Fluid Phase Equilibria

Embed Size (px)

DESCRIPTION

Evolution of methane during gas hydrate dissociation

Citation preview

  • E

    Sa

    b

    a

    ARAA

    KMDNM

    1

    wCatfltGtab[ts

    otnprtu

    0h

    Fluid Phase Equilibria 358 (2013) 114 120

    Contents lists available at ScienceDirect

    Fluid Phase Equilibria

    j our na l ho me pa ge: www.elsev ier .com/ locate / f lu id

    volution of methane during gas hydrate dissociation

    . Alireza Bagherzadeha, Saman Alavia,b, John A. Ripmeesterb, Peter Englezosa,

    Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver BC V6T1Z3, CanadaNational Research Council of Canada, 100 Sussex Drive, Ottawa ON K1A0R6, Canada

    r t i c l e i n f o

    rticle history:eceived 10 July 2013ccepted 18 August 2013vailable online 26 August 2013

    eywords:

    a b s t r a c t

    We simulated decomposition of structure I methane hydrate (H) with all cages filled in contact with tworeservoirs (pools) of liquid water (W) which in turn are in contact with either two methane gas reservoirs(G), or with vacuum (V), under constant volumeconstant energy conditions. By adding gas or emptyspaces to the simulation box we allow the released methane to diffuse out of the liquid phase and intothe gas phase similar to what happens during methane hydrate dissociation. The evolution of the releasedethane hydrateissociation processano-bubble formationolecular dynamics

    methane molecules during the hydrate dissociation process was carefully monitored. We found that someof the released methane gas reaches the gas phase and contributes to the increase of gas pressure on thehydrate phase. As the hydrate dissociates, liquid water phase becomes supersaturated with methane,methane molecules aggregate, and spherical regions of high concentration of methane form which weidentify as nano-bubbles. These nano-bubbles grew to a specific size range which depends on simulationconditions and remained stable in the liquid phase for the duration of the simulations (5 ns).. Introduction

    Gas hydrates are inclusion compounds where hydrogen-bondedater molecules encage appropriate guest molecules (such as CH4,2H6, C3H6, CO2, N2 and H2) under suitable pressure and temper-ture conditions [13]. Gas hydrates are of interest to industry ashey form in natural gas pipelines and petroleum wells, blocking theow of fluid. Oil and gas companies are still seeking hydrate inhibi-ing chemicals which are economically and environmentally sound.as hydrates are also considered for energy storage and transporta-ion purposes [4,5] as well as gas separation technology [6,7]. Inddition, naturally occurring gas hydrates in the permafrost andeneath the ocean floor represent a future source of natural gas8,9]. Very recently, Japan has successfully performed the first sus-ained extraction of natural gas from hydrate deposits beneath theeabed [10].

    Although there have been significant advances in the applicationf gas hydrates in different areas and technologies, the fundamen-als of gas hydrate formation/decomposition mechanisms are stillot fully understood. The concentration of methane in the hydratehase is 5500 times larger than its solubility in liquid water. Thisatio for carbon dioxide is 200, see Table 1. Therefore, the mass

    ransfer of methane from the gas phase into the intermediate liq-id phase in hydrate formation and mass transfer of gas from the

    Corresponding author. Tel.: +1 604 822 6184; fax: +1 604 822 6003.E-mail address: [email protected] (P. Englezos).

    378-3812/$ see front matter 2013 Elsevier B.V. All rights reserved.ttp://dx.doi.org/10.1016/j.fluid.2013.08.017 2013 Elsevier B.V. All rights reserved.

    decomposing hydrate phase to the gas phase become topics ofinterests.

