72
Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology Inffeldgasse 16a, A-8010 Graz, Austria http://www.iaik.tugraz.at/

Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Rebound Attack

Florian Mendel

Institute for Applied Information Processing and Communications (IAIK)Graz University of Technology

Inffeldgasse 16a, A-8010 Graz, Austria

http://www.iaik.tugraz.at/

Page 2: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Outline

1 Motivation

2 Whirlpool Hash Function

3 Application of the Rebound Attack

4 Summary

Page 3: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

SHA-3 competition

Abacus ECHO Lesamnta SHAMATAARIRANG ECOH Luffa SHAvite-3AURORA Edon-R LUX SIMDBLAKE EnRUPT Maraca SkeinBlender ESSENCE MCSSHA-3 Spectral Hash

Blue Midnight Wish FSB MD6 StreamHashBoole Fugue MeshHash SWIFFTX

Cheetah Grøstl NaSHA TangleCHI Hamsi NKS2D TIB3

CRUNCH HASH 2X Ponic TwisterCubeHash JH SANDstorm Vortex

DCH Keccak Sarmal WaMMDynamic SHA Khichidi-1 Sgàil Waterfall

Dynamic SHA2 LANE Shabal ZK-Crypt

Page 4: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

SHA-3 competition

Abacus ECHO Lesamnta SHAMATAARIRANG ECOH Luffa SHAvite-3AURORA Edon-R LUX SIMDBLAKE EnRUPT Maraca SkeinBlender ESSENCE MCSSHA-3 Spectral Hash

Blue Midnight Wish FSB MD6 StreamHashBoole Fugue MeshHash SWIFFTX

Cheetah Grøstl NaSHA TangleCHI Hamsi NKS2D TIB3

CRUNCH HASH 2X Ponic TwisterCubeHash JH SANDstorm Vortex

DCH Keccak Sarmal WaMMDynamic SHA Khichidi-1 Sgàil Waterfall

Dynamic SHA2 LANE Shabal ZK-Crypt

Page 5: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

The Rebound Attack [MRST09]

Tool in the differential cryptanalysis of hash functions

Invented during the design of Grøstl

AES-based designs allow a simple application of the idea

Has been applied to a wide range of hash functions

Echo, Grøstl, JH, Lane, Luffa, Maelstrom, Skein, Twister, Whirlpool,. . .

Page 6: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

The Rebound Attack

Ebw Ein Efw

inboundoutbound outbound

Applies to block cipher and permutation based designs:

E = Efw ◦ Ein ◦ Ebw P = Pfw ◦ Pin ◦ Pbw

Page 7: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

The Rebound Attack

Ebw Ein Efw

inboundoutbound outbound

Inbound phase

efficient meet-in-the-middle phase in Ein

using available degrees of freedom

Outbound phase

probabilistic part in Ebw and Efw

repeat inbound phase if needed

Page 8: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

The Whirlpool Hash Function

IV f

M1

f

M2

f

M3

f

Mt

H(m)

designed by Barretto and Rijmen [BR00]

evaluated by NESSIE

standardized by ISO/IEC 10118-3:2003

iterative, based on the Merkle-Damgard design principle

message block, chaining values, hash size: 512 bit

Page 9: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

The Whirlpool Compression Function

Mj

Hj−1

Hjstate update

SB SC MR AK

key scheduleSB SC MR AC

512-bit hash value and using 512-bit message blocks

Block-cipher based design (similar to AES)

Miyaguchi-Preneel mode with conservative key schedule

Page 10: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

The Whirlpool Round Transformations

SubBytes ShiftColumns MixRows AddRoundKeyKi

S(x)

+

The state update and the key schedule update an 8× 8 state Sand K of 64 bytes

10 rounds each

AES like round transformation

ri = AK ◦MR ◦ SC ◦ SB

Page 11: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Notations

Round i

Si−1 SSBi SSC

i SMRi Si

SB SC MR AK

Ki−1 K SBi K SC

i K MRi Ki

SB SC MR AC

Ci

Page 12: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Collision Attack on Whirlpool

