12

Click here to load reader

Fluids Lab Handout

  • Upload
    ali-gh

  • View
    215

  • Download
    0

Embed Size (px)

DESCRIPTION

5

Citation preview

Page 1: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 1

ME 105 – Mechanical Engineering Laboratory Spring Quarter 2010 

Experiment # 3: Pipe Flow 

Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel and orifice plate); b) Use the flowmeter and pressure transducer to measure the friction factor for pipes of different diameter, of different lengths, and for different flow rates. Check for Reynolds number scaling and compare with the Moody diagram; c) Measure minor losses in fittings and compare with empirical rules of thumb; d) Use a hydraulic analog of a Wheatstone bridge to test rules of thumb for minor losses.

Introduction Volumetric  flow  rate,  pressure,  and  head  losses  are  key  fundamental  quantities  in analyzing  and  designing  piping  systems.  This  experiment  will  introduce  you  to  basic measurement  techniques  and  to  some  principles  of  pipe  flow.  In  this  experiment  three basic  devices  –  a  pressure  transducer,  an  orifice‐plate  flowmeter  and  a  paddlewheel flowmeter ‐ are calibrated and compared against standard practice, and then used to make fundamental measurements of losses in pipes, fittings, and piping networks.   

Pre-Lab Reading Review relevant material from your undergraduate fluid mechanics courses, including (i) Reynolds number, (ii) losses in straight pipes and the Moody diagram, (iii) Bernoulli’s equation and the mechanical energy balance, (iv) orifice meters, and (v) minor losses in fittings. Some of this material is presented below, but this lab handout is not a substitute for more extensive background reading.  

Pre-Lab Work Prepare and submit an outline that includes: Calibrations to perform Data sets to collect Possible sources of experimental uncertainty and a plan for quantifying these errors Brief description of the work plan Any equations or physical parameters that may be needed during the laboratory session 

(See general lab guidelines & print out grading sheet from website).    

Page 2: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 2

PreLab Exercises: 1. Hydrodynamic  losses  in  pipe  flow are characterized by measuring the pressure drop P

over a length of pipe L. If you anticipate using flow rates of 0.5 gals/min through 1/4” i.d. smooth-wall tubing, and want a pressure drop of 10 kPa, what length, L, of tubing should you use? Express your answer in meters. Note: You will note that this problem statement uses mixed units, which unfortunately are a fact of life in engineering calculations. You should know how to do unit conversions accurately and quickly. A good rule of thumb is to convert all units to SI before doing any numerical calculations.

Hint: Assume that the working fluid is water  at  20°C,  and  refer  to  a  standard Moody diagram to complete this task.

2. The Validyne pressure transducer measures pressure differences between the two sides 

of  a  stainless  steel  plate  (diaphragm).  It  will  be  calibrated  by  applying  hydrostatic pressure to one side. If water at 20°C is the working fluid, what range of water heights should be used to calibrate the device over a range of differential pressures from 0‐20 kPa? 

 3.   The kit includes 1/8”, 1/4”, and 3/8” i.d. tubes. If water at 20°C is the working fluid and 

the  transition  Reynolds  number  is  taken  as  2,000,  calculate  the  velocity  and  the volumetric flow rate for transition from laminar to turbulent flow for each sized tube. Record both velocities and volumetric flow rates in your notebook for future reference.  

 4.  The paddlewheel flowmeter works on the principle that the oncoming flow rotates the 

paddlewheel at a frequency that is related to the flow rate. There will be some backflow as  the  vane  of  the  paddlewheel  sweeps  forward.  Consider  the  hypothetical  situation where  the  flow  rate  vs.  frequency  relation  is  exactly  linear. What would  that  tell  you about the backflow? 

 5. In a standard fluids text we find the following “rules of thumb” for the ratio of equivalent

length to pipe diameter Le/D for minor losses due to: Le/D

Standard elbow: 30 Standard tee: flow through run 20

flow through branch 60 Consider the flow of water at Q = 2 liters/min. through a ¼” diameter tube containing an

elbow. Use the “rule of thumb” to estimate the pressure drop across the elbow. Express your answer in Pascals.