    Over the last two decades, molecular dynamics simulations havebeen shown to be an excellent tool that provides insights intohydrate processes which correlate well with the experimental data[15]. One of the advantages of modeling hydrate dissociation usingmolecular dynamics is that one has full control over the cage occu-pancies as opposed to synthetic or natural samples where smallchanges in experimental conditions can affect the exact composi-tion of the hydrate phase. The dissociation rate of methane hydratehas been shown to be strongly inversely proportional to cage occu-pancy and the kinetics of dissociation is substantially enhanced bythe introduction of even a small number of empty cages into thehydrate structure. Furthermore, during the simulation of decompo-sition of methane hydrate, the rate of small to large cage destructionwas found to be close to 1:3 which indicates that the ratio of thenumber of small to large cages in the decomposing hydrate sam-ple does not substantially change [16]. Additionally, it has beenreported that the local neighboring cages play an important rolein determining the dissociation rate of any particular cage andthus the overall cage occupancy does not accurately describe thedependency of dissociation rate of a particular cage on the cageoccupancy. Cage specific information such as being small or large,filled or empty should also be taken into consideration [17] in deter-mining the probability of dissociation. Hydrate decomposition is

    described as a two-step process in which the enhanced diffusivebehavior of host water molecules in the hydrate lattice leads to unitcell size increase and distortions which ultimately breaks downthe lattice. During the second stage, methane molecules escape

    dx.doi.org/10.1016/j.fluid.2013.08.017http://www.sciencedirect.com/science/journal/03783812http://www.elsevier.com/locate/fluidhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.fluid.2013.08.017&domain=pdfmailto:[email protected]/10.1016/j.fluid.2013.08.017

  • S.A. Bagherzadeh et al. / Fluid Phase E

    Table 1Guest concentration (mole fraction) enhancement.

    Guest Solubility in liquidwater at STP

    Concentrationin hydrate

    Ratio

    fstui(tocMatsaacwmhaNTltra

    rsllhtWhdtm

    itlsa

    FLi

    CH4 2.55 105 [11] 0.145 [12] 5686CO2 6.09 104 [13] 0.139 [14] 228

    rom these broken cages and aggregate together [1820]. In anothertudy, the rate limiting step for hydrate decomposition was foundo be the diffusion of methane molecules to the surrounding liq-id [21]. However, in the above studies the effect of heat transfers neglected by running the simulation in thermostated ensemblesi.e. NVT and NPT). English and Phelan [22] recognized this limita-ion. A decrease in local temperature due to the endothermic naturef hydrate decomposition has been observed experimentally and isommonly used to detect hydrate formation. Moreover, when theD simulation time and length scales are in the nano domain, heatnd mass transfer effects are more pronounced and maintaininghese gradients is important. Furthermore, a hydrate phase is nottable at temperatures above the equilibrium phase boundary andpplying an over temperature to a hydrate during simulations is

    questionable practice. An analogy for this is to consider ice thatannot be stable at temperatures above 0 C. Ice in fact stays at 0 Chile in contact with a water that has T > 0 C until it completelyelts. Hydrate decomposition exhibits a similar behavior whichas not yet been addressed by MD simulations. A more realisticpproach for simulations is to dissociate the hydrate phase in anVE ensemble where temperature gradients can be established.emperature drops as high as 20 K were observed in NVE simu-ations of hydrate dissociation. Rows of hydrate cages parallel tohe dissociation front were found to collapse sequentially and theeleased methane formed nano-bubbles within the solution phases dissociation proceeded [23].Natural gas hydrates occur in porous environments and sandy

    eservoirs are estimated to contain the highest degree of hydrateaturation [24]. Molecular dynamics simulations of a waterayer positioned between two silica surfaces showed that theayer adjacent to the silica surface has different dynamic andydrogen-bonding characteristics than bulk water. This perturba-ion affects water up to about 6 A away from the solid surface [25].hile investigating decomposition of hydrates between two fullyydroxylated silica surfaces spaced 40 A apart we found that theecomposition progressed faster near the silica surface and ledo a convex dissociation front. We again noticed the formation ofethane nano-bubbles during dissociation [26].The aggregation of hydrate guest gases as a separate phase

    n the aqueous phase has indeed been observed in the litera-

    ure [23,2630]. However, a separate gas phase with pre-existingiquidgas interface to allow the hydrate guests to escape from theurrounding water was not included in the modeling. This imposesn unrealistic condition where the released guests (perhaps at

