37
03. Februar 2010 | B.Frohnapfel | 1 Bettina Frohnapfel Center of Smart Interfaces TU Darmstadt Workshop "Models versus physical laws/first principles, or why models work?" Wolfgang Pauli Institute, Vienna, Austria, February 2-5, 2011 Flow Control and Turbulence Modeling

Flow Control and Turbulence Modelingwpi/themedata/Arkady_WS/... · 2011. 2. 17. · Flow Control with Additives ¾additives (especially long-chain polymers) are used in practical

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 03. Februar 2010 | B.Frohnapfel | 1

    Bettina FrohnapfelCenter of Smart Interfaces

    TU Darmstadt

    Workshop"Models versus physical laws/first principles, or why models work?"

    Wolfgang Pauli Institute, Vienna, Austria, February 2-5, 2011

    Flow Controland

    Turbulence Modeling

  • 03. Februar 2010 | B.Frohnapfel | 2

    Goals in Turbulence Research

    “understanding”

    modelingprediction control

    Turbulence

    ?S.B. Pope (PoF 2011, based on APS Otto Laporte Lecture 2009):The objective of developing theories and models is of particular importance as the methodologies developed often can be used to achieve other objectives such as control of turbulent flows.

  • 03. Februar 2010 | B.Frohnapfel | 3

    Goals of Flow Control

    transition reattachment

    separation

    drag lift/circulation

    transition in free-shear layermay lead to reattachment

    skin-frictiondrag

    higheraftertransition

    enhanceslift

    induced drag

    lift-to-drag ratio

    laminar boundary layer

    succeptible to separation

    may lead to transition

    in free shear layer

    turbu

    lent b

    ound

    arylay

    er

    resist

    ent to

    sepa

    ration

    leads to

    loss of liftreduce

    s form

    drag

    increa

    ses

    form

    drag

    Gad-el-Hak, 2000

  • 03. Februar 2010 | B.Frohnapfel | 4

    Skin Friction Reduction

    Wall

    w dxUd

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    2

    1μτ221 U

    c wfρ

    τ=Friction coefficient

    Drag reduction in turbulent flows

    Postpone laminar to turbulent transition to higher Reynolds numbers

    old ,

    new ,1w

    wDRττ

    −=

  • 03. Februar 2010 | B.Frohnapfel | 5

    Drag in a Flow Field

    Skin friction drag constitutes• 40 - 50% of the total drag on

    airplanes

    • 50 - 90% of the total drag on (under)water vehicles

    • up to 100% of the total drag in pipelines

    Fantasy of Flow, 1993

    Possible savings• 20% drag reduction on airplanes

    1 Billion Dollar/Year (Gad el Hak, 2000)

    • 10% drag reduction on surface ships5 Billion Dollar/Year (Gollup, 2006)

    • 7 instead of 10 pumpstations in Transalaska Pipeline (www.alyeska-pipe.com)

  • 03. Februar 2010 | B.Frohnapfel | 6

    Flow Control Methods

    Passive

    Active(predetermined)

    Reactive(closed loop)

    high friction low friction

    Attenuation of QSV

    AdditivesMorphologyPhysical Chemistry

    Actuators:Wall movementWall fluxesBody Forces

    Actuators & Sensors:Wall movementWall fluxesBody Forces

  • 03. Februar 2010 | B.Frohnapfel | 7

    Flow Control with Additives

    additives (especially long-chain polymers) are used in practical applications

    research: experimental & DNS

    in DNS: model of polymer-flow interaction

    some remaining discrepancies between experiment and DNS and different “opinions” in respect to the underlying physical mechanism

    additives cannot be used in all situations, but the engineering dream would be to reproduce this DR effect by other means!

