needs. One recommenda on is 

to create a form of dashboard with  melines, goals, and outcomes that can be updated to represent progress. A 

simple graphic that people can remember would be very useful to help chart the course. This will help both 

stakeholders and team members maintain momentum, communicate clearly about project goals, and see the 

bigger picture. One team member expressed concern about where deliverables and outcomes like “90,000 

acres, 100 businesses developed, or 100 coopera ve agreements” are going to come from, given that they are 

dependent on many external factors. Consider how the project can communicate its successes and chart visually 

what the key goals and progress on those goals are. If possible, incen vize cross‐thrust, high level scien fic pa‐

pers.  

New willow progeny transplanted  

to permanent nursery beds in Geneva, NY. 

Willow flowering 

Scenes from NEWBio’s

Third Year

–– 50 –– 

–– 51 –– 

THRUST INFORMATION

Human Systems Feedstock Improvement

Harvest, Preprocessing and Logistics System Performance and Sustainability Metrics

Safety and Health in Biomass Feedstock Operations Extension Education

Leadership, Stakeholder Involvement, K2A, and Evaluation

–– 52 –– 

Thrust Information

Human Systems in the Northeast Regional Bioeconomy

Saurabh Bansal, Penn State University 

Patrick Boleman, Penn State University 

Morey Burnham, SUNY ESF 

West Eaton, Penn State University 

Andrea Feldpausch‐Parker, SUNY ESF 

Clare Hinrichs, Penn State University 

Wei Jiang, Penn State University 

Ma  Langholtz, Oak Ridge Na onal Laboratory 

Yaru Grace Liu, Penn State University 

Kusumal Ruamsook, Penn State University 

Theresa Selfa, SUNY‐ESF 

Evelyn Thomchick, Penn State University 

Objec ves 

Human Systems focuses on understanding the values, legacies, and mo va ons that drive percep ons and decisions 

about land management and business development for biomass energy systems. Goals are to iden fy and describe the 

knowledge, a tudes, risk percep ons, ownership mo va ons and behaviors of local landowners and to determine per‐

ceived barriers and willingness to engage in produc on. Human Systems will test the effec veness of communica on 

techniques in encouraging landowners to par cipate in the market and evaluate opportuni es and challenges for consoli‐

da ng bioenergy crop management across mul ple land parcels. We will also generate price‐supply curves, facility si ng 

and forward contrac ng tools to provide entrepreneur and investor confidence in biomass feedstock supply.  

Accomplishments 

The social science component at SUNY ESF collected and analyzed media content data over five years to understand 

community percep ons about the biomass industry in four regions near produc on sites in New York, with parallel 

media content analysis and preliminary interviews with switchgrass growers. Part of this work was published in the 

journal Energies in an ar cle that examined the benefits and risk the news media a ributed to bioenergy develop‐

ment in New York.  

A landowner survey was developed and implemented online, with addi onal mailings, in Pennsylvania and Ohio. Key 

informant interviews are underway in New York, Pennsylvania and Vermont, along with landowner interviews in New 

York. The major interview findings iden fied several barriers to increased biomass produc on: compe ng land uses; a 

lack of markets and fully func oning end use technologies, including densifica on technology; high crop establish‐

ment costs; lack of landowner awareness of energy crops; and the availability of cheap natural gas. NEWBio will use 

these insights about technical, economic, and educa onal challenges and barriers to the establishment of a bioecono‐

my as we refocus our efforts in the final two years.  

With marginal land a par cularly important target in our region, we have also developed ac vi es to understand and 

address landowner willingness to use marginal lands for plan ng energy crops. Protocols were developed and a com‐

munity focus group was conducted in the BCAP Project Area 10 in New York, where we an cipate opportuni es for 

–– 53 –– 

expansion of willow produc on with the reauthoriza on of BCAP. Landowner interview protocols were developed 

and a broader set of landowner interviews have been started in New York. Preliminary findings show that some land‐

owners define and value marginal land differently than does NEWBio. While landowners do say they have land they 

consider marginal, they frequently do not consider the land to be idle and use it for other purposes, including hun ng 

or le ng it grow back to forest.  

The economic component of our Human Systems Thrust has leveraged agroecosystem modeling work in our Sustaina‐

bility Thrust as well as feedstock supply and price projec ons from Oak Ridge Na onal Lab to evaluate poten al pro‐

duc on from marginal lands in the Northeast. Data compiled includes energy crop produc on budgets and soil, land 

cover, and weather data. The Cycles agroecosystem model is used to project energy crop yields, map biophysical mar‐

ginal lands for BCAP areas, and is currently performing sta s cal analysis of POLYSYS outputs to examine drivers of 

land use change projec ons focusing on dedicated biomass feedstocks. 

 

Year Four Ac vi es 

Task 1.1: Understanding Social and Economic Constraints 

○ Ac vi es will include comple on of the landowner survey and landowner interviews (Phase I and Phase II) to 

determine social availability of marginal lands and the analysis of this survey data analysis. The economic 

component will con nue to refine crop budget and yield assump ons through the incorpora on of various 

2014 data to POLYSYS. The Humans Systems thrust an cipates USDA approval for use of seed grant funds for 

its proposal “Determining the Social Availability of Marginal Lands for Dedicate Energy Crop Produc on” to 

add a mail survey component to the landowner surveys, and add New York State landowners to the assess‐

ment. 

○ Outputs will include summaries of interview and survey data analyses, development of a manuscript on the 

landowner survey analysis, and inputs to and exports from POLYSYS. 

○ Milestones will include submission of a publica on that iden fies social availability of marginal lands and the 

genera on of feedstock supply curves.  

○ An cipated outcomes will include a final report on the strategic procurement and business model analyses 

to improve understanding of economic incen ves and their impacts, and the role of stakeholder a tudes 

that promote or inhibit par cipa on in the bioenergy economy. 

Task 1.2: Iden fy, monitor, and address the posi ve and nega ve social impacts of demonstra on sites over the 

course of the project on community infrastructure needs. 

○ Ac vi es will include development and administra on of interview/survey ques onnaires for collec ng data 

from NEWBio team members involved in the demonstra on sites. Templates will be developed for assessing 

biomass crop produc on and supply chain infrastructure. 

○ Outputs will include survey and interview data analysis and the prepara on of a manuscript on the status of 

biomass crop produc on and a descrip on of the supply chain infrastructure for each demonstra on site. 

