23
Fluidized bed particle layer formation in thermochemical conversion of biomass Marcus Öhman Energy Engineering Division of Energy Science Luleå University of Technology Chemical Looping with biomass - Role of ash chemistry Chalmers, Sweden, May 25-26, 2021

Fluidized bed particle layer formation in thermo-chemical

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fluidized bed particle layer formation in thermo-chemical

Fluidized bed particle layer formation in thermochemical

conversion of biomass

Marcus ÖhmanEnergy Engineering

Division of Energy ScienceLuleå University of Technology

Chemical Looping with biomass - Role of ash chemistryChalmers, Sweden, May 25-26, 2021

Page 2: Fluidized bed particle layer formation in thermo-chemical

Acknowledgements

• Academic partners:– LTU: H Hi, A Grimm, X Ji, T Hannl, G Häggström, A Validazeh– UmU: D Boström, A Nordin, R Backman, N Skoglund, E Brus, S DeGeyter– TU Wien/BEST: M Kuba, K Fursatz, F Kirnbauer, H Hofbauer– Växjö University: M Sanati, A C Tranvik– Chalmers: P Knutsson, R Faust, T B Vilches, M Seemann

• Industrial partners: – HGA Senden, Oberwart, Falu Energi, Skellefteå Kraft, C4 Energi, Brista

Kraft/Fortum, Växjö Energi

• Funding agencies: – Swedish Research Council, Swedish Energy Agency, Bio4Energy, Swedish

Thermal Foundation, FFG (Austrian National funding), COMET (Austrian National funding)

Page 3: Fluidized bed particle layer formation in thermo-chemical

Outline of this presentation

• Motivation

• Influence of fuel composition

• Influence of residence time (woody biomass)

• Compare BFBC, CFBC and DFBG (woody biomass)

• Compare different bed particles - quartz, olivine, K/Na feldspar (woody biomass)

• Compare combustion with gasification

• Summary

Page 4: Fluidized bed particle layer formation in thermo-chemical

Typical cross-section of old quartz bed particle (33 days) taken from BFB wood combustion

Brus, E., Öhman, M., Nordin, A. Mechanisms of bed agglomeration during fluidized bed combustion. Energy&Fuels, 2005, 19, 825-832

Page 5: Fluidized bed particle layer formation in thermo-chemical

Motivation – Challenges & Opportunities

Page 6: Fluidized bed particle layer formation in thermo-chemical

Influence of fuel composition (I)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Stem-wood

Bark Twigs Needles Shoots Contam. (3% )

wt %

of

ele

men

t (D

.S)

K

Na

Ca

Mg

Si

S

Cl

P

Main ash forming elements in Norway Spruce

Ca, K, (Si) – Wood fuels

K, Si, P, Ca – Agricultural fuels/-residues

Ash forming elements in Norwegian spruce and Birch: Werkelin J, Thesis, 2008, Åbo Akademi University

Page 7: Fluidized bed particle layer formation in thermo-chemical

Influence of fuel composition (II) – overall layer formation mechanism

CaO+ MgO

K2O +Na2O

P2O5 +SiO2

a

b c

a,b

c

Visser, H. J. M. et al 2001

Page 8: Fluidized bed particle layer formation in thermo-chemical

Influence of fuel composition (III) – dominating layer formation mechanisms in quartz bed combustion

(a) Coating-induced layer formation through attack by K-compounds in gas or aerosol phase and diffusion of calcium, forming Ca rich silicates (typical for woody fuels)

(b) Direct attack by K-compounds in gas or aerosol phase, forming low-melting silicate layers (typical for alkali-rich fuels)

(c1) Direct adhesion by partly melted ash-derived potassium silicate particles/droplets (for K- and Si rich fuels e.g. straw fuels)

(c2) Direct adhesion by partly melted ash-derived potassium rich phosphate particles/droplets (for K- and P rich fuels e.g.some agricultural fuels)

(a-c) Brus, E., Öhman, M., Nordin, A. Mechanisms of bed agglomeration during fluidized bed combustion. Energy&Fuels, 2005, 19, 825-832

(c2) Grimm, A., Skoglund, N., Boström, D., Öhman, M. Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus rich biomass fuels. Energy&Fuels. 2011, 25, 937-947

Page 9: Fluidized bed particle layer formation in thermo-chemical

Influence of quartz bed particle age on layer characteristics in BFB (30 MW) wood combustion

1 Day 3 Days 5 Days

13 Days 23 Days

Hanbing, H., Boström, D., Öhman, M. Time Dependence of Bed Particle Layer Formation in Fluidized Quartz Bed Combustion of Wood-Derived Fuels. Energy Fuels 2014, 28, 3841−3848

Page 10: Fluidized bed particle layer formation in thermo-chemical

Influence of quartz bed particle age on layer characteristics in BFB (5 kW) wood combustion

