Upload
others
View
41
Download
3
Embed Size (px)
FLUID DYNAMICS
COMPREHENSIVE SUMMARY MEC2404 – Fluid Mechanics 1
Fluid Dynamics Comprehensive Summary
FLUID DYNAMICS COMPREHENSIVE SUMMARY MEC2404 – FLUID MECHANICS 1
1
Contents Fluid properties ................................................................................................................................... 2
Vapour pressure; ................................................................................................................................. 3
Fluid statics / Hydrostatics ...................................................................................................................... 4
Hydrostatic forces ............................................................................................................................... 4
Manometry ......................................................................................................................................... 4
Hydrostatic force on a planar surface ................................................................................................. 5
Curved surface .................................................................................................................................... 5
Buoyancy ............................................................................................................................................. 5
Linear rigid body motion ..................................................................................................................... 5
Rotational rigid body motion .............................................................................................................. 6
Bernoulli equation .................................................................................................................................. 6
Streamlines ......................................................................................................................................... 6
Static, dynamic and total pressure ..................................................................................................... 7
Continuity equation ............................................................................................................................ 7
Fluid kinematics ...................................................................................................................................... 8
Eulerian & langrangian flow descriptions ........................................................................................... 8
Laminar flow ....................................................................................................................................... 8
Turbulent flow..................................................................................................................................... 8
Acceleration field ................................................................................................................................ 9
Control volumes and system representation ..................................................................................... 9
Linear momentum equation ................................................................................................................. 10
Dimensional analysis ......................................................................................................................... 10
Boundary layers .................................................................................................................................... 12
Boundary layer theory ...................................................................................................................... 12
Pressure gradients ............................................................................................................................ 13
Energy equation .................................................................................................................................... 14
Major and minor losses..................................................................................................................... 15
Three types of flow problems ........................................................................................................... 15
Vehicle aerodynamics ........................................................................................................................... 16
Testing vehicle aerodynamics ........................................................................................................... 17
Pumps ................................................................................................................................................... 18
Performance characteristics ............................................................................................................. 19
Mixed and Axial flow pumps ............................................................................................................. 22
Pumps in series and parallel ............................................................................................................. 22
Fluid Dynamics Comprehensive Summary
FLUID DYNAMICS COMPREHENSIVE SUMMARY MEC2404 – FLUID MECHANICS 1
2
Fluid statics; Behaviour of fluids at rest
Fluids dynamics; Behaviour of fluids in motion
Fluid;
- A fluid is a substance that continuously deforms when subjected to a shear stress
- Although solids deform initially, they do not deform continuously
- The term ‘fluid’ generally applies to liquids and gasses
- Generally, do not analyse fluids at the nuclear level
Fluid particles/elements; very small volumes containing larger numbers of molecules
- Assumes average values of important properties over very small volumes is reasonable
- Treat the fluid as a continuum
Fluid properties - Density specific volume, specific gravity
o Measure a fluids mass or weight per unit volume
Density 𝝆 = 𝒎
𝑽
- Dependent on temperature and pressure
- Can be inferred from a hydrometer (which actually measures specific gravity)
- Archmedes principle; buoyancy force = 𝑉𝜌𝑔
o If we know V (volume of a fluid displaced), then 𝜌 can be calculated
Specific volume 𝒗 = 𝑽
𝒎=
𝟏
𝝆
- Volume ‘V’ per unit mass ‘m’
- Reciprocal of density
Specific gravity 𝑺𝑮 = 𝝆
𝝆𝑯𝟐𝑶
- Density relative to density of water at 4°C (1000 kg/m3)
Specific weight 𝜸 = 𝝆𝒈
- Weight per unit volume
Viscosity
- How easily a fluid flows
- Normal stress 𝜎 = 𝐹
𝐴
- Shear stress 𝜏 = 𝐹
𝐴 (applied tangentially to an area)
Note: when a fluid is deformed it forms a velocity gradient.