○ Milestones will include comple on of the inter‐

views/surveys and subsequent data analysis re‐

sul ng in the prepara on and submission of a 

publica on on the findings. 

○ An cipated outcomes will include iden fica on of 

poten al barriers to scale up. 

West Virginia University’s  

NEWBio team post‐willow harvest 

–– 54 –– 

Thrust Information

Feedstock Improvement Larry Abrahamson, SUNY ESF Stacy Bonos, Rutgers University Charles Bush, SUNY ESF John Carlson, Penn State University Curt Carter, Cornell University Jamie Crawford, Cornell University Ryan Crawford, Cornell University Stephen DiFazio, West Virginia University Luke Evans, West Virginia University Eric Fabio, Cornell University Lauren Ferragut, Cornell University Marvin Hall, Penn State University Julie Hansen, Cornell University Lindsey Hoffman, Rutgers University Kavya Krishnan, Cornell University Larry Smart, Cornell University Zachary Tischendorf, Penn State University Don Viands, Cornell University Wanyan Wang, Penn State University Ran Zhou, West Virginia University 

  Objec ves Feedstock Improvement will op mize low input perennial feedstock crops (shrub willow and perennial grasses) that re‐search has shown to be the best suited for Northeast climates and marginal soils. Our goal is to deliver cul vars with im‐proved performance and expanded range on marginal lands.   

Accomplishments Feedstock Improvement is iden fying cul vars of switchgrass and shrub willow with improved performance and ex‐

panded range on marginal lands in the Northeast. The willow trial harvest was accomplished despite the Northeast’s harsh and persistent 2014‐2015 winter. Specialized harves ng and plot weighing equipment was hauled between New York and West Virginia to harvest the three associa on trials containing over 2,400 plots.  

Ongoing genotyping, heritability, trait mapping, and gene expression data collec on resulted in presenta ons at the Plant and Animal Genome XXIII Conference in January.  

Crosses were conducted to improve rust resistance by selec ng individuals with the lowest incidence of rust as evalu‐ated in the Geneva Salix purpurea Associa on Trial. Crosses were also conducted using new genotypes of Salix kori‐yanagi imported from South Korea and new genotypes received from botanical gardens in the US.  

A self‐pollina on was conducted using a stable hermaphrodite of Salix purpurea, which will be useful in studying the mechanism of sex determina on and in reducing the overall heterozygosity for genome sequencing.  

A par cularly exci ng aspect of the Feedstock Improvement effort is iden fying switchgrass and willow cul vars that can grow on reclaimed mineland. The Cornell and Rutgers breeding programs have iden fied switchgrass lines with superior performance on reclaimed mineland. Seedlings of 40 top performing lines in New Jersey and Pennsylvania were germinated in the greenhouse to establish new nursery plan ngs based on that analysis. Switchgrass samples were ground, analyzed using NIRS, and selected samples were sent to Dairy One for wet chemistry analysis. A new calibra on equa on was developed and applied to all samples. Rutgers switchgrass samples were ground to be ana‐lyzed via NIRS. Superior switchgrass lines were planted on reclaimed mineland in Philipsburg, PA, and ini al observa‐ons are promising.  

The willow plan ng in Morgantown, WV on reclaimed mineland is well‐established a er one year. Willow plan ngs in Philipsburg on reclaimed mineland are on track for May 2015, and the team is also op mis c about these and what 

–– 55 –– 

success will mean for the future ‐ there are 1,000,000 acres of reclaimed mineland in the NEWBio region, of which roughly half are yet to be reclaimed. Bioenergy crops could play a key role in that reclama on process. 

Year Four Ac vi es  Task 2.1: Breeding of non‐invasive triploid hybrids of willow displaying hybrid vigor 

Ac vi es will include maintaining willow tetraploid crossing blocks and diploid/triploid progeny in the field, and the collec on of biomass yield data and yield trial measurements for willow and switchgrass 

Outputs will include maturity, vigor ra ngs, disease and insect ra ngs, and the acquisi on of other data iden‐fying varia on in progeny performance. 

Milestones reached will include the produc on of new progeny and the successful establishment of triploid and tetraploid seedling plan ngs in the field. 

An cipated outcomes and impacts include improved yields and shortened breeding cycles, and the develop‐ment of genomic tools to accelerate breeding for marginal lands. 

Task 2.2: Gene c basis for pest and disease resistance in willow and perennial grasses 

Ac vi es will include the ongoing survey of willow germplasm for suscep bility to rust, potato lea opper, beetles and rust; the evalua on of switchgrass mapping popula on survival and disease injury, and evalua‐on of treatments for disease resistance. 

Outputs will include expanded data collec on on popula on varia ons in pest and disease resistance and heritability es mates. 

Milestones will include an assessment of pest and disease resistance among willow cul vars, and the deter‐mina on of whether disease (anthracnose) influences dry biomass yield among cul vars of switchgrass. 

An cipated outcomes will include improvement in breeding resistance to the greatest emerging bio c threats to sustainable produc on of perennial bioenergy feedstocks. 

Task 2.3: Breeding and selec on of cul vars adapted for Northeast condi ons 

Ac vi es will include measurements of willow growth at various yield trial loca ons, and the analysis of wil‐low biomass composi on from samples in Pennsylvania and Michigan; the assessment of switchgrass winter survival in nurseries at Cornell and Rutgers, and growth, disease and insect resistance in field plots; the prep‐ara on of seedlings for field plan ng and the maintenance of nursery plan ngs. 

Outputs will include popula on means of survival and varia ons in clone responses to maturity, vigor, dis‐ease and insects, and varia ons in progeny performance of bioenergy traits. 

Milestones will include the iden fica on of superior progenies or mother lines for use in future breeding efforts and the successful establishment of seedling plots. 

An cipated outcomes will integrate feedstock improvement data with Task 4.1 (Sustainability thrust) and result in improved germina on under low soil temperatures and improved vigor on poorly drained and sandy marginal soils. 

Task 2.4: Breeding and selec on of willow and switchgrass yields on reclaimed mine lands. 

Ac vi es will include the measurement of willow stem diameters and the height of first‐year post‐coppice growth on West Virginia reclaimed minelands; the replan ng of willow cul vars in Philipsburg, PA; and the collec on of switchgrass yield on reclaimed minelands in West Virginia and Pennsylvania. Bioinforma c anal‐ysis of new soil DNA sequences, including comparisons to first samplings, is planned to evaluate microbial popula ons on mineland sites in comparison with agricultural sites. 