6. Referring to the pipe network shown in Figure 1, and with the aid of the development in the

handout, manipulate the energy balance to obtain a working equation for the head losses as follows.

Page 3: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 3

A) If 23 2 3 0p p p , i.e. the bridge is ‘balanced’, and (as is true of our setup), all the

tubing between point 1 and points 2 and 3 is the same diameter and length, the fittings are identical, and the elevation at points 2 and 3 are the same, what is the left hand side of equation (13)?

B) Now if in addition the diameter of the tubing at the outlets 4 and 5 is identical what is the

relationship between 4 5 and u u ?

C) With all this in mind, if the outlets 4 and 5 are held such that the water exits into the

atmosphere, what is the working equation relating the elevations at 4 and 5 and the losses in legs A and B?

 

Figure 1: A simple pipe network equivalent to a Wheatstone bridge.

Equipment • Omega paddlewheel flowmeter • Validyne pressure transducer with “bleeding” screwdriver • Water reservoir and sump‐pump • Teflon tubing and fitting assortment • Flow needle valve • Orifice plate • Bucket • Balance • Stopwatch Oscilloscope and power supply Thermometer

Pump

1

2

3

LA

LB

Page 4: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 4

Technical Data Orifice plate

Upstream pipe diameter = 9.53 mm Orifice diameter = 4.76 mm

System Description You will need to set up a simple method to calibrate a pressure  transducer  by providing  a known pressure  difference  between  the  two  sides  of  the  transducer. In addition you will have to construct a “water-bench” to perform measurements that allow you to calibrate the pressure transducer and the two kinds of flowmeters, and investigate head loss in pipe flow, fittings, and pipe networks. Although you will decide the specific arrangement, Fig. 2 shows generically the layout of the flow loop.

Figure 2: Flow-loop schematic.

Theoretical orifice relations  An  orifice  plate  is  one  of  the most  common  flow measurement  devices.  Using  a  control volume  approach  shown  in  Fig.  3,  it  is  possible  to  obtain  an  expression  for  the  flow coefficient in terms of the flow rate Q, the pressure difference P1‐P2 across the orifice plate, and the geometrical parameters of the flowmeter. Applying conservation of mass for steady flow,  

pump

needlevalve

paddlewheeflow meter

return

water supply

orifice plate

pipe section

pressuretransducer

Page 5: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 5

   2211 VAVA ,  (1) 

 and Bernoulli’s equation between position 1 to position 2,  

22

22

11

21

22gZ

PVgZ

PV

, (2)

Figure 3: Flow in the vicinity of an orifice plate.

we find that if Z1=Z2:

212

22

21 )/(12

AAV

PP , (3)

where V is the flow velocity, A is the area, is the density, g is the acceleration due to gravity and Z is the elevation. This can be rewritten in terms of the volumetric flow rate as a function of the pressure difference:

212

21222

)/(1

)(2

AA

PPAAVQ

. (4) 

 For the orifice‐plate meter shown in Fig. 3, the area A2 is not given by the orifice diameter d, but  rather  the  diameter  of  the  vena  contracta,  (where  the  flow  has  a  minimum  cross‐sectional area). This area is unknown and will change with the flow rate. Consequently, (4) 

D d

Orifice plate Pipe

Controlvolume

1 2

Differentialpressure

transducer

Page 6: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 6

is often written with 4/22 dA , and a “discharge‐coefficient”  DC   is added to account for 

the combination of these geometric effects and viscous losses:  

1 22 4

2 ( )

1D

P PQ C A

, (5)

where  Dd / ,  where d  is  the  orifice  diameter  and D  is  the  diameter  of  the  pipe.  The discharge coefficient for an orifice‐plate meter is not constant and is found experimentally by  measuring  both  Q  and  (P1­P2)  and  applying  equation  (5).  Values  for  DC   have  been measured  for  standardized  tap  locations, which  allow  flow  rates  to  be measured  from  a pressure drop across  the orifice plate. Figure 4 shows the  typical dependence of  DC  as a function of geometry and Reynolds number, Re.  