- Velocity gradient; 𝜏 = 𝜇𝑑𝑢
𝑑𝑦
Liquids; viscosity is due to cohesive intermolecular forces between liquid molecules
- At higher temperatures, molecules have higher energy and are able to overcome the
cohesive forces
- ↑ 𝑇 = ↓ 𝜇
Fluid Dynamics Comprehensive Summary
FLUID DYNAMICS COMPREHENSIVE SUMMARY MEC2404 – FLUID MECHANICS 1
3
Gases; lower cohesive intermolecular forces
- Resistance to flow arises from random molecular collisions
- ↑ 𝑇 = ↓ 𝜇
Types of fluids
Viscosity can be determined from the slope of a plot of a ‘shear stress’ vs ‘strain rate’ (deformation
rate or velocity gradient.
Slope;
- linear for most common fluids (Newtonian fluids)
- Non-linear for some fluids (Non-Newtonian fluids)
Shear thinning;
- The viscosity decreases with shear
- i.e. slope decreases with increasing shear
Shear thickening;
- The viscosity increases with shear
- i.e. slope decreases with increasing shear
- Example – quicksand
Bingham plastic;
- Does not move until the shear stress exceeds a certain yield stress
- Example – toothpaste
Vapour pressure; Corresponding pressure to the quality of the fluid
- Measure of when a liquid evaporates
- Liquid molecules near the surface with sufficient momentum overcome the intermolecular
cohesive forces will escape the liquid & form gas.
o They exert pressure on the liquid surface
- At equilibrium, number or molecules leaving the surface (evaporation) equals number of
molecules arriving at the surface (condensation)
Vapour pressure is a function of temperature
Boiling; is the formation of vapour bubbles in a liquid when the absolute pressure in the liquid
equals the vapour pressure
- Occurs when the vapour pressure of the liquid reaches the surrounding pressure above the
liquid
- A liquid can be forced to boil by;
o Raising the temperature
o Lowering the pressure at a given temperature
Cavitation; process where pressure falls below vapour pressure causing vapour bubbles, bubbles are
then swept into a high pressure region where they collapse and cause structural damage
Fluid Dynamics Comprehensive Summary
FLUID DYNAMICS COMPREHENSIVE SUMMARY MEC2404 – FLUID MECHANICS 1
4
Pressure Pressure in a fluid at rest is the normal force per unit area exerted on a plane surface (real or
imaginary) immersed in a fluid
- 𝑃 = 𝐹
𝐴
- If pressure is equal on every plane, then the net force generated is zero
- Pressure is measured with respect to a reference level
Absolute pressure; if the pressure is a perfect vacuum
Atmospheric pressure; P0 = 1 atm = 1.01 x 105 Pa = 14.7 psi
Gauge pressure; pressure above atmospheric pressure
- Pabs = Pgauge + P0
Vacuum pressure; negative gauge pressure
Fluid statics / Hydrostatics Fluids at rest, or no relative motion
Hydrostatic forces - Act normally to the surface
- Increase linearly with depth 𝑭 = 𝝆𝒈𝒉
Pressure at a point
- 𝑃 = 𝐹
𝐴 𝐹𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑃𝐴
The direction of pressure is defined so that positive pressure generates a force inwards on the
surface
Pressure in a homogeneous incompressible fluid at rest depends only on the depth.
- It is independent of the size and shape of the container
Hydraulic jacks; 𝐹1 = (𝐴1
𝐴2)𝐹2
Manometry Technique to measure pressure using stationary liquid columns. If we know the pressure at a point
and density of all the fluids inside the manometer, the pressure can be calculated at any other point
Open end manometer;
- Pressure difference generates a net force
- Reported as displacement in fluid
- 𝑃1 = 𝑃2 + 𝜌𝑔ℎ
U tube manometer; Commonly used to measure the pressure drop of a fluid flowing in a pipe due to
the viscous losses.