Outputs will include addi onal data to inform the ongoing evalua on of mineland sites. 

Milestones will include iden fica on of willow cul vars and switchgrass plants with superior biomass yield on marginal land. 

An cipated outcomes will include the iden fica on of cul vars and breeding lines that are capable of eco‐nomically viable produc on on this unique substrate and provide a founda on for further breeding and im‐provement. 

–– 56 –– 

Thrust Information

Harvest, Preprocessing and Logistics

Ryan Baxter, Penn State University Anahita Bharadwaj, Penn State University Kwesi Boateng, USDA-ARS, ERRC Tristan Brown, SUNY-ESF Kirby Calvert, Penn State University Kay DiMarco, Penn State University Mark Eisenbies, SUNY ESF Damon Hartley, Idaho National Laboratory Nikki Kapp, Penn State University Jude Liu, Penn State University Weiguo Liu, West Virginia University Sebastian Redcay, Penn State University Tom Richard, Penn State University Michelle J. Serapiglia, USDA-ARS, ERRC Tim Volk, SUNY ESF Jingxin Wang, West Virginia University Yuxi Wang, West Virginia University Charlynn White, Penn State University   Xinfeng Xie, West Virginia University 

 

Objec ves 

For perennial crop systems like willow, miscanthus and switchgrass, harves ng and 

transporta on can account for 40 to 60 percent of the delivered cost of biomass. Preprocessing of biomass through dry‐

ing, size reduc on, storage and compac on can increase transporta on efficiency, reduce delivered costs, and improve 

conversion efficiency. Cost reduc ons associated with biomass logis cs, including harvest and collec on, processing, 

transporta on, and storage unit opera ons, are key to establishing a commercially‐viable, sustainable biorefinery. Partly 

because logis cs costs associated with low density and unstable biomass are so high, much of the physically available sup‐

ply is not available at delivered prices of $60‐100/dry ton.  

 

Accomplishments 

Woody biomass logis cs modeling has been accomplished to es mate the delivered cost of biomass feedstocks and 

op mize the loca ons of facili es. During Year Three, we added more scenarios and analyses to our model, and based 

on informa on added this year we are revising manuscripts to submit to refereed journals.  

Due to weather and other restric ons, it was very difficult to find and harvest a miscanthus field in the Northeast U.S. 

To ensure the coverage for our tasks and outcomes, we conducted miscanthus field harves ng on 50 acres in Easton, 

Illinois, and collected  me‐mo on, fuel use, and other logis cs modeling data.  

We are analyzing torrefac on results and expanding cross‐lab analyses of feedstocks, including tes ng and compari‐

son of samples with non‐modified feedstock.  

On the effects of preprocessing transporta on and downstream fuel conversion, we finalized data analyses and sub‐

mi ed a paper on pyrolysis of switchgrass. We are making good progress on acidogenic diges on: concept papers 

were submi ed to DOE’s ARPA‐E and USDA‐DOE’s Biomass Research and Development Ini a ve, and a journal ar cle 

was published in the Journal of Membrane Science.  

We con nue to monitor our studies to assess storage requirements and effects of long‐term storage on dry ma er 

loss and biomass quality of willow and perennial grasses. A paper was published with a conversion stakeholder 

–– 57 –– 

(Mascoma’s IP team at Dartmouth University) that included characteriza on and storage data for immature rye bio‐

mass, which demonstrated very high saccharifica on rates without pretreatment.  

Near‐term market data for willow was examined and collected for the ongoing work on building cost engineering 

models for satellite preprocessing and storage.  

LCA data have been collected from mul ple sources (EcoInvent, US LCI, DOE GREEET, published literature, and NEW‐

Bio field data). A manuscript that evaluated uncertainty in feedstock logis cs supply chains was published in the jour‐

nal Energies. The study found that the spa al density of available biomass can increase the variability of projected life 

cycle GHG emissions, and in some cases a biomass‐to‐ethanol supply chain can exceed RFS2 compliance ranges; how‐

ever, this variability can be addressed through op mizing the number and size of preprocessing depots. Addi onal 

LCA modeling has been completed and is in progress. The LCA models cover topics including transporta on fuels, and 

near markets such as CHP and district hea ng for willow feedstocks. A techno‐economic modeling process has been 

started with considera ons of three real case scenarios of our stakeholders: pellet fuel produc on, combined heat 

and power (CHP), and lignocellulosic sugar/biofuels. 

 

Year Four Ac vi es 

Task 3.1: Significantly reduce the harves ng cost per ton of biomass feedstocks from willow and perennial grasses 

Ac vi es will include the ongoing efficiency analysis of large‐scale willow harvests and collec on of produc‐

on, fuel consump on and emission data; analysis of miscanthus harvest field data and in‐field use costs 

analysis and modeling; and ongoing modeling based on revisions to logis cs, supply chain, and op miza on 

data and research findings. 

Outputs will include revised model projec ons and data genera on for various other tasks. 

Milestones will include finalizing willow harvest efficiency models, finalizing miscanthus produc on models 

and in‐field use efficiency models and equa ons; and the development of baling, bale handling cycles and 

other harvest system parameters. 

An cipated outcomes and impacts will include sharing the biomass feedstock logis cs model with NEWBio 

commercial partners to incorporate improvements into future harves ng opera ons and to con nue meas‐

urement and documenta on of the effect of these improvements. Longer‐term, improvements in the effi‐

ciency of feedstock harves ng and its supply chain are expected to reduce the delivered cost of materials, 

resul ng in greater supplies of reasonably‐priced biomass for advanced biorefineries. 

Task 3.2: Quan fy the role of preprocessing for densifica on and storage on transporta on efficacy and downstream 

fuel conversion 

Ac vi es will include the analysis of torrefac on test results and expand the cross‐lab analysis of feedstock 

types and proper es (modified and non‐modified feedstocks); ongoing analysis of energy and fuel yield 

measurements from torrefied biomass feedstock; and the con nua on of densifica on and storage studies 

for switchgrass, miscanthus and willow harvests. 

Outputs will include data collec on of various parameters: energy and poten al fuel yield of torrefied bio‐

mass, densifica on impacts on biomass quality as well as dry mass losses and efficiency results. 

Milestones will include presenta on of results via manuscripts and presenta ons, and the development of 

fact sheets describing the metrics of biomass preprocessing parameters, the effects of preprocessing on 

transporta on and downstream fuel conversion, densifica on impacts and storage system development for 

willow and perennial grasses. 