    ig. 1. Initial configuration of GasWaterHydrateWaterGas system. Hydrate water isiquid water is illustrated as dynamics bonds in red-and-white and the free methane gasnto 6 A thick layers along the z-axis. L1 and L18 are typically shown here.quilibria 358 (2013) 114 120 115

    supersaturated concentrations) must remain in the liquid phaseand cannot escape to the gas phase. To address this we include a gasspace as part of the initial modeling box which provides an oppor-tunity for the gas to diffuse out of the liquid phase and reach thegas phase. Our aim in this paper is to address some of the followingquestions: How does the released methane gas find its way to thegas phase? Under what conditions does the released methane formnano-bubbles? If nanobubbles are formed, how stable are they andwhat are their equilibrium sizes? We plan to include the silica inthe system in a future study.

    2. Computational procedure

    The spatial structure of a unit cell of hydrate was taken from theX-ray diffraction experiments of McMullen at al. [31]. A 3 3 6super cell of a fully occupied unit cell of sI hydrate was prepared andmade symmetric by removing some water and methane moleculesfrom one end of the block along the z-axis. The resulting hydrateblock contains 2430 water and 405 methane molecules. Two poolsof liquid water containing 3031 molecules in total are placed onboth sides of the hydrate phase. In order to observe the migrationof the released methane from the liquid phase to the gas phase wesandwiched our system between gas spaces comprising of 97 gasmolecules equivalent to an ideal gas pressure of 5 bar at 350 K whichis far below the equilibrium pressure at this temperature. This con-figuration is denoted as G-W-H-W-G in the text and is shown inFig. 1. The lengths of the modeling box along the coordinate axesare Lx = Ly = 3.609 nm and Lz = 21.25 nm. We also considered a casewhere initially there is no methane (vacuum) in the gas space. Thisis designated as VWHWV. Each simulation case has been runat three initial temperatures: 350, 360 and 370 K.

    To relax liquid water molecules at the hydrate surface and equil-ibrate methane molecules in the gas phase at target temperatureand pressure, a 400 ps NVT equilibration was followed by a 400 psNPT (100 bar) equilibration stage. Hydrate phase molecules werekept frozen during the NVT equilibration stage. The final productionrun, with unfrozen hydrate phase is performed in an NVE ensem-ble for 5 ns. The total intermolecular potential in the simulationsis assumed to be the sum of Coulomb and van der Waals inter-actions. United atom [32] and tip4p-ice models [33] are used formethane and water, respectively. This force field combination hasbeen shown to adequately predict the hydrate phase envelop [34].

    Molecular dynamics simulations are performed using Gromacspackage version 4.5.4 [35,36]. The equations of motions are inte-grated using the Leap-frog algorithm with a time step of 1 fs. Longrange Electrostatic interactions are treated with the PME method.A cut-off distance of 1.5 nm is applied. Nos-Hoover thermostat-

    barostat algorithms with relaxation times of 0.2 and 0.5 ps are usedfor temperature and pressure coupling. All constraints are treatedby shake algorithm and periodic boundary conditions are appliedin all three dimensions.

    shown as hydrogen bonds in red and hydrate methane molecules as cyan spheres. phase as iceblue spheres. For some of the analyses the modeling box was divided

  • 116 S.A. Bagherzadeh et al. / Fluid Phase Equilibria 358 (2013) 114 120

    Fig. 2. Final configurations (5 ns) of GWHWG system for different initial temperatures. Hydrate water is shown as hydrogen bonds in red and hydrate methane moleculesa as iceblue spheres. Some of methane molecules have escaped from the liquid phase ande d phase has aggregated and formed nano-bubbles.