Hj−1

Hjstate update

SB SC MR AK

key scheduleSB SC MR AC

Mj

∆Mj

1-block collision:

fixed Hj−1 (to IV )

f (Mj ,Hj−1) = f (M∗j ,Hj−1), Mj 6= M∗

j

generic complexity 2256 (n = 512)

Page 13: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Collision Attack on Whirlpool

Hj−1

Hjstate update

SB SC MR AK

key scheduleSB SC MR AC

Mj

∆Mj

1-block collision:

fixed Hj−1 (to IV )

f (Mj ,Hj−1) = f (M∗j ,Hj−1), Mj 6= M∗

j

generic complexity 2256 (n = 512)

Page 14: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Collision Attack on 4 Rounds

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAC

SBSCMRAC

SBSCMRAC

SBSCMRAC

S0 S1 S2 S3 S4

K0 K1 K2 K3 K4

M1

IV

H1

constant

Differential trail with minimum number of active S-boxes

81 for any 4-round trail (1→ 8→ 64→ 8)

maximum differential probability: (2−5)81 = 2−405

How to find a message pair following the differential trail?

Page 15: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Collision Attack on 4 Rounds

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAC

SBSCMRAC

SBSCMRAC

SBSCMRAC

S0 S1 S2 S3 S4

K0 K1 K2 K3 K4

M1

IV

H1

constant

Differential trail with minimum number of active S-boxes

81 for any 4-round trail (1→ 8→ 64→ 8)

maximum differential probability: (2−5)81 = 2−405

How to find a message pair following the differential trail?

Page 16: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Collision Attack on 4 Rounds

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAC

SBSCMRAC

SBSCMRAC

SBSCMRAC

S0 S1 S2 S3 S4

K0 K1 K2 K3 K4

M1

IV

H1

constant

Differential trail with minimum number of active S-boxes

81 for any 4-round trail (1→ 8→ 64→ 8)

maximum differential probability: (2−5)81 = 2−405

How to find a message pair following the differential trail?

Page 17: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

First: Use Truncated Differences

S0 S1 S2 S3 S4

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

M1 H1

byte-wise truncated differences: active / not active

we do not mind about actual differences

single active byte at input and output is enough

probabilistic in MixRows: 2−56 for 8→ 1

we can remove many restrictions (more freedom)

hopefully less complexity of message search

Page 18: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

How to Find a Message Pair?

S0 S1 S2 S3 S4

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

M1 H1

message modification?

meet in the middle?

inside out?

rebound!

Page 19: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

How to Find a Message Pair?

S0 S1 S2 S3 S4

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

M1 H1

message modification?

meet in the middle?

inside out?

rebound!

Page 20: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

How to Find a Message Pair?

S0 S1 S2 S3 S4

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

M1 H1

message modification?

meet in the middle?

inside out?

rebound!

Page 21: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

How to Find a Message Pair?

S0 S1 S2 S3 S4

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

M1 H1

message modification?

meet in the middle?

inside out?

rebound!

Page 22: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Rebound Attack on 4 Rounds [MRST09]

S0 S1 S2 S3 S4

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

M1 H1

outbound phase inbound phase outbound phase

Inbound phase

(1) start with differences in round 2 and 3

(2) match-in-the-middle at S-box using values of the state

Outbound phase

(3) probabilistic propagation in MixRows in round 1 and 4

(4) match one-byte difference of feed-forward

Page 23: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

?

SSC2 S2 SSB

3 SMR3

MRAK SB SC

MR

get values

(1) Start with arbitrary differences in state SMR3

linearly propagate all differences backward to SSB3

linearly propagate row-wise forward from SSC2 to S2

(2) Match-in-the-middle at SubBytes layer

check if differences can be connected (for each S-box)

with probability 2−xx we get 2xx solutions for each row

Page 24: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

?