An cipated outcomes and impacts include the acquisi on of data to be er inform the development of har‐

vest, preprocessing and logis cs systems to move biomass feedstocks through the supply chain to the refin‐

ery gate. 

Task 3.3: Assess the storage requirements and effects of long‐term storage on the quality of willow and perennial 

grasses 

Ac vi es will include the ongoing monitoring of long‐term storage studies for willow, miscanthus and 

switchgrass. 

Outputs will include data collec on on the impacts of wet/dry storage and dry ma er loss during storage.

–– 58 –– 

Milestones will include upda ng fact sheets and manuscript or presenta on materials with the latest data. 

An cipated outcomes and impacts will include using storage data and informa on to develop storage sys‐

tems that will allow for the accumula on of the feedstock supply needed to maintain constant levels of bio‐

fuel produc on year‐round. 

Task 3.4: Techno‐economic analysis, cost engineering, and life cycle analysis of densifica on, storage preprocessing 

and biorefinery integra on 

Ac vi es will include the genera on of equipment performance parameters, biomass material format char‐

acteris cs, and ranges for alterna ve supply scenarios to revise/refine logis cs, TEA and LCA models for both 

woody and herbaceous biomass. 

Outputs will include an op miza on model with supply chain configura ons and unit costs. 

Milestones will include a revised logis cs model of forage harvester supply chain with unit costs. 

An cipated outcomes and impacts include the development of an integrated model to project the yield of 

both biofuel and bioproducts along with economic costs and poten al returns. 

Miscanthus harves ng  in Easton, Illinois  

–– 59 –– 

Thrust Information

System Performance and Sustainability Metrics

Lars Bjoernebo, Drexel University Maria Laura Cangiano, Penn State University Kristie Dennison, Penn State University Melanie A. Kammerer, Penn State University Armen Kemanian, Penn State University Kimberlee Marcellus, Drexel University Felipe Montes, Penn State University Dave Mortensen, Penn State University Long Nguyen, Drexel University Anu Pradhan, Drexel University Amanda Ramcharan, Penn State University Brian Richards, Cornell University Debasish Saha, Penn State University Nathan Sleight, SUNY ESF Sabrina Spatari, Drexel University Peter Woodbury, Cornell University Jeffrey Yanosky, Penn State University Katherine Y. Zipp, Penn State University

Objec ves 

Sustainability will assess the overall system performance and sustainability of biomass to biofuel systems through a combi‐na on of detailed measurements at willow and perennial grass experimental sites, regional simula ons using benchmark scenarios, and integra on of the techno‐economic analysis (shared with thrust 3 ‐ Harvest, Preprocessing, and Logis cs). These ac vi es provide informa on to assess sustainability following the criteria proposed by the Global Bioenergy Part‐nership: (1) the fuels life‐cycle GHG emissions, (2) changes in soil quality, (3) emissions of non‐GHG air pollutants, (4) im‐pacts on water quality, (5) impacts on landscape biodiversity, (6) land use and land‐use change related to energy feed‐stock produc on, and (7) rural and social development.  Criterion (7) requires coordina on with Thrust 1 – Human Sys‐tems).  We also emphasize inclusion of so‐called non‐market ecosystem services that perennial systems may provide in the NE landscapes.   

Accomplishments Sustainability con nues with experimental measurements (N, C, N2O) and biomass sampling to address uncertain es 

about yield progression over  me of NEWBio’s different cul vars and cul var mixtures. Our sustainability thrust is working with the matrix of sustainability indicators that Virginia Dale developed at Oak Ridge Na onal Laboratory. 

The team completed the first es ma on of the compara ve net primary produc vity (C balance) of willow and corn at NEWBio’s Rockview (Pennsylvania) site. Simula ons of switchgrass response to nitrogen are ongoing in central Penn‐sylvania, and have been completed in southeastern Pennsylvania.  

Data from the PRISM‐EC (energy crop) regressions have been downloaded at the county level and are being analyzed with the goal of establishing clear benchmarks. A sub‐group of the team is comple ng compara ve enterprise budg‐ets for energy and grain crops in the Chesapeake Bay area, with a focus on switchgrass and corn, while another group is developing a compara ve analysis of the land use and other a ributes for the miscanthus BCAP area, the BCAP area in New York, and Lancaster County is southeastern Pennsylvania, in rela on to the Chesapeake Bay. S ll a third group is filtering historic land use data to establish specific fields that can be considered available for energy crops.  

TEA and LCA scenarios are being worked on in tandem with the HPL thrust and accomplishments and are reported there. LCA accomplishments are a result of cross‐thrust research with HPL; a manuscript on life cycle GHG emissions related to feedstock logis cs supply chains is noted under HPL. 

 

–– 60 –– 

Year Four Ac vi es   Task 4.1: Site‐ and crop‐specific knowledge gaps 

Ac vi es will include the con nued monitoring and accumula on of biomass measurements at various ex‐perimental sites on yield progression over  me, nitrogen demand and nitrogen sources, nitrous oxide emis‐sions and carbon storage. 

Outputs will include various measurements, such as field measurements of radia on intercep on or hydrau‐lic proper es that differen ate cul vars, leaf and stem mass, and 15N, N2O and C sampling. 

Milestones will include the development and availability of a C‐version of the Cycles model via Penn State’s Linux cluster and repor ng of es mates of N balances, es mates of N2O emissions and methodology, and documenta on of the third year C balance for willow and the second year of the adjacent annual crop. 

An cipated outcomes will include the ongoing modeling of growth and determina on of yield poten al/realizable yield at benchmark loca ons, with the refinement of biomass breeding targets, and documenta‐on of nutrient demand and extrac on for each crop in produc on condi ons. 

Task 4.2: Benchmark scenarios 

Ac vi es will include soils analyses for BCAP areas, and running scenarios in Cycles. 

Outputs will include simula on results and the presenta on of revised simula ons for each crop to the pro‐ject team. 

Milestones will include development of management schedules for each planta on, and a management schedule that compares annual crops with energy crops. 

An cipated outcomes will include development of plausible scenarios with detailed schedules of manage‐ment prac ces establishing land prepara on opera onal standards, herbicide prescrip ons, nitrogen man‐agement (type and fer lizer rate) and harves ng strategies. 

Task 4.3: Regional feedstock supply and environmental assessment 

Ac vi es will include the evalua on of land use change impact on biodiversity and wildlife at three loca ons where bioenergy crops are to be used (two BCAP areas and an exis ng site in Lancaster, PA), inventories of pre‐ and post‐plan ng condi ons at these sites, and con nued monitoring of plan ngs. 

