43
04.12.2014 1 Caterina Cuccagna TERA Foundation 3 rd Fluka Advanced Course INFN Frascati 4 th December 2014 FLUKA dose distribution simulations for TULIP, TUrning LInac for Protontherapy Following each particle from the linac into the patient Caterina Cuccagna

FLUKA dose distribution simulations for TULIP, TUrning

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 1

Caterina CuccagnaTERA Foundation

3rd Fluka Advanced CourseINFN Frascati 4th December 2014

FLUKA dose distribution simulations for TULIP, TUrning LInac for Protontherapy

Following each particle from the linac into the patient

Caterina Cuccagna

Page 2: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 2

General Framework & Goals

Methodology

Simulation Implementation:

Strategy, challenges & solutions

Preliminary results & Conclusions

FLUKA dose distribution simulations for TULIP

Caterina Cuccagna

Page 3: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 33

Cyclotron

TR24

by ACSI

450 m2

LEBT3 GHz CCL linac

HEBT

24 MeV

≤ 230 MeV

25x25 cm2

field

Rotation: ±110°wrt the horizontal plane

RF rotary

joints

4.6

mpatient access

General Framework :TULIP 1.0

TULIP:TUrning LInac for Proton therapy

Caterina Cuccagna

Page 4: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 4

CERN KT FUND, coll. CLIC GROUPNew 50 MV/m accelerating structureCERN KT FUND, coll. TE-MSC-MNC

2.2 T Fe-Co Magnets

General Framework :TULIP 2.0

60 MeV

≤ 230 MeV

Caterina Cuccagna

Page 5: FLUKA dose distribution simulations for TULIP, TUrning

Klystron RF pulse

RF power into the tanks

Proton pulses from source

5.0 μs

2.5 μs

5.0 - 8.0 ms200 -120 Hz

time

I

P

P

General Framework :

Fast active energy and intensity modulationRF pulses and beam pulses

04.12.2014 5Caterina Cuccagna

Page 6: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 7

1. TULIP Dose distribution in a patient

Following the beam, particle by particle, from the linac through the beamtransport line into the patient

MC Simulation of a whole treatment in the patient (Commercial TPS vs MC )

DVH: Dose Volume Histogram with Fluka

LVH: LET Volume Histogram

Goals

Caterina Cuccagna

Results from a commercial TPS

Page 7: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 8

2. Optimization of the distance d between the isocenter and the position of the last scanning magnet in order toreduce the skin dose to the patient.

SM2

SM1

d

Goals

Caterina Cuccagna

Page 8: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 9

Beam production system

Beam transport linesystem

Beamapplicationsystem

Methodology: Main systems modeling

Caterina Cuccagna

Page 9: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 10

Methodology: Simulation software and data workflow

Linac simulations

LINAC+DESIGN Code

Beamproduction

Commercial TPSor other TPS

Beamapplication

Beam interaction withDose delivery system+ Patient

FLUKA &FLAIR

Phase-space file.dat.dst Phase-space file

.datBeam transport lines simulations

TRAVEL Code

Beamtransport line

DICOM files:

-RT Ion Plan-CT scans-RT Dose -RT structure

MATLAB Code• N# of protons• Layer Energies MATLAB

scripts

• Spot positions

• Spot size(FWHM x FWHM y)

Caterina Cuccagna

Page 10: FLUKA dose distribution simulations for TULIP, TUrning

.t3d file (from TRACE3D): geometryand magnetic fields

LINAC: particles source

+• Multiparticle simulation• Losses and distributions• Error studies• Fine corrections• Used, for instance, to

make Linac 4, at CERN

Methodology: Simulation software for the beam production& transport line

Beam distribution

TRAVEL

04.12.2014 11

Beam line geometry

Caterina Cuccagna

Page 11: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 12

Calculation of static plan

Dose distribution

Plan data:

Spot positions

Spot weights

Implementation

of different

strategies

techniques

-N protons for each

voxel

-Treatment time for

multi-painting

techniques

-

DICOMRT Plan

MATLABTPS

Data Elaboration

Methodology: Simulation software for beam application

Caterina Cuccagna

Page 12: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 13

Calculation of static plan

Dose distribution

Plan data:

Spot positions

Spot weights

Implementation

of different

strategies

techniques

-N protons for each

voxel

-Treatment time for

multi-painting

techniques

-

DICOMRT Plan

MATLABTPS

Data Elaboration

Study done for 17 paediatric and 20 adults casesIn collaboration with Clinique Genolier -Geneva