 Figure 4: Discharge coefficient curves for a standard orifice­plate flowmeter. 

  

Head Loss in Pipe Flows There is a pressure drop when a fluid flows in a pipe because energy is required to overcome the viscous or frictional forces exerted by the walls of the pipe on the moving fluid. In addition to the energy lost due to frictional forces, the flow also loses energy (or pressure) as it goes through fittings, such as valves, elbows, contractions and expansions. This loss in pressure is often due to the fact that flow separates locally as it moves through such fittings. The pressure loss in pipe flows is commonly referred to as head loss. The frictional losses are referred to as major losses (hl) while losses through fittings, etc, are called minor losses (hlm). Together they make up the total head losses (hlT) for pipe flows.

Page 7: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 7

Mechanical Energy Equation for Pipe Flows The mechanical energy equation between any two points 1 and 2 for steady incompressible flow is:

lThgzVP

gzVP

2

222

1

211

22 . (6)

(It also be noted that for flow without losses, hlT = 0, and the energy equation reduces to Bernoulli’s Equation.) The terms in parentheses represent the mechanical energy per unit mass at a particular cross-section in the pipe. Hence, the difference between the mechanical energy at two locations, i.e. the total head loss, results from the conversion of mechanical energy to thermal energy due to frictional effects. For an incompressible flow, conservation of mass determines V2 (since, 2211 AVAV ) and so the terms involving the fluid velocity are determined by geometry. If the elevation at position 2 is known, the change in the gravitational potential is known. The net result is that if the pipe diameter is constant and the elevation does not change, the head loss is manifested simply as a pressure loss.

Major Losses The major head loss in pipe flows is expressed in the following way:

2

2V

D

Lfhl , (7)

where L and D are the length and diameter of the pipe, respectively, and V is the average fluid velocity through the pipe. This may be taken as a definition of the friction factor, f. In general, the friction factor is a function of the Reynolds number Re and the non-dimensional surface roughness D/ , and is determined experimentally. The plot of f vs. Re is usually referred to as the Moody Diagram, after L. F. Moody who first published this data in this form.  Minor Losses The head losses associated with fittings such as elbows, tees, couplings, etc. are referred to as “minor losses”. In some cases, such as short pipes with multiple fittings, these losses are actually a large percentage of the total head loss and hence are not really “minor”. Minor losses are expressed as either

2

2VKhlm , (8a)

where K is the Loss Coefficient and must be determined experimentally for each situation, or as

2

2e

lm

L Vh f

D , (8b)

wherein the loss is expressed in terms of the (known) friction factor and an equivalent /eL D .

For example, an elbow creates a loss that is roughly equivalent to a pipe of length of 30 pipe diameters (see the table in Prelab Question 4). Loss coefficients, K and/or equivalent length

Page 8: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 8

ratios /eL D can be found in a variety of handbooks: data for specific simple fittings are

available in most undergraduate Fluid Mechanics texts.

Pipe networks: the hydraulic analog of a Wheatstone bridge Consider the pipe system shown schematically in Figure 1. We are interested in describing the pressure loss through all the legs of this simple network. If both legs A and B exit into the atmosphere, then the pressure differentials downstream of junctions 2 and 3 can be defined as:

(9) where pa is atmospheric pressure. The energy equation for these two branches yields:

2 2

and (10a,b)

2 2

Assume that leg A of the network consists of only a straight tube uniform tube and therefore the head loss LAh is

2

2A A

LA AA

L Vh f

D . (11)

The head loss in leg B of the network, LBh , includes losses through the pipe itself but also any

minor losses due to the insertion of elbows, etc. In general,

2 2

2 2eBB B B

LB B BB B

LL V Vh f f

D D , (12)

where we have chosen to express the minor losses in terms of equivalent pipe lengths, LeB. Subtracting (10a) from (10b) we obtain:  