Outputs will include capturing point and landscape‐level indicators/criteria for regional scenario building, and comple on of a white paper on evalua ng ozone and biogenic VOCs related to willow expansion. 

Milestones will include a unified outcome regarding ‘abandoned’ cropland and the iden fica on of poten al areas for bioenergy crops (primarily in Pennsylvania), and the defini on of variables that are and are not as‐sembled in LCA (e.g. “percep ons”, a variable for which there is no energy or monetary value determined), and the include development of a land use protocol for air quality to be applied at demonstra on sites 

An cipated outcomes will include advancing NEWBio’s understanding of these environmental impacts on the biomass value chain, and the applica on of this research to NEWBio demonstra on sites and research trials. 

Task 4.4: Biomass to biofuel life cycle analysis and mul ‐criteria sustainability 

Ac vi es will include refining and upda ng the LCA model using SimaPro8 and defining more case scenarios to include detailed and applicable pathways. Uncertainty analyses will also be conducted. Data has been col‐lected. 

Outputs will include comparisons of average and region‐specific LCA metrics for inclusion in LCA models and uncertainty results. 

Milestones reached will include finalizing the spa al‐sta s cal LCA study for feedstock collec on, transport and densifica on. 

An cipated outcomes and impacts will include a systems level accoun ng of market and non‐market ecosys‐tem services that will guide adjustments in biomass produc on systems and inform current land use states and scenarios for scaled up biomass produc on prac ces. 

–– 61 –– 

Thrust Information

Safety & Health in Biomass Operations

Pankaj Kuhar, Penn State University Dennis Murphy, Penn State University Douglas Schaufler, Penn State University

Objec ves 

Safety and health aspects of the biomass product supply chain will be 

addressed from a holis c, systems perspec ve, including review of 

hazard and risk exposures, development and applica on of hazard 

and risk management tools, educa on and training, and limi ng dam‐

age caused by unwanted events. Engineering and educa onal pro‐

grams and interven ons will be viewed from the Pre‐event, Event and 

Post‐event phases of any injury incident, and will focus on relevant 

human, equipment and environmental factors. Mechanical and indus‐

trial hygiene exposures and risks will be targeted.  

 

Accomplishments 

The Safety team par cipated in biomass produc on ac vi es with NEWBio partners, including harves ng and storage 

of biomass crops. This provided insight into hazards present in biomass produc on not found in tradi onal agricultur‐

al crops, and how safety commi ees within organiza ons func on.  

Fire and respiratory hazards are being inves gated as areas of par cular concern to biomass producers.  

A “Learn Now” video focused on the hazards of winter harves ng that may be unique to biomass growers has been 

completed.  

With the lower‐than‐expected adop on of on‐farm biomass produc on, the target delivery for the safety and health 

management program is shi ing from in‐person presenta ons to producers to development of on‐line and print ma‐

terials suitable for biomass educators and producers.  

 

Year Four Ac vi es 

Task 5.1: Biomass safety program development 

Ac vi es will include the inves ga on of fire and associated codes, injury and exposure reports, and the re‐

view of exis ng programs. 

Outputs will include data collec on on findings and documenta on of deficiencies and gaps. 

Milestones reached will include the iden fica on of new hazards and opportuni es for raising awareness of 

safety and health issues. 

An cipated outcomes will include raising awareness within the biomass community through the communica‐

on of the survey results to create a culture of safety in the biomass produc on, transport and preprocessing 

sectors. 

Task 5.2: Safety and health hazard inventory 

Ac vi es will include con nua on of site visits to Pennsylvania and non‐ Pennsylvania loca ons for the pur‐

pose of examining new machines and technologies. An assessment will be made of rural community abili es 

to respond to biomass processing plant emergencies. 

Outputs will include the documenta on of machines and technologies, and the compila on of applicable 

rural codes. 

Milestones will include the iden fica on of on‐going and poten al hazards for new machines and technolo‐

gies. 

–– 62 –– 

An cipated outcomes will include the development of safety standards that address machinery hazards and 

environmental risks, to promote worker safety 

Task 5.3: Develop, conduct and evaluate a comprehensive safety and health management program 

Ac vi es will include the ongoing development of a biomass safety and health management plan. 

Outputs will include a dra  plan and handbook. 

Milestones reached will include pilo ng and evalua ng the dra  plan. 

An cipated outcomes will include an improved safety management plan that will iden fy industry safety 

standards, and raise public awareness of hazards, and reduce injury exposure. 

2014‐2015 Winter Harves ng 

Flat Tire in Hughesville 

Willow stools in Hughesville 

Fredonia plot harves ng 

–– 63 –– 

Thrust Information

Extension

Sarah Cross, West Virginia University Erik Draper, Ohio State University Shawn Grushecky, West Virginia University Susan Harlow, University of Vermont Extension Wendy Sue Harper, University of Vermont Extension Sue Hawkins, University of Vermont Extension Justin Heavey, SUNY ESF Michael Jacobson, Penn State University Ed Johnstonbaugh, Penn State University David Marrison, Ohio State University Gillian McGarvey, University of Vermont Extension Gary Musgrave, Penn State University Heather Nobert, West Virginia University Les Ober, Ohio State University Jeff Skousen, West Virginia University Sarah Wurzbacher, Penn State University

Objec ves 

Extension will transfer NEWBio project knowledge and skills developed to support rapid deployment of willow‐ and warm‐

season grass‐based bioenergy systems for economic, social and environmental benefits. Our program will enable informed 

public decision‐making, prac cal problem solving, and effec ve business development for the bioenergy economy for our 

key audiences.  

 

Accomplishments 

NEWBio outreach con nues to support the development of a Northeastern U.S. biomass/bioenergy industry through: 

integrated demonstra on site ac vi es; expansion of eXtension.org as a repository for fact sheets, research summar‐

ies, and other bioenergy programming; and the deployment of interac ve learning‐lesson tools. Demonstra on sites 

in New York, northwest Pennsylvania/northeast Ohio, and West Virginia assisted growers through presenta ons and 

field events such as Na onal Bioenergy Day (NY/PA) and the Governor’s Energy Summit (WV). Extension team mem‐

bers con nued assistance and coordina on for NEWBio researchers working with industry partners at the demonstra‐

on sites. Among other examples, field work was completed in November 2014 for a switchgrass harvest trial across a 

soil moisture gradient in coopera on with Ernst Conserva on Seeds, a NEWBio corporate stakeholder.  