    3

    3

    vaihppimtaeMslbbigooaatdfnp

    s cyan spheres. Liquid water is illustrated as shades in light blue and free gas phasentered the gas phase; however, as can be seen the remaining methane in the liqui

    . Results and discussion

    .1. Final simulation configurations

    The hydrate block was allowed to decompose under constantolume and constant energy conditions. The final configurationsfter the 5 ns simulation at three initial temperatures are shownn Fig. 2. Note that the methane molecules originating from theydrate phase are shown in cyan and those originally in the gashase are shown in iceblue in these figures. As expected, the decom-osition has proceeded to a larger extent in simulations with highernitial temperatures. Once dissociation begins, hydrate methaneolecules escape from the broken hydrate cages and dissolve in

    he surrounding water phase. As apparent in Fig. 2, a considerablemount of hydrate methanes diffuse out of the solution phase andnter the gas phase, thus contributing to the external gas pressure.oreover, when a significant amount of the hydrate block is dis-

    ociated, local super-saturation causes a phase separation betweeniquid water and methane, and methane molecules aggregate intoubbles. We identify these gas-rich regions as nano-bubbles. Theubbles of methane molecules continue to grow as more hydrates dissociated. As a nano-bubble becomes larger and its diameterrows larger than the length of the modeling box along either of y-r x-axis, it transforms to a cylindrical shaped bubble due to peri-dic boundary condition. This can be seen in Fig. 2, snapshots III. and III. b. This is a result of the unavoidable use of periodic bound-ry conditions in these simulations. Once these nano-bubbles form,hey attract most of the methane molecules in the liquid phase

    ue to the hydrophobic characteristics of methane and there-ore the remaining liquid phase is depleted in methane. This isoticeable in Figure 2 where the methane remaining in the waterhase (apparent methane solubility) is higher in snapshots withoutFig. 3. Temperature drops for VWHWV system at three different initial tem-peratures. The drop is the largest and fastest at the highest initial temperature.

    nano-bubbles. The decrease in apparent methane solubility is alsoobserved by Baez and Clancy [37].

    3.2. Temperature drops during hydrate dissociation

    Similar to experiments with the endothermic hydrate dissoci-ation process, in NVE MD simulations we observe that the systemtemperature drops upon hydrate dissociation. Microscopically, this

    implies that the kinetic energy of the system is used to provide theenergy necessary for hydrate dissociation. The temperature pro-file for VWHWV at initial temperatures of 350, 360 and 370 Kare plotted in Fig. 3. The overall trends for GWHWG runs are

  • S.A. Bagherzadeh et al. / Fluid Phase Equilibria 358 (2013) 114 120 117

    F wise fa II) Comg the ga

    sitFtf

    3

    dsttth

    F(ice,

    wta

    ilbohia

    ig. 4. (I) The F3 order parameter for VWHWV simulation at 360 K. The steppparent in the red oval indicates cage reformation at the decomposing interface. (as phase (the vacuum scenario), the driving force for the migration of methane to

    imilar. As mentioned above, more hydrate is dissociated at highernitial temperature, due to the larger heating driving force, andherefore we expect larger temperature drop. This can be seen inigure 3. Furthermore, the rate (tangent line) of temperature reduc-ion especially during the initial part (i.e. before 2 ns) is also greateror the simulation at higher initial temperatures.

    .3. Quantitative analysis of decomposition

    To probe local hydrate decomposition, the simulation box isivided into 6 A thick slabs in the z-direction. Layer 1 and 18 arehown in Fig. 1. The local order of water molecules were charac-erized by the F3 order parameter [37]. The F3 parameter measureshe deviation of neighboring triplets of water molecules from theetrahedral arrangement observed in solid phase of water (ice andydrate).

    3,i =[cos jik

    cos jik+ cos2 104.25]2

    j,k=

    {0.1 liquid water0.0 solid water

    here jik is the angle between triplets of oxygen with water i inhe center and the mean runs over a spherical shell of radius of 3.5 Around water i.The F3 versus time profile for different layers along the z-axis

    s plotted in Fig. 4. The F3 value for L13 and L22 which are in theiquid phase are 0.09 while those in the middle of the hydratelock, e.g. L17, L18 and L19, which are not dissociated have a valuef 0.015. The pairs of decomposing layers on both sides of theydrate block, e.g. L14/L22, L15/L21 and L16/L20, show an increasen F3 from 0.015 to 0.09 as the simulation proceeds. Fig. 4.I. presents

    number of interesting observations:

    The hydrate block dissociates in a step-wise manner. Cages ofhydrate at the dissociation front decompose simultaneously fol-lowed by sequential decomposition of inner rows of the hydrate.As dissociation proceeds and the total system temperaturedrops, the rate of decomposition for each row parallel to thehydrate/water interface decreases. As seen, the L14/L22 pair diss-ociates within 0.5 ns whereas for L15/L21 pair it takes 1.5 nsto decompose completely.Once the decomposing layer reaches a value of 0.06 for F3,the next inner layer starts dissociating. In other words, whenthe outermost layer reaches 60% [(0.060.015)/(0.090.015)]

    destruction, the decomposition driving force is felt by the nextinner layer and its decomposition begins.The red oval highlights a decrease in F3 which can be relatedto cage reformation events at the interface. The high localashion in hydrate dissociation is apparent. The decrease in the F3 value which isparison of rate of hydrate dissociation. When initially there is no methane in the

    s phase is higher and therefore hydrate decomposes faster.

    hydrate)(1)

    concentration of methane as well as local lower temperature (seeFig. 3) triggers the hydrate reformation. This behavior has alsobeen reported in the simulations of Myshakin et al. [16].

    To compare the hydrate dissociation rate betweenGWHWG and VWHWV systems, the F3 of the mid-dle layer of hydrate block, L18, for the simulations at 370 K isdrawn in Fig. 4.II. As seen, the L18 layer dissociates at a later timefor GWHWG system which indicates decomposition rate isfaster for VWHWV system. This is attributable to the fact thatit is easier for methane to migrate to the initial vacuum space.

    3.4. Methane evolution and nano-bubble size determination

    To visualize methane evolution from the decomposing hydratephase, the mass density distribution of methane is computed by

    binning the modeling box into 1 A 1 A squares in the yz-plane anda depth equal to Lx along the x-axis or 1 A 1 A squares in the xz-plane and a depth equal to Ly along the y-axis. The evolution ofmethane during hydrate dissociation at 370 K in the GWHWGsimulation is depicted in Fig. 5. The highly ordered localized con-centration of methane during initial times is indicative of thehydrate phase. As decomposition proceeds, this arrangement dis-appears and methane molecules form gas-rich regions with almostcircular cross sections, i.e., the nano-bubbles. The process of the gascylinder formation can be seen in snapshots of Fig. 5 at 5.0 ns. Onecan also observe that the methane concentration in the gas phaseincreases, which confirms migration of methane to the gas phase.Interestingly, darker areas at the interface of gas/water indicate thatmethane molecules are preferentially accumulated at this inter-face. This has been experimentally observed by X-ray reflectivitymeasurements of Boewer et al. [38].

    We used the water density distribution to calculate the bubbleradii. The same procedure described above was used for mappingwater density over the simulation box. The locus of the bubbleinterface was defined where the density of water is 0.5 g/cm3 (halfof its bulk value of 1.0 g/cm3). The radius of the bubble was esti-mated by fitting a circle to this boundary using the solver toolbox

    of Excel. This is schematically shown in Fig. 6.I. Table 2 summa-rizes the bubble radii as a function of time. The two numbers ineach simulation category represent the size of nano-bubbles onthe left and right hand side of the simulation box, respectively. Due

  • 118 S.A. Bagherzadeh et al. / Fluid Phase Equilibria 358 (2013) 114 120

    Fig. 5. Time-lapse snapshots (projection on yz and xz planes) of methane evolution during hydrate dissociation at 370 K in the GWHWG simulation. The orderedhigh localized concentration at 0.5 ns and 1.5 ns are indicative of the hydrate phase. As dissociation continues the formation of nano-bubbles is apparent and the methaneconcentration (pressure) in the gas space of the box is also increasing. The preferential adsorption (accumulation) of methane at the interface of liquid water and gas phaseis apparent.

  • S.A. Bagherzadeh et al. / Fluid Phase Equilibria 358 (2013) 114 120 119

    Fig. 6. (I) Water distribution in simulation G-W-H-W-G at 370 K at 2.50 ns. The boundariesof water is 0.5 g/cm3. (II) The corresponding methane distribution. The adsorption of meof methane in the nano-bubble as compared to the gas phase are noticeable.