0

10

20

30

40

50

60

70

Cl h

Cl h

Cl h

Cl h

mol-

%

(a)

K Na Ca Mg Al P S Cl Mn Fe

0

10

20

30

40

50

60

70

16 h

24 h

32 h

40 h

mo

l-%

K Na Ca Mg Al P S Cl Mn Fe

(b)

Hanbing, H., Boström, D., Öhman, M. Time Dependence of Bed Particle Layer Formation in Fluidized Quartz Bed Combustion of Wood-Derived Fuels. Energy Fuels 2014, 28, 3841−3848

Page 11: Fluidized bed particle layer formation in thermo-chemical

Influence of quartz bed particle age on layer characteristics in BFB (30 MW) wood combustion

0

10

20

30

40

50

60

70

1 day

3 days

5 days

13 days

23 days

K Na Ca Mg Si Al P S Cl Mn Fe

mo

l-%

(a)

0

10

20

30

40

50

60

70 3 days

5 days

13 days

23 days

K Na Ca Mg Si Al P S Cl Mn Fe

mo

l-%

(b)

Inner layer Outer layer

Hanbing, H., Boström, D., Öhman, M. Time Dependence of Bed Particle Layer Formation in Fluidized Quartz Bed Combustion of Wood-Derived Fuels. Energy Fuels 2014, 28, 3841−3848

Ca2SiO4 Ca3SiO5CaSiO3

1 day 23 days

Page 12: Fluidized bed particle layer formation in thermo-chemical

Diffusion-controlled inner layer growth (quartz bed, BFB 30 MW, wood)

0 4 8 12 16 20 24

0

6

12

18

24

30

Measured

Inn

er

La

ye

r T

hic

kn

ess/

m

t/day

Diffusion of Ca2+ at 850 oC in

Ca2SiO4

Ca3SiO5

CaSiO3

He, H., Ji, X., Boström, D., Backman, R., Öhman, M. Mechanism of Quartz Bed Particle Layer Formation in Fluidized Bed Combustion of Wood-Derived Fuels, Energy Fuels, 2016, 30 (3), pp 2227–2232

Page 13: Fluidized bed particle layer formation in thermo-chemical

Influence of quartz bed particle age on layer characteristics in wood CFBC (122 MW) and DFBG (15 MW)

3 days 4 days 6 days

CFBC 122MW

Hanbing, H., Boström, D., Öhman, M. Time Dependence of Bed Particle Layer Formation in Fluidized Quartz Bed Combustion of Wood-Derived Fuels. Energy Fuels 2014, 28, 3841−3848DFBG 15MW

Kuba, M., He, H., Kirnbauer, F., Skoglund, N., Boström, D., Öhman, M., Hofbauer, H. Thermal stability of bed particle layers on naturally occurring minerals from dual fluid bed gasification of woody biomass, Energy Fuels, 2016, 30 (10), pp 8277–8285

Page 14: Fluidized bed particle layer formation in thermo-chemical

Crack layer formation in quartz particle (BFB, DFBG) & bed material depositions in CFBC’s

He, H., Skoglund, N., Öhman, M. Time-Dependent Crack Layer Formation in Quartz Bed Particles during Fluidized Bed Combustion of Woody Biomass, Energy Fuels, 2017, 31 (2), pp 1672–1677

K-rich silicates

BFBC 30 MW, wood, after 23 days CFBC 100 MW, wood, natural sand

Tranvik, A.C., Öhman, M., Sanati, M. Bed material

deposition in cyclones of wood fuel fired CFB’s.

Energy&Fuels, 2007, 21, 104-109

DFBG 15 MW, logging residues

Kuba, M., He, H., Kirnbauer, F., Skoglund, N., Boström, D., Öhman, M., Hofbauer, H. Thermal stability of bed particle layers on naturally occurring minerals from dual fluid bed gasification of woody biomass, Energy Fuels, 2016, 30 (10), pp 8277–8285

Page 15: Fluidized bed particle layer formation in thermo-chemical

Deposit build-up in the post-combustion chamber in DFBG (15 MW) of logging residues in olivine bed

Deposit fragments C & D indicates impurity driven partial-melting process

Kuba, M., He, H., Kirnbauer, F., Boström, D., Öhman,M., Hofbauer, H. Deposit build-up and ash behavior in dual fluid bed steam gasification of logging residues in an industrial power plant. Fuel Processing Technology 2015, 139, 33–41

Page 16: Fluidized bed particle layer formation in thermo-chemical

Layers on K-feldspar bed particles taken from wood BFB combustion

1 Day, BFB 30 MW

33 Days, BFB 30 MW

H., He, Skoglund, N. Öhman.M. Time-dependent layer formation on K-feldspar bed particles during fluidized bed combustion of woody fuels. Energy Fuels, 2017, 31, 12848–12856.