Extension staff assisted in iden fying subjects for regional human systems research and facilita ng interviews and 

focus groups in support of those research ac vi es. Site visits facilitated by extension to industry partner facili es and 

fields have also helped inform research in such disciplines as logis cs, safety, and sustainability.  

The recent release of EcoWillow 2.0, a comprehensive and up‐to‐date financial analysis tool for shrub willow biomass 

crops, along with a new series of fact sheets to support use of the model, offers an interac ve tool for growers inter‐

ested in willow. EcoWillow has been downloaded by over 1000 users in 70 countries.  

eXtension.org maintains NEWBio’s index of resources (h p://www.extension.org/pages/71100), which includes “Ask 

and Expert” inquiries/responses, biographies of NEWBio experts, research summaries and fact sheets. Recent re‐

search summaries include “Sequestra on of Carbon by Shrub Willow Offsets Greenhouse Gas Emissions” and 

“Characteris cs of Willow Biomass Chips Produced Using a Single‐Pass Cut‐and‐Chip Harvester”.  

Energy crop profiles/fact sheets that include budgets and cost‐es mators are completed for miscanthus, switchgrass, 

and shrub willow. eXtension completed six case studies that highlight successful biomass/bioenergy commercial en‐

–– 64 –– 

terprises (Terra Green Energy, Ernst Conserva on Seeds, Case New Holland, Double A Willow, ReEnergy and Ren‐

ma x).  

NEWBio extension ac vely maintains consistency in its outreach presence through scheduled webinar series presen‐

ta ons, repeat representa on at annual agricultural shows and other established regional events, monthly news‐

le ers, and con nuous content produc on and cura on on social media pla orms like Twi er. These and similar ac‐

vi es serve as a constant backdrop for maintaining recogni on of the project by our audiences and providing 

pla orms for adver sement of new ac vi es, tools, and resources.  

Finally, while Extension’s Biomass Equipment Access Program has all elements in place for use, there are few users to 

date. 

 

Year Four Ac vi es 

Task 6.1: Integrated demonstra on sites 

Ac vi es will include extension ac vi es in support of produc on research and research facilita on at 

demonstra on sites in Pennsylvania, Ohio, New York and West Virginia. New York ac vi es will include BCAP 

crop monitoring. 

Outputs will include three to four field days or related workshop events, the development of a BCAP grower 

directory and needs assessment, and the iden fica on of poten al cooperators. 

Milestones reached will include hos ng workshops, field demonstra ons and seminars in Pennsylvania, New 

York and West Virginia. 

An cipated outcomes will include the con nued development of learning communi es engaged in the bio‐

energy arena. 

Task 6.2: Biomass equipment access program 

Ac vi es will include crea ng awareness of the program and equipment availability, and coordina ng equip‐

ment scheduling. 

An cipated outputs will include mul ple growers supported by reduced cost usage of specialized willow 

plan ng and harves ng equipment. 

Milestones reached will include actual equipment usage and the deployment of resources on the equipment, 

the economics of its use, and relevant safety issues. 

An cipated outcomes will include the increase use of specialized equipment by small landowners, and in‐

creased public awareness of the safety hazards inherent in the use of large, complicated machinery. 

Task 6.3: Small business and economic development 

Ac vi es will include development and planning for a short course focusing on small biomass business devel‐

opment (delivered in Year Five) through the award of NEWBio seed grant funds. Course content develop‐

ment, extensive marke ng, adver sing and recruitment will occur during Year Four, with course delivery in 

Year Five. Extension also will develop a white paper on biomass procurement strategies as a follow‐up to the 

Human Systems thrust’s farmer and landowner surveys. 

Outputs will include lis ngs of par cipa ng industry partners for sponsorship of the short course and in‐

volvement of the Small Business Development Corpora on at Penn State in course prepara on; and integra‐

on of findings from white papers on business models, market iden fica on, market analyses to build an 

integrated business model supply chain and iden fy market opportuni es for biomassrelated businesses. 

Milestones reached will include comple on of all short course prepara ons and adver sing/recruitment, 

comple on of the white paper on procurement strategy analyses, and iden fica on of successful business 

models and compe ve strategies for biomass businesses. 

An cipated outcomes will include advancing the body of business and market knowledge necessary to create 

a culture of opportunity for development of the biomass supply chain. 

Task 6.4: Expand eXtension.org for willow and warm‐season grasses 

Ac vi es will include maintenance of the current index of all NEWBio publica ons and outreach materials, 

providing guidance on the use of the “Ask an Expert” system, facilitate the ongoing development of summar‐

ies of NEWBio research, and facilitate the development of fact sheets by NEWBio project team members. 

–– 65 –– 

Outputs will include links to NEWBio resources wherever they are published, by resource type and pla orm; 

iden fica on of fact sheet and research summary topics; con nua on of social media content to promote 

biomass and bioenergy. 

Milestones reached will include 100% response rate to “Ask an Expert” queries, five research summaries 

published, two fact sheets published, and eight NEWBio research biographies posted to eXtension’s NEWBio 

Resources webpage. 

An cipated outcomes will include dynamic and interac ve educa onal resources that raise the general pub‐

lic’s bioenergy awareness and contribute to capacity building for biomass growers and entrepreneurs. 

Task 6.5: Interac ve and innova ve learning‐lessons tools 

Ac vi es will include the ongoing development and delivery of informa ve Fact Sheets, NEWBio Blog posts, 

monthly bioenergy webinars, social media pos ngs (Twi er, Facebook, Pinterest), a monthly electronic 

newsle er, and the development of more interac ve outreach components to increase the diversity or re‐

source types among the NEWBio suite of pla orms. 

Outputs will include the con nued profiling of successful biomass businesses and NEWBio partners, the de‐

sign of programs and workshops highligh ng NEWBio ac vi es and informa on, the iden fica on and  mely 

delivery of webinars on important issues, and the enhancement of mul media resources. 

Milestones reached will include the publica on of ten fact sheets, 12 blog posts, five research summaries 

and 12 newsle ers; the comple on of 40 presenta ons at various expos, poster sessions, field days and the 

like; the broadcast of ten bioenergy webinars; and con nuous social media posts on Twi er and Facebook 

pla orms. 

An cipated outcomes will include raised public awareness about the best prac ces and emerging technolo‐

gies in their bioenergy interest areas. 