Methodology: Simulation software for beam application

Caterina Cuccagna

Page 13: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 14

Geometry and Material properties

PR

IMA

RY

BEA

M

VOID NOZZLE+PATIENT CT Dicom file

Pencil Beam

Beam importedfrom TRAVEL

Fluka simulation implementation: Roadmap

Caterina Cuccagna

Page 14: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 15

Fluka simulation implementation

Generally, for Full Photon Linac MC Modeling

2 Approaches

Phase-space approach

Primary Proton Beam

MC techniques in Rad. therapy, J.Seco editor

Source model approach

Calculates particle distribution differential in Energy, position or angle

Follows each particle with all the phase-spaceparameters

+ information in individual particles+ correlation between angle, energy, position preserved- large amount of information to be stored

- lost of information on individual particles- Approximated+ faster

Caterina Cuccagna

Page 15: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 16

Phase-space file

x [cm] x' [rad] y [cm] y' [rad] Phase [rad]Kinetic Energy [MeV] Charge State-2.8895E-01 -2.6686E-04 -8.3980E-01 7.3158E-04 ######## 1.0787E+02 1.0000E+00

9.0768E-02 4.7663E-05 2.0655E-01 -2.9475E-04 ######## 1.0858E+02 1.0000E+00

-5.7176E-01 -7.1991E-04 -5.3782E-01 3.2818E-04 ######## 1.0723E+02 1.0000E+00

-3.7836E-01 -6.0461E-04 -1.3325E-01 -5.2819E-05 ######## 1.0792E+02 1.0000E+00

-3.3940E-01 -2.1118E-04 4.5753E-01 -6.2200E-04 ######## 1.0758E+02 1.0000E+00

2.5411E-02 1.8691E-04 4.7638E-01 -5.2834E-04 ######## 1.0681E+02 1.0000E+00

4.6235E-01 5.8522E-04 -2.9499E-01 2.4326E-04 ######## 1.0676E+02 1.0000E+00

1.0422E-01 1.8754E-04 -4.2218E-01 6.2625E-04 ######## 1.0688E+02 1.0000E+00

7.9561E-01 1.0860E-03 -2.0218E-01 8.6763E-05 ######## 1.0793E+02 1.0000E+00

2.4045E-01 2.8932E-04 3.3449E-01 -3.1210E-04 ######## 1.0840E+02 1.0000E+00

-3.5849E-02 -3.4983E-04 -4.3415E-01 3.1401E-04 ######## 1.0665E+02 1.0000E+00

-9.4074E-02 2.1696E-04 4.3367E-01 -2.4636E-04 ######## 1.0763E+02 1.0000E+00

1.9581E-01 3.5860E-04 -3.5570E-01 2.3384E-04 ######## 1.0553E+02 1.0000E+00

1.6852E-01 2.9550E-04 4.9725E-01 -6.9791E-04 ######## 1.0608E+02 1.0000E+00

-7.7503E-01 -1.0899E-03 8.7324E-02 1.4880E-04 ######## 1.0824E+02 1.0000E+00

-8.3235E-01 -1.3835E-03 -5.4569E-01 6.5477E-04 ######## 1.0832E+02 1.0000E+00

-2.1043E-01 1.1934E-05 2.0853E-01 -2.7489E-04 ######## 1.0745E+02 1.0000E+00

2.6893E-01 2.0667E-04 6.5258E-01 -5.5851E-04 ######## 1.0834E+02 1.0000E+00

-2.5976E-01 -2.6490E-04 -2.5455E-01 2.4555E-04 ######## 1.0884E+02 1.0000E+00

-2.0556E-01 -3.0643E-04 -2.3079E-01 4.5040E-04 ######## 1.0654E+02 1.0000E+00

Fluka simulation implementation: Phase-space approach

Primary Proton Beam

Ex.• 2360 Spot positions of different size• on 24 Layers- 24 mean Energy values• A significant and variable number of particles

for each spot position

Quite huge file (~5GB)

(~32 M particle)

Caterina Cuccagna

Page 16: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 17

Fluka simulation implementation: Phase-space approach

Primary Proton Beam

SOURCE routine modifications

Caterina Cuccagna

Page 17: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 18

Fluka simulation implementation: Phase-space approach

Primary Proton Beam

SOURCE routine modifications

Sequentially Reading OR randomly choosing from the phase space file?

Sequentially Reading Random selection

+ Sure to follow exactly all the particlesN of particles = N of primaries?!- stop and continue no, why?

How many events ?+ Stop and continue ok

AN HYBRID SOLUTION?

