99
Motivation Overview of general results Application to coset manifolds Conclusions Flux Compactifications on Coset Manifolds and Applications Based on: 0707.1038, 0710.5530 (PK, Martucci), 0706.1244, 0804.0614 (PK, Tsimpis, L¨ ust), 0806.3458, 0812.3551 (Caviezel, PK, K¨ ors, L¨ ust, Tsimpis, Wrase, Zagermann), work in progress (PK) http://wwwth.mppmu.mpg.de/members/koerber/talks.html Paul Koerber Max-Planck-Institut f¨ ur Physik, Munich Utrecht, 19 March 2009 1 / 23 Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Flux Compactifications on Coset Manifolds and Applications

Based on: 0707.1038, 0710.5530 (PK, Martucci), 0706.1244, 0804.0614 (PK, Tsimpis, Lust), 0806.3458,0812.3551 (Caviezel, PK, Kors, Lust, Tsimpis, Wrase, Zagermann), work in progress (PK)

http://wwwth.mppmu.mpg.de/members/koerber/talks.html

Paul Koerber

Max-Planck-Institut fur Physik, Munich

Utrecht, 19 March 2009

1 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 2: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 3: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 4: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 5: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 6: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 7: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Models with SU(3)×SU(3)-structure generalized geometry

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 8: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Early type IIA models on torus orientifolds (DeWolfe et al.): allmoduli can be stabilized at tree level

Models with SU(3)×SU(3)-structure generalized geometry

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 9: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Early type IIA models on torus orientifolds (DeWolfe et al.): allmoduli can be stabilized at tree levelIn this talk: models on coset manifolds with geometric fluxes

Models with SU(3)×SU(3)-structure generalized geometry

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 10: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Early type IIA models on torus orientifolds (DeWolfe et al.): allmoduli can be stabilized at tree levelIn this talk: models on coset manifolds with geometric fluxesUplift susy vacuum to dS, models of inflation: problems

Models with SU(3)×SU(3)-structure generalized geometry

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 11: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Early type IIA models on torus orientifolds (DeWolfe et al.): allmoduli can be stabilized at tree levelIn this talk: models on coset manifolds with geometric fluxesUplift susy vacuum to dS, models of inflation: problems

New application to AdS4/CFT Aharony, Bergman, Jafferis,

MaldacenaModels with SU(3)×SU(3)-structure generalized geometry

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 12: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Early type IIA models on torus orientifolds (DeWolfe et al.): allmoduli can be stabilized at tree levelIn this talk: models on coset manifolds with geometric fluxesUplift susy vacuum to dS, models of inflation: problems

New application to AdS4/CFT Aharony, Bergman, Jafferis,

MaldacenaModels with SU(3)×SU(3)-structure generalized geometry

Many properties can be proven in general for this class

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 13: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Early type IIA models on torus orientifolds (DeWolfe et al.): allmoduli can be stabilized at tree levelIn this talk: models on coset manifolds with geometric fluxesUplift susy vacuum to dS, models of inflation: problems

New application to AdS4/CFT Aharony, Bergman, Jafferis,

MaldacenaModels with SU(3)×SU(3)-structure generalized geometry

Many properties can be proven in general for this classHard to find examples ’06: Grana, Minasian, Petrini, Tomasiello,’08: Andriot

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 14: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Motivation

Compactification: 10D → 4D, add RR, NSNS fluxes

Type IIB orientifold with D3/D7-branes on conformal CY:well-studied

stabilization Kahler moduli through non-perturbative effectsuplift susy vacuum to dS, models of inflation

Generically: fluxes =⇒ not CY geometric fluxes

Models with SU(3)-structureInteresting class: type IIA compactifications with AdS4 space-time

Early type IIA models on torus orientifolds (DeWolfe et al.): allmoduli can be stabilized at tree levelIn this talk: models on coset manifolds with geometric fluxesUplift susy vacuum to dS, models of inflation: problems

New application to AdS4/CFT Aharony, Bergman, Jafferis,

MaldacenaModels with SU(3)×SU(3)-structure generalized geometry

Many properties can be proven in general for this classHard to find examples ’06: Grana, Minasian, Petrini, Tomasiello,’08: Andriot

Non-geometry: Hull and others

2 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 15: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Compactification ansatz

We consider type IIA/IIB supergravity

Metric:

ds2 = e2A(y)g(4)µν(x)dxµdxν + gmn(y)dymdyn ,

with g(4) flat Minkowski or AdS4 metric, A warp factor

3 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 16: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Compactification ansatz

We consider type IIA/IIB supergravity

Metric:

ds2 = e2A(y)g(4)µν(x)dxµdxν + gmn(y)dymdyn ,

with g(4) flat Minkowski or AdS4 metric, A warp factor

RR-fluxes:

Democratic formalism: double fields, impose duality conditionCombine forms into one polyform

Ftot =∑

l

F(l) = F + e4Avol4 ∧ Fel , (Fel = ⋆6σ(F ))

with l even/odd in type IIA/IIB

3 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 17: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Supersymmetry ansatz I

N = 1 ansatz for the two Majorana-Weyl susy generatorsSU(3)-structure ansatz:

ǫ1 = ζ+ ⊗ η+ + ζ− ⊗ η− ,

ǫ2 = ζ+ ⊗ η∓ + ζ− ⊗ η± ,

ζ: 4d spinor characterizes preserved susy in 4dη: fixed 6d-spinor, property background

4 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 18: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Supersymmetry ansatz I

N = 1 ansatz for the two Majorana-Weyl susy generatorsSU(3)-structure ansatz:

ǫ1 = ζ+ ⊗ η+ + ζ− ⊗ η− ,

ǫ2 = ζ+ ⊗ η∓ + ζ− ⊗ η± ,

ζ: 4d spinor characterizes preserved susy in 4dη: fixed 6d-spinor, property background

Define (poly)forms

Ψ+ = −i

||η||2

l even

(−1)l/2 1

l!η†+γi1...il

η+dxi1 ∧ . . . ∧ dxil = ceiJ

Ψ− =i

||η||21

3!η†−γi1...i3η+dx

i1 ∧ dxi2 ∧ dxi3 = iΩ

4 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 19: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Supersymmetry ansatz I

N = 1 ansatz for the two Majorana-Weyl susy generatorsSU(3)-structure ansatz:

ǫ1 = ζ+ ⊗ η+ + ζ− ⊗ η− ,

ǫ2 = ζ+ ⊗ η∓ + ζ− ⊗ η± ,

ζ: 4d spinor characterizes preserved susy in 4dη: fixed 6d-spinor, property background

Define (poly)forms

Ψ+ = −i

||η||2

l even

(−1)l/2 1

l!η†+γi1...il

η+dxi1 ∧ . . . ∧ dxil = ceiJ

Ψ− =i

||η||21

3!η†−γi1...i3η+dx

i1 ∧ dxi2 ∧ dxi3 = iΩ

In the absence of fluxes, susy conditions: dJ = 0, dΩ = 0=⇒ SU(3)-holonomy i.e. CY=⇒ J Kahler-form, Ω holomorphic three-form

4 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 20: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Supersymmetry ansatz II

Most general N = 1 ansatz for susy generatorsSU(3)×SU(3)-structure ansatz:

ǫ1 = ζ+ ⊗ η(1)+ + ζ− ⊗ η

(1)− ,

ǫ2 = ζ+ ⊗ η(2)∓ + ζ− ⊗ η

(2)± ,

ζ: 4d spinor characterizes preserved susyη(1,2): fixed 6d-spinors, property background

5 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 21: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Supersymmetry ansatz II

Most general N = 1 ansatz for susy generatorsSU(3)×SU(3)-structure ansatz:

ǫ1 = ζ+ ⊗ η(1)+ + ζ− ⊗ η

(1)− ,

ǫ2 = ζ+ ⊗ η(2)∓ + ζ− ⊗ η

(2)± ,

ζ: 4d spinor characterizes preserved susyη(1,2): fixed 6d-spinors, property background

Define polyforms

Ψ+ = −i

||η||2

l even

(−1)l/2 1

l!η(2)†+ γi1...il

η(1)+ dxi1 ∧ . . . ∧ dxil

Ψ− = −i

||η||2

l odd

(−1)(l−1)/2 1

l!η(2)†− γi1...il

η(1)+ dxi1 ∧ dxi2 ∧ dxil

5 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 22: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Supersymmetry ansatz II

Most general N = 1 ansatz for susy generatorsSU(3)×SU(3)-structure ansatz:

ǫ1 = ζ+ ⊗ η(1)+ + ζ− ⊗ η

(1)− ,

ǫ2 = ζ+ ⊗ η(2)∓ + ζ− ⊗ η

(2)± ,

ζ: 4d spinor characterizes preserved susyη(1,2): fixed 6d-spinors, property background

Define polyforms

Ψ+ = −i

||η||2

l even

(−1)l/2 1

l!η(2)†+ γi1...il

η(1)+ dxi1 ∧ . . . ∧ dxil

Ψ− = −i

||η||2

l odd

(−1)(l−1)/2 1

l!η(2)†− γi1...il

η(1)+ dxi1 ∧ dxi2 ∧ dxil

These polyforms can be considered as spinors of TM ⊕ T ⋆MNot every polyform is related to a spinor bilinear: only pure spinorsType of the pure spinor: lowest dimension of the polyform

5 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 23: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Background susy conditions

Grana, Minasian, Petrini, Tomasiello

Susy conditions type II sugra:Gravitino’s

δψ1M =

(

∇M +1

4/HM

)

ǫ1 +1

16eΦ /Ftot ΓMΓ(10)ǫ

2 = 0

δψ2M =

(

∇M −1

4/HM

)

ǫ2 −1

16eΦσ(/Ftot) ΓMΓ(10)ǫ

1 = 0

Dilatino’s

δλ1 =

(

/∂Φ +1

2/H

)

ǫ1 +1

16eΦΓM /Ftot ΓMΓ(10)ǫ

2 = 0

δλ2 =

(

/∂Φ −1

2/H

)

ǫ2 −1

16eΦΓMσ(/Ftot) ΓMΓ(10)ǫ

1 = 0

σ: reverses order indices

6 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 24: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Background susy conditions

