37
| | Autonomous Systems Lab 151-0851-00 V Marco Hutter, Michael Blösch, Roland Siegwart, Konrad Rudin and Thomas Stastny Autonomous Systems Lab 23.11.2015 Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 1 Robot Dynamics Fixed Wing UAS: Basics of Aerodynamics

Folienmaster ETH Zürich · 2015. 12. 3. · 3. Performance Considerations 4. Stability 5. Simplified Dynamic Model 6. UAV Control Approaches 7. Case Studies Lecture 1: Basics of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • ||Autonomous Systems Lab

    151-0851-00 V

    Marco Hutter, Michael Blösch, Roland Siegwart, Konrad Rudin and Thomas Stastny

    Autonomous Systems Lab

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 1

    Robot DynamicsFixed Wing UAS: Basics of Aerodynamics

  • ||Autonomous Systems Lab

    1. Overview

    2. Aerodynamic Basics

    3. Performance

    Considerations

    4. Stability

    5. Simplified Dynamic

    Model

    6. UAV Control

    Approaches

    7. Case Studies

    Lecture 1:

    Basics of Aerodynamics

    1. Historical Overview

    2. Aerodynamics

    Basic Principles

    Airfoil Lift/Drag/Moment

    Induced Drag

    Parasite Drag

    Control Surfaces

    3. Performance Considerations

    Propulsion Systems

    Power Required vs. Available

    Maximum Range/Endurance

    Contents:

    Fixed Wing UAS

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 2

  • ||Autonomous Systems Lab

    First Flight:

    Montgolfier Brothers

    1783

    Ballon filled with hot air

    First unmanned

    demonstrations

    Later with animals

    Finally manned

    Historical Overview

    http://en.wikipedia.org/wiki/Montgolfier

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 3

  • ||Autonomous Systems Lab

    Sir George Cayley:

    First Design of modern

    airplane configuration

    1799

    Discovery of aerodynamics

    principles

    First glider flight with an adult

    in 1853

    Historical Overview

    http://en.wikipedia.org/wiki/George_Cayley

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 4

  • ||Autonomous Systems Lab

    Jean-Marie Le Bris 1856

    First to fly higher than his point of departure

    towed by a horse

    Height of 100 meters at a distance of 200 meters

    Historical Overview

    http://en.wikipedia.org/wiki/Jean-Marie_Le_Bris

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 5

  • ||Autonomous Systems Lab

    Otto Lilienthal

    First person to make repeated successful short flights

    Used a fixed wing glider

    Died after a crash in 1896, saying „Sacrifices must be made“

    Historical Overview

    http://en.wikipedia.org/wiki/Otto_Lilienthal

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 6

  • ||Autonomous Systems Lab

    Wright brothers

    Started as glider engineers and pilots

    First engine powered flight in 1903

    First to actively manipulate the plane by control surfaces

    Historical Overview

    http://en.wikipedia.org/wiki/Wright_Brothers

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 7

  • ||Autonomous Systems Lab

    Analysis of a control volume

    Conservation of mass:

    Momentum conservation:

    Linear

    angular

    Viscous forces

    Aerodynamics: Basic Principles

    0 dSS

    nv

    VSS

    dVt

    dSpdS vnnvvF )(

    VS

    dVt

    dS )())(( rvnvrvM

    0

    y

    wdy

    du

    V: Control Volume

    S: Ctrl Volume Surface

    n: Normal of S

    : Air Densityv: Air flow velocity vector

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 8

  • ||Autonomous Systems Lab

    Analysis on differential volumes:

    with viscosity: Navier-Stokes Equation

    Without viscosity: Euler Equation

    Incompressible along streamline: Bernoulli Equation

    Aerodynamics: Basic Principles

    www.speedace.info/pito

    t_tube.htm as on 29th

    July 2009

    constp

    ghv

    2

    2

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 9

  • ||Autonomous Systems Lab

    Aerodynamics: Basic Concepts

    Forces

    L : Lift

    D : Drag

    Y : Sideslip force

    T : Thrust

    G : Weight

    Moments

    L : Roll moment

    M : Pitch moment

    N : Yaw moment

    Angles

    a : Angle of attack

    b : Sideslip angle

    e : Thrust-vector angle

    Background image:

    http://upload.wikimedia.org/wikipe

    dia/commons/

    5/5c/C_172_line_drawing_oblique.

    svg

    z

    x

    y

    T

    e

    M

    L

    N

    G

    vt

    ab

    D

    L

    Y

    2

    2VACL

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 10

  • ||Autonomous Systems Lab

    Wing Geometry

    Aerodynamics: Basic Concepts

    b: Wingspan

    c: Chord

    c0: Root Chord

    ct: Tip Chord

    A: Reference Area

    AR: Aspect Ratio

    x

    y

    c

    ct

    c 0

    b

    A

    A

    bAR

    2

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 11

  • ||Autonomous Systems Lab

    Various types of wing

    Biplanes & vertical composition of wing

    Lift not proportional to the number of wings.