Caterina Cuccagna

Page 18: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 19

Fluka simulation implementation: Phase-space approach

Primary Proton Beam

SOURCE routine modifications

Introduction of the variable Weight in order to consider the spot weight(Number of protons per each spot)

Caterina Cuccagna

Page 19: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 20

Fluka Geometry Modelling

Patient geometryfrom DICOM CT scans

design of the nozzle

Fluka simulation implementation: Geometry

Caterina Cuccagna

Page 20: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 21

Patient Geometry

Patient geometryfrom DICOM CT scans

DICOM CT scan and RT structures in Fluka

Fluka simulation implementation: Geometry

Need to modify head.inp and material.inp ?How?

Caterina Cuccagna

Page 21: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 22

Design of the nozzle geometry

Drawing of integral (left) and strip (right) chambers made by DE.TEC.TOR

Company (spin-off Turin univ. and INFN)

Box1

Box2

Fluka simulation implementation: Geometry

Caterina Cuccagna

Page 22: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 23

Patient geometryfrom DICOM CT scans

Fluka simulation implementation: Geometry & Scoring in Flair

ROT-DEFI card: to rotate patient geometry imported from CT scan (tacvox2.vxl) and place the isocenter in (0,0,0) Fluka ref. system

ROTBIN card: to rotate the scoring grid for USRBIN imported from RT DOSE (rtdose.vxl)

Different Reference systems :(IEC 61217 gantry coordinate system, DICOM coordinate system, Default FLUKA coordinate system)

Caterina Cuccagna

Page 23: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 24

Fluka Geometry Modelling

Reference systems :

Fluka simulation implementation: Geometry

ROT-DEFI card , ROTPRBIN card

Caterina Cuccagna

Page 24: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 25

Fluka Geometry Modelling

Reference systems :

Fluka simulation implementation: Geometry

ROT-DEFI card , ROTBIN card

Caterina Cuccagna

Flair Transformation Dialog :Beam2CTN= -Beam2CT (not directly available in ROTPRBIN card)

Page 25: FLUKA dose distribution simulations for TULIP, TUrning

Preliminary first simulation (108MeV -SM (0,0)-beam at the exit of the last drift

Check of the beam from TRAVEL code in Fluka

04.12.2014 26

Output from the USRDUMP .datfrom the plottingsection

Preliminary results: Simulation in void

Caterina Cuccagna

Page 26: FLUKA dose distribution simulations for TULIP, TUrning

Preliminary first simulation (108MeV -SM (0,0)-beam at the exit of the last drift

Output Fluka (from Flair interface )

Input Travel

Check of the beam from TRAVEL code in Fluka and test of the SOURCE ROUTINE

04.12.2014 27

Preliminary results: Simulations in void

Caterina Cuccagna

Allow a Fast check of the results

Obtained Sampling from the phase-space input file -1 mean energy 1 spot position

Page 27: FLUKA dose distribution simulations for TULIP, TUrning

Output Fluka (from Flair)Input Travel

Preliminary first simulation (108MeV -SM (0,0)-beam at the exit of the last drift

04.12.2014 28

Preliminary results: Simulations in void

Caterina Cuccagna

Page 28: FLUKA dose distribution simulations for TULIP, TUrning

Output Fluka (from Flair)Input Travel

Preliminary first simulation (108MeV -SM (0,0)-beam at the exit of the last drift

04.12.2014 29

Preliminary results: Simulations in void

Caterina Cuccagna

Page 29: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 32

Preliminary first simulation (108MeV -SM (0,0)-beam at the exit of the last drift (without nozzle) on a water sphere R=20cm

Preliminary results & Conclusions

Caterina Cuccagna

Page 30: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 33

Preliminary results & Conclusions

Import of the DICOM RT Dose in FLUKA geometry editor

Caterina Cuccagna

Page 31: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 34

Preliminary results & Conclusions

Third simulation including the nozzle, on the patient geometry

Comparison between and Fluka dose (left) and TPS dose (right)

Caterina Cuccagna

WORK IN PROGRESS

Page 32: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 35

Summary & Conclusions

TERA is at an early stage phase of the FULL MC TULIP project for the FLUKA Beam application part

Next steps:

Optimizazion of the simulation: Selecting the useful particle in the input file

Study of the discrepancies between CO TPS vs TULIP Fluka simulations

Probably need of a TPS WS to resimulate the treatment plans and compare FLUKA results

Ready to test the new under development Fluka&Flair functionality for medical application (DVH, etc..)!

Caterina Cuccagna

Page 33: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 36

Acknowledgments

Thanksfor past, present and future collaboration!