    RANS prediction?www.wikipedia.de

    current DR world record: 96.5% at Re=200.000, flow with polymeric and fibrous additives in pipe with Ø 2.4cm (Lee et al. 1974)

  • 03. Februar 2010 | B.Frohnapfel | 8

    Flow Control with Riblets

    Ribletsexperiments: broad parameter studyanalytical work for viscous regimeDNS

    high Re-number testing on airplanes (1-2% fuel saving),application on yacht for America’s cup

    front view of riblet surface

    drag

    diff

    eren

    ce [%

    ]

    s+=uτs/ν

    DLR:technical optimum

    NASA-Riblets

    DLR-Riblets

    ribletsBechert et al. (2000)

    goal: increase drag reducing potential to reach break even point for applications

  • 03. Februar 2010 | B.Frohnapfel | 9

    sinusoidal riblets / 3D riblets

    Using LES for flow control- wavy riblets

    Peet & Sagaut (2009)

    LES ResultsDRmax ≈ 14%

    DNS & Experiments (Berlin group, 2010): no positive effects of sinusoidal shape

    Kramer et al. (2010)

  • 03. Februar 2010 | B.Frohnapfel | 10

    (Re-)Active Control

    Net energy budgetPumping power: Power saving: Control input:

    DefinitionsNet energy saving

    energy gainEnet = P − P '( )− Pin

    G =EnetPin

    Control input

    Reduced pumping power

    Reactive control: G = 100 ~ 300 Active control: G ~ 1.7

    P'P

    inP'PP −

    Net energy savings are difficult to realize!

  • 03. Februar 2010 | B.Frohnapfel | 11

    Challenges for Reactive Control

    0.001

    0.01

    0.1

    1

    10

    100

    1000

    0.001 0.01 0.1 1 10 100 1000

    very high pressure gas pipeline

    ship/high pressure gas pipeline

    gas pipeline

    petroleum pipeline

    automobile

    bullet train/maglev

    aircraft

    liqui

    dga

    s

    time

    [ms]

    length [mm]

    typical length scaleof near-wall vortices

    typical time scaleof near-wall vortices

    10µm – 1mm

    10µs – 10ms

    MEMS

    real time control

    Kasagi et al., 2009

  • 03. Februar 2010 | B.Frohnapfel | 12

    Present Challenges

    active and reactive control is mostly done in DNS (low Reynolds number)very few experiments (also at low Re) – proof of principle

    arrayed hot-film sensor and wall deformation actuatorsGA optimization, 10hour optimization, about 6% DR

    Yoshino et al., 2008reactiveAuteria et al., 2010

    travelling wave in pipeDRmax ≈30%, Gopt≈1.5 Greal≈2.4*10-5 (huge net losses)

    predetermined

  • 03. Februar 2010 | B.Frohnapfel | 13

    polymer drag reduction

    streamwise travelling waves of spanwise wall velocity, DR decreases weakly with Reynolds number (up to Reb=10000), similar for spanwise wall oscillation; further tests with LES did not produce comparable results to DNS so far

    Reynolds Number Dependency

    Tilli et al. 2003

  • 03. Februar 2010 | B.Frohnapfel | 14

    Reynolds Number Dependency

    ideal damping of turbulence near the wall, weak Reynolds number dependence

    If it were possible to capture viscous drag reduction with turbulence models important insight in respect to the Re-number dependency could be gained…

    Iwamoto et al., 2005

    (damping of large scale structures is less effective)

  • 03. Februar 2010 | B.Frohnapfel | 15

    Turbulent Channel Flow

    fully developed,two dimensional

    energy balance

    VPP &Δ=

    Power requirement

    Flow

    momentum balance(RANS) Fukagata et al., 2002

  • 03. Februar 2010 | B.Frohnapfel | 16

    0.001

    0.01

    0.1

    102 103 104 105

    total dissipation

    Skin Friction and Energy Dissipation Rate

    0.001

    0.01

    0.1

    102 103 104 105

    turbulent dissipationdirect dissipationtotal dissipation

  • 03. Februar 2010 | B.Frohnapfel | 17

    Total Energy Dissipation Rate

    max possible saving?