    Table 2Estimated radius of formed nano-bubbles in Angstrom.

    Time (ns) GWHWG VWHWV

    0.5 4.0 6.0 6.8 8.61.0 8.2 8.0 8.7 9.81.5 8.35 9.9 9.7 11.52.0 10.3 10.6 10.9 12.62.5 10.7 11.5 11.7 12.83.0 10.7 11.6 11.7 12.33.5 10.5 11.7 11.4 12.74.0 10.4 11.5 11.4 12.4

    tpp

    tmshep

    mptSwGmebnafaatmwbns[w

    4.5 10.6 11.1 11.0 12.05.0 10.4 11.3 11.2 11.9

    o lower external pressure in the simulations with initial vacuumhase adjacent to water, the nano-bubbles in the VWHWVhase are larger.The density of methane is directly correlated to pressure

    hrough the real gas equation of state (PM = zRT; where M is theolecular mass of methane). As expected, an observation of Fig. 6.IIhows that the methane pressure in the nano-bubble is significantlyigher than that in the gas phase. According to the YoungLaplacequation the difference between these two pressures is inverselyroportional to the radius of the bubble:From the practical point of view it is important how much

    ethane we can extract from the hydrate phase. To quantify whatortion of the released methane gas has migrated to the gas space,he numbers of gas molecules were counted in different phases.imilar to water/bubble interface, water/gas interface was definedhere the density of water was 0.5 g/cm3. We found that in theWHWG simulation at 370 K, out of total of 405 methaneolecules initially in the hydrate phase about 64 molecules (15%)ntered the gas space, about 262 CH4s (65%) formed the nano-ubbles and the rest stayed dissolved in the liquid phase. Theseumbers for the VWHWV simulation at 370 K are 50 (12%)nd 285 (71%), respectively. Certainly, one should expect that theractionation of methane in different phases can change if the rel-tive amount of the initial hydrate block and liquid water as wells the gas space volume changes. However, one should still expecthe formation of nano-bubbles. As seen in Fig. 1, the distribution ofethane gas depends on the initial temperature of the simulation,hich also affects the solubility of methane in the water. It shoulde noted that longer simulation times may lead to merging of the

    anobubbles with the gas phase. However, surface tension effectseem to stabilize the nanobubbles for quite long times. Ohgaki et al.39] reported life times of more than two weeks for nanobubblesith an average radius of 50 nm. Rodger [40] has also concluded [ of nano-bubbles were fitted to a circle and are shown as red dots where the densitythane molecules at the interface and substantially higher concentration (pressure)

    that the memory effect relates to the persistence of high concen-tration and retarded diffusion of methane in the melt and not thepersistence of hydrate precursors.

    4. Conclusions

    We studied decomposition of methane hydrate under condi-tions where the released methane is able to leave the liquid phaseand enter the gas phase. We found that the hydrate block decom-poses in a step-wise manner where cages of hydrate parallel tothe dissociation front decomposed simultaneously. In addition, weobserved that when the outermost layer reached 60% collapse, thenext inner layer starts to decompose. As expected, when therewas initially no gas molecule in the gas space hydrate decompo-sition was faster. A small portion of released methane was found toactually enter the gas space. More interestingly, in all of our simu-lations after the liquid water was supersaturated by methane dueto the progress of dissociation, methane molecules aggregated andformed nano-bubbles. These nano-bubbles grew to a particular sizeand remained in the liquid phase with no preference to leave theliquid phase at least during our simulation times of 5 ns.

    Acknowledgement

    We would like to acknowledge WestGrid and Compute/CalculCanada for providing the computational resources.

    References

    [1] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res. 32 (1993) 12511274.[2] J.A. Ripmeester, Hydrate research-from correlations to a knowledge-based dis-

    cipline: the importance of structure, Ann. N.Y. Acad. Sci. 912 (2000) 116.[3] E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, CRC, 2008.[4] W. Hao, J. Wang, S. Fan, W. Hao, Evaluation and analysis method for natural

    gas hydrate storage and transportation processes, Energy Convers. Manag. 49(2008) 25462553.