CERN FLUKA TEAM

Caterina Cuccagna

Page 34: FLUKA dose distribution simulations for TULIP, TUrning

TERA and Hadrontherapy• TERA = TErapia con Radiazioni Adroniche (1992)

• Application of physics and computing to medicine and biology

• CNAO = Centro Nazionale Adroterapia Oncologica 1996-2000: Proton Ion Medical Machine Study (PIMMS) 2000-2003: TERA design based on PIMMS 2003: CNAO FOUNDATION (TERA + 5 hospitals) 2010: CNAO inauguration and first beam extraction

• CYCLINAC = Cyclotron + Linac 1993: first Cyclinac proposal 1998-2003: construction and test of LIBO (Eacc=15 MV/m) 2001-2007: IDRA design industrialization process 2008-2010: A.D.A.M. SA design and production of LIGHT First Unit 2013: A.D.A.M. and CERN agreement

04.12.2014 37Caterina Cuccagna

Page 35: FLUKA dose distribution simulations for TULIP, TUrning

Main TERA References1. A. Degiovanni, et al., Design of a fast-cycling high-gradient rotating linac for

protontherapy, Proceedings of IPAC2013, Shanghai, China

2. C. De Martinis, et al., NIMA 681 (2012) 10–15

3. U.Amaldi, et al.,NIMA 620 (2010) 563-577.

4. U.Amaldi, et al.,NIMA 521 (2004) 512.

5. U.Amaldi, M.Crescenti, R.Zennaro, Ion acceleration system for hadrontherapy, Patent US 7423278.

6. U.Amaldi et al.,Ion acceleration system for medical and/or other applications, Patent WO2008/081480A1.

7. U.Amaldi, S.Braccini, P.Puggioni, High frequency linacs for hadrontherapy, RAST, 2009 111–131.

8. S.Verdu´ -Andres et al.,High gradient test of a 3GHz single cell cavity, in: Proceedings of the LINAC10,Tsukuba,2010.

04.12.2014 38Caterina Cuccagna

Page 36: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 39

Thanks for your attention !

Caterina Cuccagna

Page 37: FLUKA dose distribution simulations for TULIP, TUrning

04.12.2014 40

Backup slides

Caterina Cuccagna

Page 38: FLUKA dose distribution simulations for TULIP, TUrning

The linac and RF system Side Coupled Linac (RF cavities π/2 mode)

Accelerating TANKS (graded structures)

Accelerating UNITS with space for PMQs

RF power supplies (klystron+modulator)

acc. tanks

space for Permanent Magnetic Quadrupole

0

00

waveguide

accelerating cavities

coupling cavities

General Framework

04.12.2014 41Caterina Cuccagna

Page 39: FLUKA dose distribution simulations for TULIP, TUrning

42

RF rotary joints

1st prototype under construction at CERN

General Framework

04.12.2014 Caterina Cuccagna

Page 40: FLUKA dose distribution simulations for TULIP, TUrning

Fast active energy variation• Energy variation in the range 70-230 MeV obtained by electronics means

• Energy spread within 2 mm distal fall-off

Active spot scanning + multi-painting ( ≥12 visit/voxel ) with a 4D feed-back systems to follow moving organs

04.12.2014 43Caterina Cuccagna

General Framework

Page 41: FLUKA dose distribution simulations for TULIP, TUrning

3D spot scanning with linacsfast longitudinal scanning: 8 msTumor volume

(12.6 cm diameter)

slice(3-6 mm)

Voxel grid4-10 mm

transverse scanning: 5 ms

beam spots(4-10 mm)

depth in the body

New magnet PS allows current

variation in ≤ 8 ms

4404.12.2014 Caterina Cuccagna

General Framework

Page 42: FLUKA dose distribution simulations for TULIP, TUrning

Beam dynamics studies I

• Beam dynamics simulations performed with the code LINAC

• Simulations to calculate beam transmission and beam acceptance

- Horizontal- Vertical- Longitudinal

enorm,5rms = 2.3 π mm mrad

enorm,5rms = 2.0 π mm mrad

24 MeV 230 MeV

17/01/2014 - A. Degiovanni -Gantry Workshop

45

Methodology: Simulation for the LINAC- LINAC code

Page 43: FLUKA dose distribution simulations for TULIP, TUrning

230 MeV155 MeV120 MeV90 MeV75 MeV

Vacuum pipe

x profile

y profile

46

Methodology: Simulation for the beam transport line-TRACE+TRAVEL

04.12.2014 Caterina Cuccagna