Rockview Willow Site 

At le , a new tower being li ed to support the eddy covariance instrumenta on. The open path CO2 sensor can be seen overhanging.   

 Below, Felipe Montes and Gustavo Camargo managing the li . The top of the canopy is 6 m tall, and the in‐struments are now at 12 m above the ground, or 6 m above the top of the canopy. 

–– 66 –– 

Thrust Information

Education

Natalie Aiello, Penn State University Leah Bug, Penn State University Daniel Ciolkosz, Penn State University David DeVallance, West Virginia University Deborah Dietrich, Penn State University Prosper Doamekpor, Tuskegee University Stacie Hritz, Penn State University Matt Johnson, Penn State University Tiffini Johnson, Delaware State University Venu Kalavacharla, Delaware State University Danielle Lesso, Penn State University Kalpalatha Melmaiee, Delaware State University Nirav Patel, Cornell University Corey Rutzke, Cornell University Annmarie Ward, Penn State University

Objec ves 

The NEWBio educa on program will develop cri cal human capital by preparing learners to understand, contribute to, 

and lead the Northeast US bioenergy industry via three coordinated, complimentary programs that inform, engage, and 

enable students at secondary, undergraduate, and graduate levels. These programs dovetail with our research and exten‐

sion programs and leverage exis ng program infrastructure and exper se within the team to allow for maximum impact.  

 

Accomplishments 

The NEWBio educa on thrust has effec vely strengthened the educa on pipeline to support the biomass industry in 

the region in the following ways: by training undergraduate students in bioenergy from mul ple ins tu ons (eight 

students trained in Summer 2013; seven trained in Summer 2014, eight an cipated for Summer 2015), and providing 

graduate bioenergy educa on to working professionals (27 scholarships awarded thus far, with an addi onal five an‐

cipated during the Summer 2015 session).  

The long‐term educa on pipeline was enhanced through the training of 43 K‐12 educators who are in turn teaching 

bioenergy concepts to their students.  

 

Year Four Ac vi es 

Task 7.1: Secondary Educator Training 

Ac vi es will include applicant recruitment and receipt/review of candidate applica ons, the iden fica on 

of program dates and loca ons for Summer 2016 workshops, and collabora on with site directors to plan 

local tours and iden fy local speakers. 

Outputs will include maintenance of online resources for the program, development of a recruitment bro‐

chure, and delivery of the workshops. 

Milestones reached will include organiza on of the training for 20 educators, and follow‐up evalua on of the 

program. 

An cipated outcomes and impacts will include an increase in knowledge of bioenergy on the part of the 

trained educators, and integra on of this knowledge in the educators’ subsequent teachings on the subject 

to foster increased public understanding of the social, economic and environmental impacts of sustainable 

bioenergy systems in the Northeast. 

 

–– 67 –– 

Task 7.2: Regional Bioenergy Scholars Program 

Ac vi es will include obtaining feedback from Year 3 scholars and host ins tu ons, recruitment of Year 4 

scholars, maintenance of online resources for the program, applica on review and placement with host ins ‐

tu ons. 

Outputs will include the iden fica on of eight new scholars for summer 2016 trainings. 

Milestones will include eight trained students added to a growing cohort of bioenergy scholars in the region. 

Outcomes and impacts will include increased knowledge on the part of the scholars with demonstrated inter‐

est in a bioenergy career. 

Task 7.3: Graduate Distance Educa on in Bioenergy 

Ac vi es will include the marke ng of the program, receipt and review of student applica ons and iden fi‐

ca on of scholarship recipients for spring 2016 courses. 

Outputs will include the delivery of Fall 2015 and Spring 2016 online graduate level bioenergy courses. 

Milestones will include the comple on of Fall 2015 and Spring 2016 coursework by five graduate students, as 

well as program evalua on and modifica ons as needed for succeeding year offerings. 

Outcomes and impacts will include increased knowledge on the part of the graduate students, and the po‐

ten al forma on of their plans to develop or par cipate in future bioenergy business endeavors. 

Lindsey Hoffman, Rutgers University PostDoc,  

discusses biofuels and bioproducts  

with middle and high school students  

at Princeton University’s  

14th Annual Young Women’s Conference  

Switchgrass harves ng 

at the NEWBio nursery in New Jersey 

–– 68 –– 

Thrust Information

Leadership, Stakeholder Involvement, K2A, Evaluation

Aus ne Decker, Penn State University 

Lara Fowler, Penn State University 

Barbara Kinne, Penn State University 

Jessica Leahy, University of Maine 

Laura Lindenfeld, University of Maine 

Tom Richard, Penn State University 

Larry Smart, Cornell University 

Timothy Volk, SUNY‐ESF 

Jingxin Wang, West Virginia University 

 

Advisory Board 

Ann Swanson, Chesapeake Bay Commission, Chair 

Dan Arne , Ernst Conserva on Seeds 

Dante Bonaquist, Praxair Inc. 

George Boyajian, Primus Green Energy 

Sco  Coye‐Huhn, Aloterra Energy LLC 

Calvin Ernst, Ernst Conserva on Seeds 

Thomas Foust, Na onal Renewable Energy Laboratory 

Frank Lipiecki, Renma x 

Lee Lynd, Mascoma 

Prafulla Pa l, American Refining Group 

John Posselius, CNH 

Dennis Rak, Double A Willow 

Kevin Smith, CNH America LLC 

Objec ves 

The primary focus for the Leadership team is to link stakeholder involvement to all NEWBio ac vi es. Through team 

mee ngs, teleseminars, and a rigorous annual evalua on, expected outcomes will include demonstrated transdisciplinary 

collabora ons, knowledge and perspec ves; research that is more closely aligned with stakeholder needs; and more effec‐

ve and efficient dissemina on of scien fic knowledge that will support the expansion of perennial energy crops within 

the Northeast.  

 

 

Accomplishments 

Team mee ngs con nue to play an important role in the development of NEWBio’s collabora ve process. Communi‐

ca on of NEWBio ac vi es is accomplished through several complementary mechanisms. We use our monthly e‐

newsle er (25‐30 % open rate, over 500 ac ve contacts) to relate research updates and other ar cles and news relat‐

ed to biomass and bioenergy to the project team, our advisory board, industry and agency partners, and the general 

public.  

Cri cal leadership discussions are ongoing to inves gate poten al biorefinery sites and evaluate needs related to bio‐

–– 69 –– 

mass pricing and quan es.  

Our data management plan is now in the implementa on phase, with NEWBio contribu ons being shared internally. 