Grana, Minasian, Petrini, Tomasiello

Susy conditions type II sugra:Gravitino’s

δψ1M =

(

∇M +1

4/HM

)

ǫ1 +1

16eΦ /Ftot ΓMΓ(10)ǫ

2 = 0

δψ2M =

(

∇M −1

4/HM

)

ǫ2 −1

16eΦσ(/Ftot) ΓMΓ(10)ǫ

1 = 0

Dilatino’s

δλ1 =

(

/∂Φ +1

2/H

)

ǫ1 +1

16eΦΓM /Ftot ΓMΓ(10)ǫ

2 = 0

δλ2 =

(

/∂Φ −1

2/H

)

ǫ2 −1

16eΦΓMσ(/Ftot) ΓMΓ(10)ǫ

1 = 0

σ: reverses order indices=⇒ can be concisely rewritten as . . .

6 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 25: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Background susy conditions

Grana, Minasian, Petrini, Tomasiello

Susy equations in polyform notation:

dH

(

e4A−ΦReΨ1

)

= e4AFel ,

dH

(

e3A−ΦΨ2

)

= 0 ,

dH(e2A−ΦImΨ1) = 0 ,

for Minkowski.

Fel: external part polyform RR-fluxes, Φ: dilaton, A: warp factor,H NSNS 3-form, dH = d+H∧

Ψ1 = Ψ∓,Ψ2 = Ψ± for IIA/IIB

6 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 26: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Background susy conditions

Grana, Minasian, Petrini, Tomasiello

Susy equations in polyform notation:

dH

(

e4A−ΦReΨ1

)

= (3/R) e3A−ΦRe(eiθΨ2) + e4AFel ,

dH

(

e3A−ΦΨ2

)

= (2/R)i e2A−Φe−iθImΨ1 ,

dH(e2A−ΦImΨ1) = 0 ,

for AdS: ∇µζ− = ± e−iθ

2R γµζ+.

Fel: external part polyform RR-fluxes, Φ: dilaton, A: warp factor,H NSNS 3-form, dH = d+H∧

Ψ1 = Ψ∓,Ψ2 = Ψ± for IIA/IIB

6 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 27: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Generalized calibrations

hep-th/0506154 PK, hep-th/0507099 Smyth, Martucci

Nice interpretation susy conditions in terms of generalizedcalibrations

7 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 28: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Generalized calibrations

hep-th/0506154 PK, hep-th/0507099 Smyth, Martucci

Nice interpretation susy conditions in terms of generalizedcalibrations

Calibration form:mathematical tool to construct submanifolds with minimal volume

7 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 29: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Generalized calibrations

hep-th/0506154 PK, hep-th/0507099 Smyth, Martucci

Nice interpretation susy conditions in terms of generalizedcalibrations

Calibration form:mathematical tool to construct submanifolds with minimal volumee.g. CY case:

eiJ ⇒ complex submanifoldsΩ ⇒ special Lagrangian

7 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 30: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Generalized calibrations

hep-th/0506154 PK, hep-th/0507099 Smyth, Martucci

Nice interpretation susy conditions in terms of generalizedcalibrations

Calibration form:mathematical tool to construct submanifolds with minimal volumee.g. CY case:

eiJ ⇒ complex submanifoldsΩ ⇒ special Lagrangian

Generalized calibration form φ:constructs D-branes with minimal energy

7 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 31: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Generalized calibrations

hep-th/0506154 PK, hep-th/0507099 Smyth, Martucci

Nice interpretation susy conditions in terms of generalizedcalibrations

Calibration form:mathematical tool to construct submanifolds with minimal volumee.g. CY case:

eiJ ⇒ complex submanifoldsΩ ⇒ special Lagrangian

Generalized calibration form φ:constructs D-branes with minimal energy

Calibrated D-brane (Σ,F) with F the world-volume gauge fieldmust satisfy

e−Φ√

g + F|Σ = φ|Σ ∧ eF

7 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 32: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Generalized calibrations

hep-th/0506154 PK, hep-th/0507099 Smyth, Martucci

Nice interpretation susy conditions in terms of generalizedcalibrations

Calibration form:mathematical tool to construct submanifolds with minimal volumee.g. CY case:

eiJ ⇒ complex submanifoldsΩ ⇒ special Lagrangian

Generalized calibration form φ:constructs D-branes with minimal energy

Calibrated D-brane (Σ,F) with F the world-volume gauge fieldmust satisfy

e−Φ√

g + F|Σ = φ|Σ ∧ eF

Calibrated D-brane ⇔ supersymmetric D-brane

7 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 33: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Natural generalized calibration forms

Martucci, Smyth

Calibration forms are the polyforms:

ωsf = e4A−ΦReΨ1 ,

ωDWφ = e3A−ΦRe(eiφΨ2) ,

ωstring = e2A−ΦImΨ1 .

8 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 34: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Natural generalized calibration forms

Martucci, Smyth

Calibration forms are the polyforms:

ωsf = e4A−ΦReΨ1 ,

ωDWφ = e3A−ΦRe(eiφΨ2) ,

ωstring = e2A−ΦImΨ1 .