    [5] R. Kumar, P. Englezos, I. Moudrakovski, J.A. Ripmeester, Structure and com-position of CO2/H2 and CO2/H2/C3H8 hydrate in relation to simultaneous CO2capture and H2 production, AIChE J. 55 (2009) 15841594.

    [6] P. Linga, R. Kumar, P. Englezos, The clathrate hydrate process for post and pre-combustion capture of carbon dioxide, J. Hazard. Mater. 149 (2007) 625629.

    [7] R. Kumar, P. Linga, J. Ripmeester, P. Englezos, Two-stage clathratehydrate/membrane process for precombustion capture of carbon dioxide andhydrogen, J. Environ. Eng. 135 (2009) 411417.[8] A.V. Milkov, Global estimates of hydrate-bound gas in marine sediments: howmuch is really out there? Earth-Sci. Rev. 66 (2004) 183197.

    [9] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates A potentialenergy source for the 21st Century, J. Pet. Sci. Eng. 56 (2007) 1431.

    10] H. Tabuchi, An Energy Coup for Japan, Flammable Ice, New York, 2013.

    http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0005http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0010http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0015http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0020http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0025http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0030http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0035http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0040http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0045http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0050

  • 1 hase E

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    Chem. C 116 (2012) 85488553.20 S.A. Bagherzadeh et al. / Fluid P

    11] P. Scharlin, R. Battino, Solubility of CCl2F2, CClF3, CF4, and CH4 in Water andSeawater at 288.15-303.15 K and 101.325 kPa, J. Chem. Eng. Data 40 (1995)167169.

    12] G.K. Anderson, Enthalpy of dissociation and hydration number of methanehydrate from the Clapeyron equation, J. Chem. Therm. 36 (2004) 11191127.

    13] J.J. Carroll, J.D. Slupsky, A.E. Mather, The solubility of carbon dioxide in waterat low pressure, J. Phys. Chem. Ref. Data 20 (1991) 12011209.

    14] K.A. Udachin, C.I. Ratcliffe, J.A. Ripmeester, Structure, composition, and thermalexpansion of CO2 hydrate from single crystal X-ray diffraction measurements,J. Phys. Chem. B 105 (2001) 42004204.

    15] B. Anderson, W. Jordon, Molecular level modeling in gas hydrate studies, Natl.Energy Technol. Lab. 9 (2) (2009) 710.

    16] E.M. Myshakin, H. Jiang, R.P. Warzinski, K.D. Jordan, Molecular dynamics sim-ulations of methane hydrate decomposition, J. Phys. Chem. A 113 (2009)19131921.

    17] S. Sarupria, P.G. Debenedetti, Molecular dynamics study of carbon dioxidehydrate dissociation, J. Phys. Chem. A 115 (2011) 61026111.

    18] K. Yasuoka, S. Murakoshi, Molecular dynamics simulation of dissociation pro-cess for methane hydrate, Ann. N.Y. Acad. Sci. 912 (2000) 678684.

    19] L.Y. Ding, C.Y. Geng, Y.H. Zhao, H. Wen, Molecular dynamics simulation on thedissociation process of methane hydrates, Mol. Simul. 33 (2007) 10051016.

    20] Y. Iwai, H. Nakamura, Y. Arai, Y. Shimoyama, Analysis of dissociation processfor gas hydrates by molecular dynamics simulation, Mol. Simul. 36 (2010)246253.

    21] N.J. English, J.K. Johnson, C.E. Taylor, Molecular-dynamics simulations ofmethane hydrate dissociation, J. Chem. Phys. 123 (2005) 244503.

    22] N.J. English, G.M. Phelan, Molecular dynamics study of thermal-driven methanehydrate dissociation, J. Chem. Phys. 131 (2009) 074704.

    23] S.A. Bagherzadeh, P. Englezos, S. Alavi, J.A. Ripmeester, Molecular simulation ofnon-equilibrium methane hydrate decomposition process, J. Chem. Therm. 44(2012) 1319.