Training from Oak Ridge Na onal Lab’s KDF Library, Idaho Na onal Lab’s Biomass Resource Library, the USDA Na onal 

Agricultural Library occurred in January 2015 to facilitate data uploads to various federal repositories for eventual 

sharing with the public. 

 

Year Four Ac vi es 

Task 8.1: Execu ve and Thrust Conference Calls 

Ac vi es will include monthly leadership team conference calls, and monthly joint leadership‐management 

team conference calls, and at least monthly but in some cases (depending on the  me of year) more fre‐

quent thrust team conference calls. 

Outputs from these calls will include communica on of progress‐to‐date within and across teams, and iden ‐

fica on of items requiring immediate ac on or longer‐term resolu on. 

Milestones reached will include 11 leadership conference calls, 11 joint leadership‐management conference 

calls, and an es mated 60+ thrust team calls. 

An cipated outcomes and impacts will include broad distribu on of the total team effort to all project mem‐

bers, and to the public at large through pos ngs to the NEWBio public website. 

Task 8.2: All Hands Teleseminars and Mee ngs 

Ac vi es will include monthly teleseminars and an annual mee ng that provide project updates to the NEW‐

Bio project team, our advisory board, industry and agency partners and interested members of the public. 

These teleseminars include one or more NEWBio research, extension or educa on presenta ons, with par c‐

ipa on by our corporate partners. 

Outputs will include the communica on of project efforts and results to the larger NEWBio. 

Milestones reached will include 11 teleseminars, and one annual mee ng that will occur near the end of the 

funding year. 

An cipated outcomes will be the crea on of synergis c opportuni es for project team efforts to further align 

efforts with stakeholder needs. 

Task 8.3: External Advisory Board Mee ngs and Strategic Planning 

Ac vi es will include an annual stakeholder review of NEWBio tasks and performance facilitated by external 

evaluators, board involvement in evalua ng the NEWBio seed grant program, and the establishment of an 

ac ve feedback loop for strategic planning. 

Outputs will include an updated strategic plan with goals, strategies and tac cs for the coming year. 

Milestones reached will include at least one mid‐year board mee ng, and par cipa on by the board at the 

NEWBio annual mee ng. 

An cipated outcomes and impacts from this effort will include a more focused investment of  me and re‐

sources on cri cal barriers and bo lenecks to project success and commercial implementa on. 

Task 8.4: Task and Project Evalua on 

Ac vi es will include evalua on of stakeholder engagement processes and assessment of NEWBio capacity 

to create stronger linkages between knowledge and ac on (K2A) via a survey of internal project team mem‐

bers and the Advisory Board. Interviews will be conducted with a sub‐set of NEWBio’s Leadership Team, non‐

Leadership Team personnel, and non‐Advisory Board external stakeholders. 

Outputs will include a technical report from survey data collected in fall 2015; data collected through inter‐

views conducted in summer and fall 2015; and ongoing evaluator par cipa on in management, all hands, 

and annual mee ngs. 

Milestones reached will include delivery of the technical report based on the survey, interviews, and par ci‐

pant observa on that includes assessment of and recommenda ons for improving interdisciplinary collabo‐

ra on and stakeholder engagement. Reports will provide recommenda ons aimed at improving project effi‐

cacy, especially with regard to transferring research to prac ce via stakeholder engagement. 

An cipated outcomes and impacts will include guidance for increasing collabora ve opportuni es in order

–– 70 –– 

to more closely align research, extension and outreach efforts with project team and stakeholder needs.

Task 8.5: Administra ve Evalua on 

Ac vi es will include evalua on of program administra on via a team survey and interviews with key team 

members. 

Outputs include a technical report from survey data collected in fall 2015; data collected through interviews 

conducted in summer and fall 2015; and ongoing par cipa on in management, all hands, and annual 

mee ngs. 

Milestones reached will include delivery of a technical report based on the survey, interviews, and par ci‐

pant observa on that includes assessment of and recommenda ons for improving program administra on. 

Reports will provide recommenda ons aimed at improving project efficacy through enhanced administra ve 

capacity. 

An cipated outcomes will include guidance for program administra on to enhance administra ve capacity 

and create stronger inter‐ and transdisciplinary collabora ons. 

Task 8.6: Final Evalua on and Program Report 

No ac vi es are planned during Year Four. 

Plan ng Philipsburg Yield Trial 

2015 Mylan Park yield trial coppice regrowth 

Switchgrass nursery planted in Freehold, NJ. 

–– 71 –– 

APPENDICES

Meeting Evaluation

Travel Reimbursement Instructions

–– 72 –– 

–– 73 –– 

Meeting Evaluation The link to our online mee ng evalua on form will be emailed to all a endees at the conclusion of 

the mee ng.  We look forward to your comments and input as we plan for NEWBio 2016. 

Travel Reimbursement Instructions Reimbursement forms are available using the links below. 

Penn State Employee Travel Form:

https://www.ers.psu.edu/

Non-Employee Travel Reimbursement Form

https://guru.psu.edu/formpublic/nonemployeetravel.pdf

Non-Employee Information Form (NEIF)

https://guru.psu.edu/forms/public/NonEmpInfoForm.pdf

NEIFs are required for all non-Penn State attendees, regardless of whether you file for ex-pense reimbursement. If you submitted expenses for NEWBio’s 2014 Annual Meeting, an NEIF is on file for you. Please check with Barbara Kinne if you are unsure. Please complete page one of the “Non-Employee Information Form” and send to Barbara Kinne at [email protected] (Fax to 1-814-863-2830, attn. NEWBio-Kinne, or mail to Barbara Kinne, 118 Land & Water, Penn State, University Park, PA 16802). Barbara will attach a completed page two (host name, etc.) for you, and if necessary, help determine if you need additional visa documents as described on page two of the NEIF. Depending on your country of origin, the paperless visa system may simply require a photocopy of your entry stamp on your passport during your stay here. A Note on I-94 documentation As of May 2013, the US Customs and Border Protection Agency implemented an electronic system to replace the paper I-94 Card. All Non-U.S. Citizens entering the country BY AIR will no longer receive an I-94 card. Only persons entering by land (Canada or Mexico) will be issued I-94 cards. Upon entrance into the U.S., an Immigration Officer will stamp an Ad-mission Classification, entry date and admitted until date in the individual’s Passport. A copy of this information stamp is what the University will need to authorize any payment to a Non-U.S. Citizen, replacing the previous requirement of a copy of the I-94 card.