Good calibration forms must satisfy differential property, which isexactly provided by the bulk susy equations:

dH

(

e4A−ΦReΨ1

)

= e4AFel , space-filling D-brane

dH

(

e3A−ΦΨ2

)

= 0 , domain wall

dH(e2A−ΦImΨ1) = 0 , string-like D-brane

8 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 35: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Natural generalized calibration forms

Martucci, Smyth

Calibration forms are the polyforms:

ωsf = e4A−ΦReΨ1 ,

ωDWφ = e3A−ΦRe(eiφΨ2) ,

ωstring = e2A−ΦImΨ1 .

Good calibration forms must satisfy differential property, which isexactly provided by the bulk susy equations:

dH

(

e4A−ΦReΨ1

)

= e4AFel , space-filling D-brane

dH

(

e3A−ΦΨ2

)

= 0 , domain wall

dH(e2A−ΦImΨ1) = 0 , string-like D-brane

Spoiled in the AdS case:interpretation 0710.5530 PK, Martucci

8 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 36: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Sugra equations of motion

Solve the susy conditions, do we actually have solution equations ofmotion?

9 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 37: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Sugra equations of motion

Solve the susy conditions, do we actually have solution equations ofmotion?

IIA: Lust,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram

Under mild conditions: susy and Bianchi & eom form fields =⇒ allothers eom

9 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 38: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Sugra equations of motion

Solve the susy conditions, do we actually have solution equations ofmotion?

IIA: Lust,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram

Under mild conditions: susy and Bianchi & eom form fields =⇒ allothers eom

Let’s add sources: dF = jPK, Tsimpis 0706.1244

9 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 39: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Sugra equations of motion

Solve the susy conditions, do we actually have solution equations ofmotion?

IIA: Lust,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram

Under mild conditions: susy and Bianchi & eom form fields =⇒ allothers eom

Let’s add sources: dF = jPK, Tsimpis 0706.1244Under mild conditions (subtleties time direction):

9 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 40: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Sugra equations of motion

Solve the susy conditions, do we actually have solution equations ofmotion?

IIA: Lust,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram

Under mild conditions: susy and Bianchi & eom form fields =⇒ allothers eom

Let’s add sources: dF = jPK, Tsimpis 0706.1244Under mild conditions (subtleties time direction):

Bulk supersymmetry conditionsBianchi identities form-fields with sourceSupersymmetry conditions source = generalized calibrationconditions

9 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 41: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Sugra equations of motion

Solve the susy conditions, do we actually have solution equations ofmotion?

IIA: Lust,Tsimpis, IIB: Gauntlett, Martelli, Sparks, Waldram

Under mild conditions: susy and Bianchi & eom form fields =⇒ allothers eom

Let’s add sources: dF = jPK, Tsimpis 0706.1244Under mild conditions (subtleties time direction):

Bulk supersymmetry conditionsBianchi identities form-fields with sourceSupersymmetry conditions source = generalized calibrationconditions

imply

Einstein equations with sourceDilaton equation of motion with sourceForm field equations of motion

9 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 42: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Problems constructing solutions

No-go theorem Maldacena, Nunez: Minkowski compactifications →negative-tension sources

10 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 43: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Problems constructing solutions

No-go theorem Maldacena, Nunez: Minkowski compactifications →negative-tension sources

Negative-tension sources in string theory: orientifolds

10 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 44: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Problems constructing solutions

No-go theorem Maldacena, Nunez: Minkowski compactifications →negative-tension sources

Negative-tension sources in string theory: orientifolds

Difficult to construct solutions with localized sources

10 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 45: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Problems constructing solutions

No-go theorem Maldacena, Nunez: Minkowski compactifications →negative-tension sources

Negative-tension sources in string theory: orientifolds

Difficult to construct solutions with localized sources→ smeared orientifolds

10 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 46: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Problems constructing solutions

No-go theorem Maldacena, Nunez: Minkowski compactifications →negative-tension sources

Negative-tension sources in string theory: orientifolds

Difficult to construct solutions with localized sources→ smeared orientifolds

AdS4 compactifications can avoid the no-go theorem!

10 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 47: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Problems constructing solutions

No-go theorem Maldacena, Nunez: Minkowski compactifications →negative-tension sources

Negative-tension sources in string theory: orientifolds

Difficult to construct solutions with localized sources→ smeared orientifolds

AdS4 compactifications can avoid the no-go theorem!

Bulk susy conditions for AdS4 compactifications impose: Caviezel,PK, Kors, Lust, Tsimpis, Zagermann

IIB: no strict SU(3)-structureIIA: no static SU(2)-structure (type (1,2))

10 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 48: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Problems constructing solutions

No-go theorem Maldacena, Nunez: Minkowski compactifications →negative-tension sources

Negative-tension sources in string theory: orientifolds

Difficult to construct solutions with localized sources→ smeared orientifolds

AdS4 compactifications can avoid the no-go theorem!