    Biplane: factor ~ 1.5

    Drag also increased

    Advantage of higher stiffness and less Inertia around

    x-axis (Aerobatics)

    Wing Geometry

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 12

  • ||Autonomous Systems Lab

    Suction

    Overpressure

    2-Dimensional Flow Analysis

    Flow field (pressure distribution, laminar/turbulent) highly dependant

    on angle of attack, Reynolds number and Mach number

    Aerodynamics: Airfoil Lift and Drag

    http://www.thuro.at/anims/abloesung.gifwww.thuro.at/aerodynamik2.htm http://www.thuro.at/anims/abloesung.gif

    Laminar

    boundary layer

    Transition point Turbulent

    boundary layer

    Separated

    boundary

    layer

    Stagnation point

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 13

  • ||Autonomous Systems Lab

    Pressure distribution can be reduced to two forces and one moment

    per unit length:

    Aerodynamics: Airfoil Lift, Drag and Moment

    v

    Angle of attack

    a

    Leading edge

    Trailing edge

    Chord

    c

    25 % Chord Thickness

    dL

    dDdM

    22

    2VdycCdM m

    2

    2VdycCdD d

    2

    2VdycCdL l

    Lift force

    Drag force

    Moment

    : Density of fluid (air) [kg/m3]

    c : Chord length [m]

    V : Flight speed (w.r.t. air) [m/s]

    Cl : Airfoil lift coefficient [-]

    Cd : Airfoil drag coefficient [-]

    Cm : Airfoil moment coefficient [-]

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 14

  • ||Autonomous Systems Lab

    Coefficients Cl, Cd and Cm depend on

    angle of attack a As long as flow is attached:

    Cl – linear:

    Cm – almost constant

    At stall: flow separation

    Cl – stops to increase

    Cd – increases dramaticallyFlow field highly depending on Re (and Ma),

    in particular:

    Location of laminar/turbulent transition point

    Separation point

    Stall angle

    Aerodynamics: Airfoil Lift, Drag and Moment

    Separation point

    a

    2d

    dCl

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 15

  • ||Autonomous Systems Lab

    Reynolds' number influence

    at low speed, Re and Cd

    Aerodynamics: Airfoil Lift, Drag and Moment

    Cl

    Cd a

    Polars of Airfoil we3.55-9.3

    Re

    cV Re

    Forces Viscous

    Forces Inertial

    McMasters, J. H. and M. L. Henderson (1980). "Low Speed Single

    Element Airfoil Synthesis." Technical Soaring 6(2): 1-21

    W. Engel and A. Noth 2005

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 16

  • ||Autonomous Systems Lab

    Mach Number (Ma)

    dependency:

    Measures to damp the drag increase:

    Thin airfoils, supercritical airfoils

    Sweep of the wing forward or back

    Low-aspect-ratio wing

    Aerodynamics:

    Airfoil Lift, Drag and Moment

    Grafics adapted from: Talay, T.A. (1975). „Introduction to the Aerodynamics of

    Flight“. NASA Langley Research Center

    The „Sound Barrier“

    Drag-divergence Mach

    Number

    Win

    g d

    rag

    co

    eff

    icie

    nt

    0 Mach Number 1

    Due to wave

    drag coefficient

    Qualitatively only;

    highly dependent

    on airfoil and

    wing geometry

    Sound of Speed

    Speed AirplaneMa

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 17

  • ||Autonomous Systems Lab

    The choice of an airfoil depends on:

    Flying speed

    Wing loading

    Construction method

    Kind of flight (acrobatic, glide,…)

    Placement on the airplane

    Standard airfoils (some examples)

    Goettingen

    Eppler

    Wortmann

    NACA

    Example: NACA 2412

    Airfoils

    Maximum camber deflection (% of chord)

    Symmetric Airfoils

    Semi-Symmetrical Airfoils

    Under-Cambered Airfoils

    Reflexed Airfoils

    Flat-Bottom Airfoils

    Thickness (% of chord)

    Position of maximum camber deflection (tenths of chord)

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 18

  • ||Autonomous Systems Lab

    Methods to determine airfoil lift, drag and

    moment coefficients:

    Theoretically using 2D-CFD software

    Javafoil

    http://www.mh-aerotools.de/

    Xfoil

    http://raphael.mit.edu/xfoil/

    Experimentally in a wind tunnel

    Extruded airfoil mounted on a

    measurement system

    Laminar flow produced by fans

    Airfoil Lift, Drag

    and Moment

    www.uwal.org/publicdata/photos

    Javafoil

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 19

  • ||Autonomous Systems Lab

    From 2D to 3D: the wing is not

    infinite…

    Vortices are created at wing

    extremities

    Tip vortices induce

    downward flow (w)

    and thus reduce the

    effective angle of attack

    Approx. induced drag:

    e: Oswald Factor < 1 for

    non-elliptic lift distribution

    Induced Drag

    2

    i

    LD

    CC

    e AR

    aerospaceweb.org

    dL

    V (free stream)

    w

    dDi

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 20

    NASA Dryden Flight Research Center

  • ||Autonomous Systems Lab

    Winglets: Less Induced Drag

    www.aviationpartners.com

    http://airpigz.com/blog/2010/8/27/poll-spiroids-funky-circular-

    winglets-love-em-or-hate-em.html

    Blended

    Spiroids

    Modern Glider

    Designs

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 21

  • ||Autonomous Systems Lab

    Ideally, winglets…

    … reduce induced drag at

    low speeds

    … reduce spanwise flow

    … increase the Reynolds

    number near wing tip

    … do not increase the

    parasite drag too much

    (relevant for high speed

    performance)

    How to Reduce Induced Drag: Winglets

    V (fre

    e s

    tream

    )

    v

    Wing

    Upward

    winglet

    Bound

    vortex

    Tip

    vort

    exTop view

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 22

  • ||Autonomous Systems Lab

    Wing: integrate Cd along

    the wing

    Fuselage: highly Re number

    and geometry depending…

    Friction drag

    Form drag

    Interference drag

    e.g. at the transition between

    fuselage and wing

    Can also be negative

    Parasite Drag

    Dra

    g

    Speed

    total

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 23

  • ||Autonomous Systems Lab

    For small airplanes,

    the standard control surfaces are:

    Ailerons (rolling)

    Elevator (pitching)

    Rudder (yawing)

    For larger airplanes, they can be more complex…

    Control surfaces

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 24

    Ailerons:2. Low-Speed Aileron

    3. High-Speed Aileron

    Lift increasing flaps and slats:4. Flap track fairing

    5. Krüger flaps

    6. Slats

    7. Three slotted inner flaps

    8. Three slotted outer flaps

    Spoilers:9. Spoilers

    10. Spoilers-Air brakes

  • ||Autonomous Systems Lab

    Turbojet engine

    All air accelerated passes through the

    compressor to the combustion

    chamber and in the exhaust

    Inefficient especially below Mach 2

    Used in older fighter jets

    Propulsion Group Types

    Tiger F-5

    www.luftfahrt.ch

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 25

  • ||Autonomous Systems Lab

    Turbofan engine

    Combination of ducted fan and jet exhaust nozzle

    Modern airliners and fighters

    Propulsion Group Types

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 26

  • ||Autonomous Systems Lab

    Turboprop engine

    Turbine engine is used to drive a propeller

    Propulsion Group Types

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 27

  • ||Autonomous Systems Lab

    Specific impulse at different speeds

    Propulsion Group Types

    I sp =T

    m× g0

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 28

  • ||Autonomous Systems Lab

    Propeller driven by piston engine or electrical motor

    Propulsion Group Types

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 29

  • ||Autonomous Systems Lab

    At the front

    At the wings (various possibilities)

    Placement of the Propulsion group

    The placement defines where

    the forces are introduced

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 30

  • ||Autonomous Systems Lab

    At the tail (various possibilities)

    Placement of the Propulsion group

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 31

  • ||Autonomous Systems Lab

    Combined positions

    Placement of the Propulsion group

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 32

  • ||Autonomous Systems Lab

    The choice depends also on the conversion, i.e. the propulsion group!

    Energy Storage:

    Densities in Terms of Energy per Mass

    Energy density of

    some reactants

    [kWh/kg](LHV Lower heating value)

    Hydrogen 33.3

    Methane 13.9

    Propane 12.9

    Gasoline 12.2

    Diesel 11.7

    Ethanol 7.5

    Methanol 5.6

    Best* 2015 Li-Ion Batt. 0.25

    Sugar 4.4

    Oil (Colza,…) 10.4

    10 20 300

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 33

  • ||Autonomous Systems Lab

    Given: drag coeff. as a funcion of lift coeff.: 𝐶𝐿 𝑉 =2𝑚𝑔

    𝐴𝜌𝑉2, 𝐶𝐷 𝐶𝐿

    Required power:

    Specific Excess Power: 𝑆𝐸𝑃 = 𝑃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 − 𝑃𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑚𝑔 ≈ 𝑉𝑐𝑙𝑖𝑚𝑏,𝑎𝑐ℎ𝑖𝑒𝑣𝑎𝑏𝑙𝑒

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 34

    Power Required and Available for Level Flight

    Drequired ACVVDP3

    2

    1

    Pavailable

    Prequired

    Pexcess

    Vstall Vmax Vne

    Pow

    er

    True Airspeed

    Vemax Vrmax

    min

    L

    D

    C

    Cmg

    L

    DmgD

    V

    Pmax

    D

    L

    C

    C

    Best glide ratio

    max/

    P

    EVTVs

    min/ P

    max2

    3

    D

    L

    C

    C

    L

    D

    LL

    D

    C

    Cmg

    CA

    mg

    C

    CmgVVDP

    2

    Minimum sink in

    gliding mode

    Max. Range*(vrmax):

    Max. Endurance*(vemax):

    * Assuming constant propulsive efficiency η

  • ||Autonomous Systems Lab 23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 35

    6DoF Nonlinear Aircraft Equations of Motion

    𝑈 = 𝑅𝑉 − 𝑄𝑊 − 𝑔𝑠𝑖𝑛𝜃 + 𝑿𝑻 + 𝑿𝑨 𝑚 𝑉 = −𝑅𝑈 + 𝑃𝑊 + 𝑔𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 + 𝒀𝑻 + 𝒀𝑨 𝑚 𝑊 = 𝑄𝑈 − 𝑃𝑉 + 𝑔𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃 + 𝒁𝑻 + 𝒁𝑨 𝑚

    𝜙 = 𝑃 + 𝑄𝑠𝑖𝑛𝜙 + 𝑅𝑐𝑜𝑠𝜙 𝑡𝑎𝑛𝜃

    𝜃 = 𝑄𝑐𝑜𝑠𝜙 − 𝑅𝑠𝑖𝑛𝜙

    𝜓 = 𝑄𝑠𝑖𝑛𝜙 + 𝑅𝑐𝑜𝑠𝜙 𝑠𝑒𝑐𝜃

    𝑛 = 𝑈𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 + 𝑉 −𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 +𝑊 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓

    𝑒 = 𝑈𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 + 𝑉 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 +𝑊 −𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 + 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓

    𝑑 = −𝑈𝑠𝑖𝑛𝜃 + 𝑉𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 +𝑊𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

    𝑃 = 𝐼𝑥𝑧 𝐼𝑥 − 𝐼𝑦 + 𝐼𝑧 𝑃𝑄 − 𝐼𝑧 𝐼𝑧 − 𝐼𝑦 + 𝐼𝑥𝑧2 𝑄𝑅 + 𝐼𝑧 𝑳𝑻 + 𝑳𝑨 + 𝐼𝑥𝑧 𝑵𝑻 +𝑵𝑨 𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧

    2

    𝑄 = 𝐼𝑧 − 𝐼𝑥 𝑃𝑅 − 𝐼𝑥𝑧 𝑃2 − 𝑅2 + 𝑴𝑻 +𝑴𝑨 𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧

    2

    𝑅 = −𝐼𝑥𝑧 𝐼𝑥 − 𝐼𝑦 + 𝐼𝑧 𝑄𝑅 + 𝐼𝑥 𝐼𝑥 − 𝐼𝑦 + 𝐼𝑥𝑧2 𝑃𝑄 + 𝐼𝑥 𝑵𝑻 + 𝑵𝑨 + 𝐼𝑥𝑧 𝑳𝑻 + 𝑳𝑨 𝐼𝑥𝐼𝑧 − 𝐼𝑥𝑧

    2

  • ||Autonomous Systems Lab

    B.W. McCormick. Aerodynamics, Aeronautics, and Flight

    Mechanics. Wiley, 1979. ISBN: 9780471030324.

    B. Etkin. Dynamics of Atmospheric Flight . Wiley, 1972.

    ISBN: 9780471246206.

    G.J.J. Ducard. Fault-Tolerant Flight Control and Guidance

    Systems: Practical Methods for Small Unmanned Aerial

    Vehicles . Advances in Industrial Control. Springer, 2009.

    ISBN: 9781848825611.

    R.W. Beard and T.W. McLain. Small Unmanned Aircraft:

    Theory and Practice. Princeton University Press, 2012.

    ISBN: 9780691149219.

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 36

    References

  • ||Autonomous Systems Lab

    See you next week!

    23.11.2015Robot Dynamics - Fixed Wing UAS: Basics of Aerodynamics 37