    24] M. Riedel, T. Collett, M. Malone, F. Akiba, M. Blanc-Valleron, M. Ellis, et al., Gas

    hydrate transect across Northern Cascadia Margin, Eos Trans. Am. Geophys.Union 87 (2006) 325332.

    25] S.A. Bagherzadeh, P. Englezos, S. Alavi, J.A. Ripmeester, Influence of hydratedsilica surfaces on interfacial water in the presence of clathrate hydrate forminggases, J. Phys. Chem. C 116 (2012) 2490724915.

    [

    [

    quilibria 358 (2013) 114 120

    26] S.A. Bagherzadeh, P. Englezos, S. Alavi, J.A. Ripmeester, Molecular modeling ofthe dissociation of methane hydrate in contact with a silica surface, J. Phys.Chem. B 116 (2012) 31883197.

    27] S. Liang, P.G. Kusalik, Explorations of gas hydrate crystal growth by molecularsimulations, Chem. Phys. Lett. 494 (2010) 123133.

    28] J.S. Tse, D.D. Klug, Formation and decomposition mechanisms for clathratehydrates, J. Supramol. Chem. 2 (2002) 467472.

    29] J. Vatamanu, P.G. Kusalik, Molecular dynamics methodology to investigatesteady-state heterogeneous crystal growth, J. Chem. Phys. 126 (2007) 124703.

    30] O. Forrisdahl, Methane clathrate hydrates: melting, supercooling and phaseseparation from molecular dynamics computer simulations, Mol. Phys. 89(1996) 819834.

    31] R.K. McMullan, G.A. Jeffrey, Polyhedral Clathrate Hydrates. IX. Structure of eth-ylene oxide hydrate, J. Chem. Phys. 42 (1965) 27252732.

    32] J.S. Tse, M.L. Klein, I.R. McDonald, Molecular dynamics studies of ice Icand the structure I clathrate hydrate of methane, J. Phys. Chem. 87 (1983)41984203.

    33] J.L.F. Abascal, E. Sanz, R.G. Fernndez, C. Vega, A potential model for thestudy of ices and amorphous water: TIP4P/ice, J. Chem. Phys. 122 (2005)234511.

    34] M. Conde, C. Vega, Determining the three-phase coexistence line in methanehydrates using computer simulations, J. Chem. Phys. 133 (2010) 064507.

    35] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J. Berendsen,GROMACS: fast, flexible, and free, J. Comput. Chem. 26 (2005) 17011718.

    36] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, GROMACS4 Algorithms forhighly efficient, load-balanced, and scalable molecular simulation, J. Chem.Theory Comput. 4 (2008) 435447.

    37] L.A. Baez, P. Clancy, Computer simulation of the crystal growth and dissolutionof natural gas hydratesa, Ann. N.Y. Acad. Sci. 715 (1994) 177186.

    38] L. Boewer, J. Nase, M. Paulus, F. Lehmkhler, S. Tiemeyer, S. Holz, et al., On thespontaneous formation of clathrate hydrates at waterguest interfaces, J. Phys.39] K. Ohgaki, N.Q. Khanh, Y. Joden, A. Tsuji, T. Nakagawa, Physicochemicalapproach to nanobubble solutions, Chem. Eng. Sci. 65 (2010) 12961300.

    40] P. Rodger, Methane hydrate: melting and memory, Ann. N.Y. Acad. Sci. 912(2000) 474482.

    http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0055http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0060http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0065http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0070http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0075http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0080http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0085http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0090http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0095http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0100http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0105http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0110http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0115http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0120http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0125http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0130http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0135http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0140http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0145http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0150http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0155http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0160http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0165http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0170http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0175http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0180http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0185http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0190http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0195http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200http://refhub.elsevier.com/S0378-3812(13)00456-1/sbref0200

    Evolution of methane during gas hydrate dissociation1 Introduction2 Computational procedure3 Results and discussion3.1 Final simulation configurations3.2 Temperature drops during hydrate dissociation3.3 Quantitative analysis of decomposition3.4 Methane evolution and nano-bubble size determination

    4 ConclusionsAcknowledgementReferences