Bulk susy conditions for AdS4 compactifications impose: Caviezel,PK, Kors, Lust, Tsimpis, Zagermann

IIB: no strict SU(3)-structureIIA: no static SU(2)-structure (type (1,2))strict SU(3)-structure possible, but no non-constant warp factor(and thus no localized sources) unless Romans mass m = 0

10 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 49: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)-structure AdS4 solutions

Ψ− = iΩ, Ψ+ = ceiJ

Susy conditions reduce to conditions of Lust,Tsimpis:

11 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 50: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)-structure AdS4 solutions

Ψ− = iΩ, Ψ+ = ceiJ

Susy conditions reduce to conditions of Lust,Tsimpis:

Constant warp factor

11 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 51: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)-structure AdS4 solutions

Ψ− = iΩ, Ψ+ = ceiJ

Susy conditions reduce to conditions of Lust,Tsimpis:

Constant warp factorGeometric flux i.e. non-zero torsion classes:

dJ =3

2Im(W1Ω

∗) + W4 ∧ J + W3

dΩ = W1J ∧ J + W2 ∧ J + W∗

5 ∧ Ω

11 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 52: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)-structure AdS4 solutions

Ψ− = iΩ, Ψ+ = ceiJ

Susy conditions reduce to conditions of Lust,Tsimpis:

Constant warp factorGeometric flux i.e. non-zero torsion classes:

dJ =3

2Im(W1Ω

∗)

dΩ = W1J ∧ J + W2 ∧ Jwith

W1 = −4i

9eΦf

W2 = −ieΦF ′

2

11 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 53: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)-structure AdS4 solutions

Ψ− = iΩ, Ψ+ = ceiJ

Susy conditions reduce to conditions of Lust,Tsimpis:

Constant warp factorGeometric flux i.e. non-zero torsion classes:

dJ =3

2Im(W1Ω

∗)

dΩ = W1J ∧ J + W2 ∧ Jwith

W1 = −4i

9eΦf

W2 = −ieΦF ′

2

Form-fluxes: AdS4 superpotential W :

H =2m

5eΦReΩ

F2 =f

9J + F ′

2

F4 = fvol4 +3m

10J ∧ J

∇µζ− =1

2Wγµζ+ definition

Weiθ = −1

5eΦm +

i

3eΦf

11 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 54: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Bianchi identities

Susy not enough, we must add the Bianchi identities form fields

Automatically satisfied except for

dF2 +Hm = −j6

12 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 55: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Bianchi identities

Susy not enough, we must add the Bianchi identities form fields

Automatically satisfied except for

dF2 +Hm = −j6

Source j6 (O6/D6) must be calibrated (here SLAG):

j6 ∧ J = 0 j6 ∧ ReΩ = 0

12 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 56: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Bianchi identities

Susy not enough, we must add the Bianchi identities form fields

Automatically satisfied except for

dF2 +Hm = −j6

Source j6 (O6/D6) must be calibrated (here SLAG):

j6 ∧ J = 0 j6 ∧ ReΩ = 0 ⇒ j6 = −2

5e−ΦµReΩ + w3

w3 simple (1,2)+(2,1)

12 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 57: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Bianchi identities

Susy not enough, we must add the Bianchi identities form fields

Automatically satisfied except for

dF2 +Hm = −j6

Source j6 (O6/D6) must be calibrated (here SLAG):

j6 ∧ J = 0 j6 ∧ ReΩ = 0 ⇒ j6 = −2

5e−ΦµReΩ + w3

w3 simple (1,2)+(2,1)

µ > 0: net orientifold charge, µ < 0: net D-brane charge

12 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 58: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Bianchi identities

Susy not enough, we must add the Bianchi identities form fields

Automatically satisfied except for

dF2 +Hm = −j6

Source j6 (O6/D6) must be calibrated (here SLAG):

j6 ∧ J = 0 j6 ∧ ReΩ = 0 ⇒ j6 = −2

5e−ΦµReΩ + w3

w3 simple (1,2)+(2,1)

µ > 0: net orientifold charge, µ < 0: net D-brane charge

Bianchi:

e2Φm2 = µ+5

16

(

3|W1|2 − |W2|

2)

≥ 0

w3 = −ie−ΦdW2

(2,1)+(1,2)

12 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 59: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Summarizing

We are looking for a geometry that satisfies:

Only non-zero torsion classes W1, W2

dW2 ∧ J = 0e2Φm2 = µ + 5

16

(

3|W1|2 − |W2|

2)

≥ 0

13 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 60: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Summarizing

We are looking for a geometry that satisfies:

Only non-zero torsion classes W1, W2

dW2 ∧ J = 0e2Φm2 = µ + 5

16

(

3|W1|2 − |W2|

2)

≥ 0

If we want a solution without source term, we put µ = 0,dW2 ∝ ReΩ in the above

13 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 61: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Summarizing

We are looking for a geometry that satisfies:

Only non-zero torsion classes W1, W2

dW2 ∧ J = 0e2Φm2 = 5

16

(

3|W1|2 − |W2|

2)

≥ 0

If we want a solution without source term, we put µ = 0,dW2 ∝ ReΩ in the above

13 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 62: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Summarizing

We are looking for a geometry that satisfies:

Only non-zero torsion classes W1, W2

dW2 ∧ J = 0e2Φm2 = 5

16

(

3|W1|2 − |W2|

2)