Si, K, Al, Ca and Mg

Page 17: Fluidized bed particle layer formation in thermo-chemical

Layers on K-feldspar bed particles taken from DFB wood gasification

(Chalmers indirect gasification system)

17

Ash Deposition

Layer

Ca-Reaction

LayerK-Feldspar

K-feldspar after 143 hours of operationLeft: EDXS-line scan profile Right: SEM micrograph

20 µm K-Feldspar

Ca-Reaction Layer

Ash Deposition

Faust, R., Hannl, K. T., Vilches, T. B.., Kuba, M., Öhman, M., Seemann, M., Knutsson, P. Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 1. K-Feldspar, Energy Fuels, 2019, 33, 7321-7332

Page 18: Fluidized bed particle layer formation in thermo-chemical

Layers on Na-feldspar bed particles taken from DFB wood gasification

(Chalmers indirect gasification system)

18

Na-feldspar after 143 hours of operationLeft: EDXS-line scan profile Right: SEM micrograph

20 um

Hannl, K. T., Faust, R., Kuba, M., Knutsson, P., Vilches, T. B. , Seemann, M., Öhman, M. Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 2. Na-Feldspar, Energy Fuels, 2019, 33, 7333−7346

Page 19: Fluidized bed particle layer formation in thermo-chemical

Layers on olivine bed particles taken from DFB wood gasification (8 MW)

Time

Mg, Si, Fe, Ca, (O)

Ca, Si, Mg, Fe, (O)

Inner layer composition

8 h

24 h

About 400 h

Kuba, M., He, H., Kirnbauer, F., Skoglund, N., Boström, D., Öhman, M., Hofbauer, H. Mechanism of Layer Formation on Olivine Bed Particles in Industrial-Scale Dual Fluid Bed Gasification of Wood. Energy Fuels, 2016, 30 (9), pp 7410–7418

Page 20: Fluidized bed particle layer formation in thermo-chemical

Difference in quartz layer characteristics between combustion and gasification (I)

Bark

(Ca, K)

Cane Trash

(Si, K)

Reed Canary Grass

(Si, K)

Olive Flesh

(Si, K, Ca).

Bagasse

(Si,K)

Lucerne

(K, Ca, Cl, S)

Gasif. Comb. Gasif. Comb. Gasif. Comb. Gasif. Comb. Gasif. Comb. Gasif. Comb.

Total bed particle layer thickness

(µm)

2-8 2-8 2-8 2-8 2-8 2-8 4-20 4-20 - - 3-20 1-3

Layer distribution

(% of bed particles which have layers)

>90 >90 10-30 10-30 10 10 >90 >90 < 10 < 10 >90 10

Fuel ash derived material dominated as separate ash particles (Ca, K, S, P, Cl…)

Öhman, M., Pommer, L., Nordin, A. Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels. Energy&Fuels, 2005, 19, 1742-1748

Page 21: Fluidized bed particle layer formation in thermo-chemical

Difference in inner quartz layer characteristics between combustion and gasification (II)

Bark

0

5

10

15

20

25

30

35

40

Na Mg Al Si P S Cl K Ca

At%

Cane Trash

0

5

10

15

20

25

30

35

40

Na Mg Al Si P S Cl K Ca

At%

Olive Flesh

0

5

10

15

20

25

30

35

40

Na Mg Al Si P S Cl K Ca

At%

CombustionGasification

Lucerne

0

5

10

15

20

25

30

35

40

Na Mg Al Si P S Cl K Ca

At%

Öhman, M., Pommer, L., Nordin, A. Bed agglomeration characteristics and mechanisms during gasification and combustion of biomass fuels. Energy&Fuels, 2005, 19, 1742-1748

Page 22: Fluidized bed particle layer formation in thermo-chemical

Summary – layer formation in thermal fluidized bed wood conversion (quartz, olivine, K/Na-feldspar)

• Initially:– Only one layer - the formation mechanism differs between particles

• K-gaseous reaction dominated for quartz• Individual melted ash particles probably enhance reaction

between Ca-compounds and the bed particle for olivine & K-feldspar

• After some days: – Separation in to inner- and outer (more particle rich) layer(s) (all

particles)

– Thinner outer layers for CFB and DFB (all particles)

– Increasing Ca concentrations in the inner layer with time – the layer growth is a result of incorporation of Ca (all particles)

– Cracks in inner layer are formed (all particles)

– Inner-inner layers (K rich silicates) are formed in quartz particles in absence of “protective Ca rich silicate inner layer, CFB & DFB

– Crack layers (K rich) in the quartz and Na-feldspar particle core starts to form – connected to cracks in the inner layer

Page 23: Fluidized bed particle layer formation in thermo-chemical

Thanks for your attention

[email protected]

https://www.ltu.se/research/subjects/Energiteknik?l=en