  • 03. Februar 2010 | B.Frohnapfel | 18

    Turbulent Dissipation

    turbulent dissipation

    turbulent dissipation rate

    drag reduction

    0.001

    0.01

    0.1

    102 103 104 105

  • 03. Februar 2010 | B.Frohnapfel | 19

    two componentturbulence

    axisymmetric turbulence

    isotropicturbulence

    Lumley 1978

    IIa= aijaji

    IIIa= ajkakjaij

    ijji

    ij quu

    a δ31

    2 −=

    IIa

    IIIa

    one componentturbulence

    Anisotropy-Invariant Map

    two componentisotropic turbulence

    0.4

    0.1-0.1 0.3

  • 03. Februar 2010 | B.Frohnapfel | 20

    Turbulent Dissipation at the Wall

    εwall

  • 03. Februar 2010 | B.Frohnapfel | 21

    series expansion for uj around the wallMonin and Yaglom (1987)

    local axisymmetry (around x1-axis)George and Hussein (1991)

    ...222211 ++= xaxau

    ...2222 += xbu

    ...222213 ++= xcxcu02 →xfor

    2

    3

    1

    2

    2

    1⎟⎟⎠

    ⎞⎜⎜⎝

    ∂∂

    =⎟⎟⎠

    ⎞⎜⎜⎝

    ∂∂

    n

    n

    n

    n

    xu

    xu

    2

    3

    3

    2

    2

    2⎟⎟⎠

    ⎞⎜⎜⎝

    ∂∂

    =⎟⎟⎠

    ⎞⎜⎜⎝

    ∂∂

    n

    n

    n

    n

    xu

    xu

    2

    2

    3

    2

    3

    2⎟⎟⎠

    ⎞⎜⎜⎝

    ∂∂

    =⎟⎟⎠

    ⎞⎜⎜⎝

    ∂∂

    n

    n

    n

    n

    xu

    xu

    ( ) 02121 →+≈ caυ

    The Limiting State at the Wall

    all coefficientshave to vanish

    02=

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂

    ∂=

    xi

    j

    i

    jw x

    uxu

    νε

  • 03. Februar 2010 | B.Frohnapfel | 22

    Numerical Experiments

    suppression of the spanwise velocity fluctuations

    DR

    6%

    19%

    30%

    42%

  • 03. Februar 2010 | B.Frohnapfel | 23

    0.00

    0.04

    0.08

    0.16

    0 50 1500.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.7

    0.00 0.20

    suggested drag reduction mechanism can be reproduced in DNSeffects within viscous sublayer – probably impossible with any RANS approach

    „need to put a model near the wall“

    uncontrolledcontrolled, yD+= 5

    Numerical Experiments

  • 03. Februar 2010 | B.Frohnapfel | 24

    DNS Data: Dimitropouloset al. (1998) R = 15% R = 44%

    R = 0%

    x2 0

    x2 0x2 0

    Polymer Drag Reduction

    near wall fluctuations:statistically axisymmetric &invariant under rotation about theaxis aligned with the mean flow

  • 03. Februar 2010 | B.Frohnapfel | 25

    Quantitative Relation

    FIK Identity: Fukagata et al.,2002

  • 03. Februar 2010 | B.Frohnapfel | 26

    Shear Stress Contribution: w‘-damping

    0 50 100 1500

    1

    2

    3

    4

    5

    6

    7

    8

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0 50 100 150x₪2 x₪2

  • 03. Februar 2010 | B.Frohnapfel | 27

    0

    2

    4

    6

    8

    10

    0 50 100 1500.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    0 50 100 150

    uncontrolled channel flow

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0 50 100 150

    Shear Stress Contribution: u‘-enhancement

  • 03. Februar 2010 | B.Frohnapfel | 28

    Spanwise Wall Oscillation

    spanwise oscillationDR=25%uncontrolled channel flow

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0 50 100 1500.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0 50 100 150

  • 03. Februar 2010 | B.Frohnapfel | 29

    0.0

    0.5

    1.0

    1.5

    2.0

    0 50 100 1500

    5

    10

    15

    20

    25

    30

    35

    0 50 100 150

    spanwise oscillation, DR=25%uncontrolled channel flow

    source of drag reduction: reduced eigenvalue difference physical meaning?

    Spanwise Wall Oscillation

  • 03. Februar 2010 | B.Frohnapfel | 30

    statistical

    fc Hagen – Poiseuille LawLaminar flowPrandtl – Karman LawTurbulent flow

    Transition

    (Re)crit

    deterministic

    Rλ2

    ε∼

    Learn Something about Transition?