≥ 0

If we want a solution without source term, we put µ = 0,dW2 ∝ ReΩ in the above

Nearly-Kahler solutions Behrndt, Cvetic W2 = 0The only homogeneous examples in six dimensions (and onlyknown):

SU(2)×SU(2), G2

SU(3) = S6, Sp(2)S(U(2)×U(1)) = CP

3, SU(3)U(1)×U(1)

13 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 63: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Coset manifolds

Homogeneous manifolds G/H , where G acts on the left and theisotropy H on the right

14 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 64: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Coset manifolds

Homogeneous manifolds G/H , where G acts on the left and theisotropy H on the right

Structure constants Ha ∈ alg(H), Ki rest of alg(G):

[Ha,Hb] = f cabHc

[Ha,Ki] = f jaiKj + f b

aiHb

[Ki,Kj ] = fkijKk + fa

ijHa

14 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 65: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Coset manifolds

Homogeneous manifolds G/H , where G acts on the left and theisotropy H on the right

Structure constants Ha ∈ alg(H), Ki rest of alg(G):

[Ha,Hb] = f cabHc

[Ha,Ki] = f jaiKj + f b

aiHb

[Ki,Kj ] = fkijKk + fa

ijHa

Decomposition of Lie-algebra valued one-form L

L−1dL = eiKi + ωaHa

defines a coframe ei(y), which satisfies

dei = −1

2f i

jkej ∧ ek−f i

ajωa ∧ ej

14 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 66: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Left-invariant forms

Definition:

Constant coefficients in ei basisf j

a[i1φi2...ip]j = 0

15 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 67: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Left-invariant forms

Definition:

Constant coefficients in ei basisf j

a[i1φi2...ip]j = 0

Globally defined

15 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 68: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Left-invariant forms

Definition:

Constant coefficients in ei basisf j

a[i1φi2...ip]j = 0

Globally defined

Expand all structures and forms in left-invariant forms

15 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 69: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Left-invariant forms

Definition:

Constant coefficients in ei basisf j

a[i1φi2...ip]j = 0

Globally defined

Expand all structures and forms in left-invariant forms=⇒ consistent reduction Cassani, Kashani-Poor

15 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 70: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Left-invariant forms

Definition:

Constant coefficients in ei basisf j

a[i1φi2...ip]j = 0

Globally defined

Expand all structures and forms in left-invariant forms=⇒ consistent reduction Cassani, Kashani-Poor

Disadvantage: a genuine SU(3)×SU(3)-structure solution is notpossibleCaviezel, PK, Kors, Lust, Tsimpis, Zagermann

15 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 71: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Left-invariant forms

Definition:

Constant coefficients in ei basisf j

a[i1φi2...ip]j = 0

Globally defined

Expand all structures and forms in left-invariant forms=⇒ consistent reduction Cassani, Kashani-Poor

Disadvantage: a genuine SU(3)×SU(3)-structure solution is notpossibleCaviezel, PK, Kors, Lust, Tsimpis, Zagermann

=⇒ strict SU(3)-structure

15 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 72: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

AdS4 N = 1 solutions on cosets

Tomasiello; PK, Lust, Tsimpis

SU(2)×SU(2) SU(3)U(1)×U(1)

Sp(2)S(U(2)×U(1))

G2SU(3)

SU(3)×U(1)SU(2)

# of parameters 3 5 5 4 3 5W2 6= 0 No Yes Yes Yes No Yesj6 ∝ ReΩ Yes No Yes Yes Yes No

# of par. j6 = 0 2 / 4 3 2 /

16 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 73: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

AdS4 N = 1 solutions on cosets

Tomasiello; PK, Lust, Tsimpis

SU(2)×SU(2) SU(3)U(1)×U(1)

Sp(2)S(U(2)×U(1))

G2SU(3)

SU(3)×U(1)SU(2)

# of parameters 3 5 5 4 3 5W2 6= 0 No Yes Yes Yes No Yesj6 ∝ ReΩ Yes No Yes Yes Yes No

# of par. j6 = 0 2 / 4 3 2 /

Parameters:

Two parameters for all models: dilaton, scale

Shape

Orientifold charge µ

16 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 74: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Effective theory

Parameters: not massless moduli, since they change flux quanta

17 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 75: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Effective theory

Parameters: not massless moduli, since they change flux quanta

Effective theory studied in 0806.3458

Caviezel, PK, Kors, Lust, Tsimpis, Wrase, Zagermann

For all cosets (but not for SU(2)×SU(2)): generically all modulistabilized at tree level

17 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 76: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Effective theory

Parameters: not massless moduli, since they change flux quanta

Effective theory studied in 0806.3458

Caviezel, PK, Kors, Lust, Tsimpis, Wrase, Zagermann

For all cosets (but not for SU(2)×SU(2)): generically all modulistabilized at tree level

Example Sp(2)S(U(2)×U(1))

2 4 6 8 10

5

10

15

20

25

µ

M2/|W |2

(a) σ = 1 (nearly-Kahler)

2 4 6 8 10

5

10

15

20

25

µ

M2/|W |2

(b) σ = 2 (m = 0 Ein-stein)

2 4 6 8 10 12

5

10

15

20

25

µ

M2/|W |2

(c) σ = 25(m = 0)

σ: shape parameter

17 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 77: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Moduli space

For some values of the flux quanta: several susy solutions

For some values: no susy solutions

-4 -2 0 2 4

-4

-2

0

2

4

Figure: Regions one/two supersymmetric solutions (red/yellow)Sp(2)

S(U(2)×U(1)) . X-axis (y-axis): mwµ′2 (f ′m2

µ′3 ).

