17
Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003

Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Fluidizable Catalysts for Hydrogen Production from Biomass

Pyrolysis/Steam Reforming

K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet

May 19, 2003

Page 2: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Relevance/Objective

Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based on 750 t/day by 2010. By 2015: be competitive with gasoline.

Technical ChallengesImprove reforming catalysts• Accept flexible feedstocks

Improve catalyst regeneration

Page 3: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

FLUID BED CATALYTIC

STEAM REFORMING

Bio-oil aqueous fraction

COH2CO2H2O

Trap grease

Waste plasticstextiles

Co-processing

Pyrolysis vapors

GA DEMONSTRATION

Process ConceptFLUIDIZABLECATALYSTS

FLEXIBLEFEEDSTOCKS

H2O

Reforming: CxHyOz + H2O(g) H2 + xCO

Water gas shift: H2O + CO CO2 + H2

Gasification: C + H2O(g) COx + H2

Page 4: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Steam

Liquid/Gas/SolidFeedstock

Hydrogen & Co-Products

Catalyst fines

FluidizedCatalyst

850 C

Problem: Catalyst Attrition

Page 5: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Approach: Drivers and Impacts

Feedstock complexity requires fluidized catalysts

Industrial reforming catalysts exist for fixed bed processes. Industrial catalysts attrit when fluidized.

Catalyst loss from fines causes significant performance, cost, and environmental impacts

New markets for robust fluidizable catalysts•Lower Ni or non-Ni compositions

New catalysts required for:•Flexible feedstock processing

•Lower reforming temperatures

Page 6: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Approach/Fluidizable Catalysts

Identify/test best industrial reforming catalysts (naptha)

Identify/test “off the shelf” particulate aluminas for use as catalyst supports in fluidized bed reactors

Formulate, evaluate and optimize multifunctional,multicomponent catalysts made from these supports

Evaluate renewable feedstocks

Page 7: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Fluidizable Catalyst Development TimelineFY01 02 03 04 05 06 07 08 09

Fluidizable Supports (bubbling bed-- BB, circulating bed-CB)Identify industrial materialsAssess attrition rate Characterize propertiesImprove/modify support preparations/CoorsTek

Catalyst DevelopmentDevelop/test/optimize BB/CB catalystsCharacterize catalystsDevelop lower temperature catalystsAssess non-Ni catalysts

Rapid screen microreactor Design/modify existing systemChoose/make catalyst compositionsScreen catalystsOptimize compositions

Kinetics/Deactivation MechanismsAdd pyrolysis microreactor capabilityCoking and gasificationWater gas shiftReformingDeactivation (S, Cl)Reactivation

Catalyst Design for Varied FeedstocksPyrolyzed biomass liquids and vaporsWaste grease (S)Waste plastics (Cl)Waste textiles Co-processing

Industrial Collaborations CoorsTek Ceramics/CarboceramicsSud ChemieIndustry/catalyst scale up

BB CBChoose best CB support

Optimized catalystCat

CatCat

Cat

Industry prepares catalyst

Completed reactor

Completed reactor

Non-Ni catalyst

Page 8: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Due to Catalyst Attrition

Economic Impact of Catalyst Attrition

CatalystWt. in

Reactor (g)

Wt. outReactor

(g)

% Lossper hr

Loss

Cost $/hr2

Best of the Industrial CatalystsCommercial Ni Cat. 1 (Sud Chemie C 11 NK) 292.7 208.7 0.6 19.20Commercial Ni Cat. 2 (ICI 46-1 S) 250.2 167.1 0.7 22.40

Best of the Industrial Supports Tested90% Alumina 251.4 248.8 0.01 0.0399% Alumina 298.9 299.6 0.0 0.00

NREL CatalystsNi-Mg/90% Alumina1 250.1 250.1 0.005 0.0151 with Ni after methanol reforming2 NREL and industrial catalyst costs are the same $32.00/lb. Cost per day calculated from amount of catalyst lost from reactor per hour of use.