    BUuD

    2~

    τ

    εε =

    2Re λR∝

    Re(Rλ)crit

  • 03. Februar 2010 | B.Frohnapfel | 31

    Cantwell, Coles, Dimotakis 1978

    Nishi 2009

    Turbulent Spots

  • 03. Februar 2010 | B.Frohnapfel | 32

    kk

    ji

    k

    j

    k

    i

    ji

    ij

    k

    jki

    k

    ikj

    ji

    xxuu

    xu

    xu

    xpu

    xpu

    xU

    uuxUuu

    DtuuD

    ∂∂

    ∂+

    ∂∂

    −⎥⎥⎦

    ⎢⎢⎣

    ∂∂

    +∂∂

    −∂

    ∂−

    ∂∂

    −=''2'''

    ''

    '''''''

    21 υυρ

    ii Uu

  • 03. Februar 2010 | B.Frohnapfel | 33

    kk

    jiijhijhijijssssijij

    ji

    xxuu

    aAPPFPaPDt

    uuD∂∂

    ∂+−−⎟

    ⎠⎞

    ⎜⎝⎛ −++≅

    ''2''

    21

    322

    31 υδεεδ

    kkhk xx

    kPDtDk

    ∂∂∂

    +−≅2

    21νε

    ( )''21

    ssuuk =

    Transport equations for the evolution of statistically axisymmetric disturbances:

    kk

    hhkihh

    xxkkuuA

    DtD

    ∂∂∂

    +−−≅ευεψεε

    22''

    212

    ( )λψ RIIIIIfA aa ,, , =( )aa IIIIIfF , =

    Energy equation for the disturbances:

    LDA data of Becker et al. (1999)u12/(u12)∞

    Modeled Equations

  • 03. Februar 2010 | B.Frohnapfel | 34

    ( )kk

    hhh

    xxkA

    DtD

    ∂∂∂

    +−≅ενεψε

    22

    21 2 hkP ε≅

    Dissipation equation for the disturbances:

    with

    ( )λψ RIIIIIfA aa ,, , =transition criterion: 0 -2 ≥ψA where

    Rλ = (Rλ)crit

    Rλ (Rλ)crit

    Rλ (Rλ)crit

    Dissipation Equation

  • 03. Februar 2010 | B.Frohnapfel | 35

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    II

    unstable

    stab

    le

    transform transition criterion in terms of (Rλ)T = f(IIa)

    (Rλ)T

    (IIa)∞

    (Rλ)T=13.55 (IIa)∞≈ 0.15

    Transition Criterion

  • 03. Februar 2010 | B.Frohnapfel | 36

    Tu [%]

    (Rex)T

    (IIIa)∞ < 0 (IIIa)∞ > 0

    x106

    Spangler and Wells, LTV (1968)Schubauer and Skramstadt, NBS (1943) ITAM Novosibirsk

    LSTM Erlangen

    HFI Berlin

    NASA Langley

    “theory”, (IIa)∞= 0

    0

    1

    2

    3

    4

    5

    6

    7

    0 0.05 0.10 0.15 0.20

    Overview: Transition Experiments

  • 03. Februar 2010 | B.Frohnapfel | 37

    Enhanced communication between turbulence modeling/ turbulence theory and flow control community might provide valuable insight

    Understanding/ models that were obtained for prediction purposes can provide insight into flow control options/ limitations

    Can modifications of skin friction drag be captured with RANS or LES?

    - Reynolds number scaling- application to “real” problems

    Conclusions/ Open Questions

    Goals in Turbulence ResearchGoals of Flow ControlSkin Friction ReductionDrag in a Flow FieldFlow Control MethodsFlow Control with AdditivesFlow Control with RibletsUsing LES for flow control�- wavy ribletsChallenges for Reactive ControlPresent ChallengesReynolds Number DependencyTurbulent Channel FlowAnisotropy-Invariant MapTurbulent Dissipation at the WallPolymer Drag ReductionQuantitative RelationShear Stress Contribution: w‘-dampingShear Stress Contribution: �u‘-enhancementSpanwise Wall OscillationSpanwise Wall Oscillation