18 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 78: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Moduli space

For some values of the flux quanta: several susy solutions

For some values: no susy solutions

-4 -2 0 2 4

-4

-2

0

2

4

Figure: Regions one/two supersymmetric solutions (red/yellow)Sp(2)

S(U(2)×U(1)) . X-axis (y-axis): mwµ′2 (f ′m2

µ′3 ).

Many non-supersymmetric AdS4 solutions possibleLust,Marchesano,Martucci,Tsimpis;Lust, Tsimpis;Cassani,Kashani-Poor

18 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 79: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

dS vacua and inflation

No-go theorem modular inflation: fluxes, D6/O6 Hertzberg,

Kachru, Taylor, Tegmark

19 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 80: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

dS vacua and inflation

No-go theorem modular inflation: fluxes, D6/O6 Hertzberg,

Kachru, Taylor, Tegmark

Way-out: geometric fluxes, NS5-branes, KK-monopoles,non-geometric fluxese.g. Silverstein

19 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 81: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

dS vacua and inflation

No-go theorem modular inflation: fluxes, D6/O6 Hertzberg,

Kachru, Taylor, Tegmark

Way-out: geometric fluxes, NS5-branes, KK-monopoles,non-geometric fluxese.g. Silverstein

Above models have geometric fluxes

19 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 82: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

dS vacua and inflation

No-go theorem modular inflation: fluxes, D6/O6 Hertzberg,

Kachru, Taylor, Tegmark

Way-out: geometric fluxes, NS5-branes, KK-monopoles,non-geometric fluxese.g. Silverstein

Above models have geometric fluxes

0812.3551 Caviezel, PK, Kors, Lust, Wrase, Zagermann:

Coset models: do not allow dS vacua nor small ǫSU(2)×SU(2): allows dS vacuum (and small ǫ), but has tachyonicdirection

Related work: Flauger, Paban, Robbins, Wrase;Haque, Shiu, Underwood, Van Riet

19 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 83: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

dS vacua and inflation

No-go theorem modular inflation: fluxes, D6/O6 Hertzberg,

Kachru, Taylor, Tegmark

Way-out: geometric fluxes, NS5-branes, KK-monopoles,non-geometric fluxese.g. Silverstein

Above models have geometric fluxes

0812.3551 Caviezel, PK, Kors, Lust, Wrase, Zagermann:

Coset models: do not allow dS vacua nor small ǫSU(2)×SU(2): allows dS vacuum (and small ǫ), but has tachyonicdirection

Related work: Flauger, Paban, Robbins, Wrase;Haque, Shiu, Underwood, Van Riet

dS solutions/inflation seems not natural!

19 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 84: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Solutions without sources: CP3

CP3 : Sp(2)

S(U(2)×U(1))

σ

25

2

bb

20 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 85: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Solutions without sources: CP3

CP3 : Sp(2)

S(U(2)×U(1))

σ

25

2

bb

σ = 2: m = 0 Einstein:

CP3 = SU(4)

S(U(3)×U(1))with standard Fubini-Study metric

Supersymmetry enhances to N = 6Global symmetry enhances to SU(4)Geometry of original ABJM in type IIA limitCareful: standard closed Kahler form is not J of N = 1 susyM-theory lift S7 = SO(8)

SO(7)

20 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 86: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Solutions without sources: CP3

CP3 : Sp(2)

S(U(2)×U(1))

σ

25

2

bb

σ = 2: m = 0 Einstein:

CP3 = SU(4)

S(U(3)×U(1))with standard Fubini-Study metric

Supersymmetry enhances to N = 6Global symmetry enhances to SU(4)Geometry of original ABJM in type IIA limitCareful: standard closed Kahler form is not J of N = 1 susyM-theory lift S7 = SO(8)

SO(7)

σ = 2/5: m = 0

CFT dual proposed Ooguri, Park

M-theory lift: squashed S7

20 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 87: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Solutions without sources: CP3

CP3 : Sp(2)

S(U(2)×U(1))

σ

25

2

bb

σ = 2: m = 0 Einstein:

CP3 = SU(4)

S(U(3)×U(1))with standard Fubini-Study metric

Supersymmetry enhances to N = 6Global symmetry enhances to SU(4)Geometry of original ABJM in type IIA limitCareful: standard closed Kahler form is not J of N = 1 susyM-theory lift S7 = SO(8)

SO(7)

σ = 2/5: m = 0

CFT dual proposed Ooguri, Park

M-theory lift: squashed S7

2/5 < σ < 2: m 6= 0

CFT dual proposed Gaiotto,Tomasiello

20 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 88: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Massive CFT dual

Giaotto,Tomasiello

They found a CFT dual for the massive case m 6= 0

21 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 89: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Massive CFT dual