2 2       13

2

3

andA a

B a

p p p

p p p

Page 9: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 9

This particular pipe network is analogous to a Wheatstone bridge. The purpose of the electrical version of such a bridge is to be able to measure small changes in resistance accurately. In the hydraulic analog we measure small changes in head loss. When the bridge is balanced, i.e. there is no flow through the leg L23, the pressures at points 2 and 3 must be the same: (otherwise, the pressure gradient would drive a flow through the leg). In our laboratory setup, the leg L23 viewed from the side is shaped in an arc as shown in Figure 5. A small tightly fitting sphere is placed in the tube. Any flow in the leg will exert a drag on the sphere and it will rise above the center. By contrast, a no flow condition will result in the sphere positioned at zero degrees from the vertical since 23 2 3 0p p p . Thus, monitoring the sphere

position allows a coarse measurement of bridge balance.

Figure 5: Schematic of the sphere in the arched tube comprising the center leg.

Experimental Procedure:

General

You will be making a variety of measurements with water, the physical properties of which are temperature dependent. For this reason, it is very important that you know the temperature of the water for each measurement.

Week One 1) Calibration of the pressure transducer The  first  step  is  to  calibrate  the  output  voltage  from  the  Validyne  differential  pressure transducer.  Apply  known  pressure  differences  to  the  two  sides  of  the  transducer  using hydrostatic  pressure.  Five  to  ten  data  points  should  be  obtained,  ranging  from  a  zero pressure  differential  to  a  pressure  differential  of  about  20  kPa.  Perform  a  linear  least‐squares  analysis  of  the  data  before week  two.  Try  both  linear  and  a  quadratic  fits  and compute  the  goodness  of  fit.  If  a  linear  fit  is  sufficiently  accurate,  record  the  slope  and intercept of the resulting line for later use in data acquisition.  

o

Page 10: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 10

2) Calibration of the paddlewheel and orifice plate flowmeters Paddlewheel  flowmeter:  The  paddlewheel  flowmeter  outputs  a  pulse  train  whose frequency is related to the flow rate. Calibrate the paddlewheel using varying flow rates by measuring  the  frequency  as  a  function  of  flow  rate.  Five  to  ten  data  points  should  be obtained. Determine the rising and falling cutoff flow rates, i.e. the discharge below which the  paddlewheel  is  motionless  or  erratic.  You  will  notice  that  at  low  flow  rates  the frequency is erratic, and that the frequency fluctuates at all flow rates. Do your best to get an average reading from the oscilloscope. What might cause such fluctuations?   Orifice plate flowmeter: Measure the pressure drop across the orifice plate as a function of flow rate. Five to ten points should be obtained. These data will be used to determine the discharge coefficient CD for the orifice plate as a function of the Reynolds number.   3) Investigation of major losses Prepare 6’ – 8’ lengths of the three different diameter tubing. Using the paddlewheel to measure flow rate and “Tees” as pressure taps, obtain data for pressure drop over a given length as a function of flow rate for the three different sized tubes. Since the Moody diagram is for long, straight tubes, try to make your tube runs as long and as straight as feasible. Obtain 5-10 data points for each tube over the maximum range of flow rates possible. These data will be used to determine the friction factor, f, as a function of the Reynolds number. These values will also be compared to the standard Moody diagram, so you should perform calculations on some of the data during the experiment to make sure the comparison is reasonable. Complete these calculations and the comparison with the Moody diagram before week two.