Page 9: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

CATALYST Wt % NiO Wt % MgO Wt % K2OCAT 10 2.0 0.2 0.07CAT 11 2.0 1.0 0.08CAT 12 4.0 2.0 0.09

62

64

66

68

70

72

74

76

0 5 10 15 20 25 30

Time (h)

% H

2

Cat 12

Cat 11

Cat 10Feeding Deposits

63

64

65

66

67

68

69

70

71

72

0 5 10 15 20 25Time (h)

% H

2

Commercial Catalyst

Cat 15

Cat 14

Improved Liquid Feeding

CATALYST NiO MgO Wt % K2OC 11 NK 19.0 5.0 8.0CAT 14 2.0 0.2 0.4CAT 15 3.5 0.4 0.7

Catalyst Improvements: K2O Improves Gasification

Milestone: Improve catalyst gasificationperformance for pyrolysis liquid reforming

Wt % Wt %

Page 10: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Catalyst Improvements (NREL vs. Commercial C 11)

62

63

64

65

66

67

68

69

70

71

72

73

0 2 4 6 8 10 12 14 16 18

% H

2

Cat 15 H2

Commercial Cat H2

More hydrogen and methaneNeed to reduce methane

More CO2, less CONeed to improve WGS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25Time (h)

% C

H 4

Cat 15 CH4

Commercial Cat CH4

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18

Time (h)

%C

O2,

CO Cat 15 CO2

Cat 15 CO

Commercial Cat CO2

Commercial Cat CO

Page 11: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Comparing Feedstocks

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

Time (h)

Gas

Com

posi

tion

(%)

Trap Grease (TG)

Pyrolysis Liquid (PL)

H2

CO2TG PL

COCH4

Cat 15 (3.5 Ni, 0.7% K, 0.4% Mg)

Page 12: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

-20

-15

-10

-5

0

5

10

-25 -20 -15 -10 -5 0 5 10 15 20 25 30

90.000

90.00099.00099.000

99.000

99.0000.000

91.000

91.000

92.000

92.000

92.000

92.000

92.000

92.000

PC1

PC2 Scores2 m2/g

10 m2/g

1 m2/g

H2/CH4

H2 Yield

Multivariate Guided

Catalyst Design

Page 13: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Accomplishments/Progress

Developed novel fluidizable reforming catalysts with CoorsTek Ceramics

Evaluated performance of 16 catalysts for 24 hrs with pyrolysis oil-derived feedstocks

Improved reforming activity (compared to commercial catalyst)

Prepared a 100 lb batch of catalyst for the GA demonstration project

Evaluating S-tolerant catalysts with waste grease

Page 14: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Collaborations/Technology Transfer

CoorsTek CeramicsDeveloping fluidizable supports

Sud ChemieReforming catalyst composition

GE Power SystemsFluidizable catalysts

Article

Record of Invention

Page 15: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Plans/Future MilestonesGoal: Design efficient fluidizable catalysts

to produce H2 from varied feedstocks

Improve catalyst gasification and WGS activityDevelop lower temperature reforming catalysts

Evaluate different feedstocks (pyrolysis vapors, waste grease, plastics)Understand deactivation mechanisms (S, Cl)Develop poison tolerant catalysts per feedstock

Prepare/evaluate non-nickel catalysts

Evaluate new CoorsTek supports (Zr/Al2O3) for circulating/bubbling reactors

Modify/use rapid catalyst screening reactor

Expand industrial participation in support/catalyst development

Page 16: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Responses to FY02 Review

Commercial reforming catalysts attrit (fall apart)when fluidized

3 of the best naptha reforming catalysts suffered losses > 10 wt% per day (need < 0.5 wt%/day)

NREL catalyst composition based on commercial naptha reforming catalyst composition (Sud Chemie)

Industrial reforming catalysts are for fixed bed use. New market is driving CoorsTek participation.IP in progress (composition of matter)

Page 17: Fluidizable Catalysts for Hydrogen Production from Biomass … · K. Magrini-Bair, S. Czernik, R. French, Y. Parent, S. Landin and S. Chornet May 19, 2003. Relevance/Objective Develop

Real, complex feedstocks

On-line comprehensive analysis

Novel fluidizable catalysts

Long term testing (>200 h)

Challenges