Giaotto,Tomasiello

They found a CFT dual for the massive case m 6= 0

In fact, several CFT duals withsusy/global symmetry: N = 0: SO(6), N = 1: Sp(2), N = 2:SO(4)×SO(2)R, N = 3: SO(3)×SO(3)R

21 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 90: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Massive CFT dual

Giaotto,Tomasiello

They found a CFT dual for the massive case m 6= 0

In fact, several CFT duals withsusy/global symmetry: N = 0: SO(6), N = 1: Sp(2), N = 2:SO(4)×SO(2)R, N = 3: SO(3)×SO(3)R

N = 0 corresponds to non-susy solution with Einstein-KahlerFubini-Study metric

21 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 91: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Massive CFT dual

Giaotto,Tomasiello

They found a CFT dual for the massive case m 6= 0

In fact, several CFT duals withsusy/global symmetry: N = 0: SO(6), N = 1: Sp(2), N = 2:SO(4)×SO(2)R, N = 3: SO(3)×SO(3)R

N = 0 corresponds to non-susy solution with Einstein-KahlerFubini-Study metric

N = 1 corresponds to the above discussed coset solutions

21 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 92: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Massive CFT dual

Giaotto,Tomasiello

They found a CFT dual for the massive case m 6= 0

In fact, several CFT duals withsusy/global symmetry: N = 0: SO(6), N = 1: Sp(2), N = 2:SO(4)×SO(2)R, N = 3: SO(3)×SO(3)R

N = 0 corresponds to non-susy solution with Einstein-KahlerFubini-Study metric

N = 1 corresponds to the above discussed coset solutions

N = 2/N = 3 the dual geometry is unknown

21 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 93: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Massive CFT dual

Giaotto,Tomasiello

They found a CFT dual for the massive case m 6= 0

In fact, several CFT duals withsusy/global symmetry: N = 0: SO(6), N = 1: Sp(2), N = 2:SO(4)×SO(2)R, N = 3: SO(3)×SO(3)R

N = 0 corresponds to non-susy solution with Einstein-KahlerFubini-Study metric

N = 1 corresponds to the above discussed coset solutions

N = 2/N = 3 the dual geometry is unknown

Non-homogeneousOnly one susy can be strict SU(3)-structure, the others genuineSU(3)×SU(3)-structure

21 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 94: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)U(1)×U(1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ = σ

σ = 1

ρ = 1

σ

ρ

Figure: Plot m = 0 curve configuration space shape parameters (ρ, σ)

22 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 95: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)U(1)×U(1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ = σ

σ = 1

ρ = 1

σ

ρ

Figure: Plot m = 0 curve configuration space shape parameters (ρ, σ)

M-theory lift for m = 0: Aloff-Wallach spaces

Np,q,r =SU(3) × U(1)

U(1) × U(1)

22 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 96: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)U(1)×U(1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ = σ

σ = 1

ρ = 1

σ

ρ

Figure: Plot m = 0 curve configuration space shape parameters (ρ, σ)

M-theory lift for m = 0: Aloff-Wallach spaces

Np,q,r =SU(3) × U(1)

U(1) × U(1)

Red Points (1, 2), (2, 1), (1/2, 1/2)M-theory lift: N = 3 susy, IIA reduction: only N = 1

22 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 97: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

SU(3)U(1)×U(1)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ = σ

σ = 1

ρ = 1

σ

ρ

Figure: Plot m = 0 curve configuration space shape parameters (ρ, σ)

M-theory lift for m = 0: Aloff-Wallach spaces

Np,q,r =SU(3) × U(1)

U(1) × U(1)

Red Points (1, 2), (2, 1), (1/2, 1/2)M-theory lift: N = 3 susy, IIA reduction: only N = 1

CFT dual unknown as far as I knowrelated work Jafferis, Tomasiello

22 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 98: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Conclusions

General properties of N = 1 SU(3)×SU(3)-structure type II sugracompactifications

Susy conditions backgroundRelation generalized calibrated and thus susy D-branesSusy and Bianchis imply all eoms

Hard to find examples

AdS4 SU(3)-structure compactifications on coset manifolds

Susy solutions, non-susy AdS solutionsEffective theoryAttempts to construct dS vacuaMore natural in AdS4/CFT correspondence

23 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)

Page 99: Flux Compactifications on Coset Manifolds and Applicationskoerber/utrecht2009.pdf · 2009. 9. 30. · Paul Koerber Max-Planck-Institut fu¨r Physik, Munich Utrecht, 19 March 2009

Motivation Overview of general results Application to coset manifolds Conclusions

Conclusions

General properties of N = 1 SU(3)×SU(3)-structure type II sugracompactifications

Susy conditions backgroundRelation generalized calibrated and thus susy D-branesSusy and Bianchis imply all eoms

Hard to find examples

AdS4 SU(3)-structure compactifications on coset manifolds

Susy solutions, non-susy AdS solutionsEffective theoryAttempts to construct dS vacuaMore natural in AdS4/CFT correspondence

The

end. ..T

he end. . .The end

.

. .

23 / 23

Flux Compactifications on Coset Manifolds and Applications (Paul Koerber)