Week Two 4) Major losses Depending on the quality of your data from week one, you may chose to check calibrations and/or repeat your measurements of major losses.   5) Investigation of minor losses Using the paddlewheel to measure flow rate and “tees” as pressure taps, measure the minor losses for an elbow, a tee, and a straight coupling as a function of flow rate. Use only one diameter tube and make sure your data are taken in the turbulent regime. 6) Investigation of a simple pipe network Set up the flow system shown in Figure 1 of this handout incorporating the section of arced tubing between the points 2 and 3. Use ¼” tubing for these experiments. It is best to place a needle valve before the branch so that the flow rate can be controlled. a) Prepare two 6’ long lengths of ¼” tubing to serve as legs A and B. Set the flow rate with the needle valve in the midrange of the pump and make sure that the tube exits are at the same elevation. Curiously, although the two legs are identical tubing and identical lengths, the bridge may be slightly out of balance. This could be due to a number of factors, including different coiling of the two legs, burrs and rough edges where the tube was cut, slight differences in the

Page 11: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 11

losses in the two elbows at points 2 and 3, etc. By raising or lowering the exit tubes, determine which of the branches has the larger loss, and shorten the appropriate tube in order to bring the bridge into balance. b) Experiment with the effect of raising or lowering one tube exit elevation on the bridge balance. In this way, you will obtain some feeling for the ‘response time’ of the middle leg. Since the small sphere is tightly fitting, there is some time lag between a change in hydraulic resistance and the motion of the sphere. Experiment also with the effect of throttling the flow with your finger. Explain the reasons for what you observe. Change the flow rate and observe whether the bridge remains in balance or not. If so, why? If not, why not? c) Re-establish a balanced bridge by returning the flow rate to the original setting. From this point on, do not change the needle valve, as it is important for these next steps to be done at constant flow rate. Add an elbow to one of the legs and observe the resulting imbalance. Raise or lower one tube to re-establish the balance and record the elevation change necessary to accomplish this. This datum will be used to compute the minor loss using the mechanical energy balance. d) Using the empirical rule of thumb that an elbow creates a loss equivalent to 30 pipe diameters of smooth, straight pipe, shorten the leg containing the elbow by an appropriate length. Observe the bridge balance or imbalance. If imbalanced, measure the change in elevation of one of the tube exits required to re-establish balance.

Experiment Report

Pressure transducer The  Validyne  pressure  transducer  produces  a  voltage  related  to  the  pressure  difference across  a  thin  plate.  If  the  deflection  of  the  plate  follows  the  laws  of  linear  elasticity,  the pressure  will  be  linearly  related  to  the  voltage  and  the  device  is  said  to  be  a  linear transducer.  Perform  a  linear  least‐squares  analysis  of  the  data.  Try  both  linear  and  a quadratic fits and compute the goodness of fit. Discuss the degree to which this is a linear transducer.   Paddlewheel flowmeter The paddlewheel  flowmeter produces a pulse signal,  the  frequency of which  is related  to the  fluid  velocity  in  the  pipe.  Perform  a  least‐squares  fit  of  your  data,  using  different polynomial fits and a power law relation. Find a suitable fitting function and record your fit. To what degree is the paddlewheel a linear transducer? Are there reasons to expect either linear or non‐linearity in the calibration? Discuss.      

Page 12: Fluids Lab Handout

ME 105 Mechanical Engineering Lab Page 12

Orifice­plate flowmeter The theoretical relation between Q and P is a nonlinear one, namely  PCconstQ d .)( . 

Using log‐log scales, plot your data points for Q as a function of P. Do the data appear to fall along a straight line, indicating that a power‐law relation of the type  mPKQ )(  might apply? If so, what is m? If not, why not?   Use the measurements of Q vs. P, compute the discharge coefficient Cd for all the data. Plot Cd vs. the Reynolds number Re and compare against standard curves.   Head loss in pipe flow  Calculate the friction factors for each flow rate and tube size and plot all the data as a function of the Reynolds number. Use different plotting symbols for different tube diameters and check for Reynolds number scaling. Compare your data with the standard Moody diagram and discuss. Minor losses  Express your results for minor losses through elbows, tees and couplings both as loss coefficients, K, and as equivalent lengths, /eL D . Compare your results with literature results for

K, and with the common empirical rules of thumb for /eL D .

Piping network Compute the loss coefficient and the equivlent length, /eL D , for an elbow as measured by the

bridge technique. Compare it against your direct measurement and also against the standard rule of thumb.