SSC2 S2 SSB

3 SMR3

MRAK SB SC

MR

differences

get values

(1) Start with arbitrary differences in state SMR3

linearly propagate all differences backward to SSB3

linearly propagate row-wise forward from SSC2 to S2

(2) Match-in-the-middle at SubBytes layer

check if differences can be connected (for each S-box)

with probability 2−xx we get 2xx solutions for each row

Page 25: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

?

SSC2 S2 SSB

3 SMR3

MRAK SB SC

MR

differencesdifferences

get values

(1) Start with arbitrary differences in state SMR3

linearly propagate all differences backward to SSB3

linearly propagate row-wise forward from SSC2 to S2

(2) Match-in-the-middle at SubBytes layer

check if differences can be connected (for each S-box)

with probability 2−xx we get 2xx solutions for each row

Page 26: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

?

SSC2 S2 SSB

3 SMR3

MRAK SB SC

MR

differencesdifferences match differences

get valuesget values

(1) Start with arbitrary differences in state SMR3

linearly propagate all differences backward to SSB3

linearly propagate row-wise forward from SSC2 to S2

(2) Match-in-the-middle at SubBytes layer

check if differences can be connected (for each S-box)

with probability 2−xx we get 2xx solutions for each row

Page 27: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Match-in-the-Middle for Single S-box

Sbox∆a ∆b

Check for matching input/output differences

Sbox(x)⊕ Sbox(x ⊕∆a) = ∆b

Use Difference Distribution Table (DDT)

Page 28: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Difference Distribution Table (Whirlpool)

in \ out 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 001 0 6 2 0 0 6 2 0 0 0 4 0 0 0 0 002 0 0 0 0 0 0 0 2 0 0 0 0 4 0 0 003 0 2 2 0 2 2 0 0 2 0 0 0 0 0 0 204 0 0 2 2 0 4 0 0 0 2 2 2 2 0 2 005 0 0 0 0 0 2 0 2 0 0 0 0 0 0 4 206 . 4 0 2 0 0 2 0 0 2 6 2 4 0 2 2 0 .07 . 0 2 2 0 0 2 0 0 4 0 2 0 2 0 2 0 .08 . 0 0 0 0 2 2 2 0 0 0 0 2 2 4 4 0 .09 8 0 0 0 2 4 2 2 0 0 0 0 0 2 0 20a 0 0 0 0 2 0 2 0 2 0 2 0 0 0 0 00b 8 2 2 2 2 0 0 0 0 2 2 2 2 2 0 40c 0 2 2 0 0 0 0 4 0 2 2 0 0 2 4 20d 0 2 2 0 0 2 4 4 0 0 2 2 0 0 0 20e 4 0 4 2 0 0 0 0 2 0 2 0 4 2 0 00f 0 2 0 0 0 2 0 0 0 0 0 0 2 0 2 2

. . .

Differences can be connected if there is a non-zero entry in the table

Page 29: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Match-in-the-Middle for Single S-box

Sbox∆a ∆b

Check for matching input/output differences

Sbox(x)⊕ Sbox(x ⊕∆a) = ∆b

Using Difference Distribution Table (DDT)

Solve equation for all x and count the number of solutions

Page 30: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Difference Distribution Table (Whirlpool)

The number of differentials and possible pairs for the Sbox

solutions frequency0 396552 200184 50436 7408 79

256 1

25880/65025 entries (with ∆a,∆b 6= 0) in DDT are nonzero

we get either 2, 4, 6 or 8 values for each match

2588065025 ·

6528025880 = 1.004 values (right pairs) on average

Page 31: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Match-in-the-Middle for Single S-box

Sbox∆a ∆b

Check for matching input/output differences

Using Difference Distribution Table (DDT)

Sbox(x)⊕ Sbox(x ⊕∆a) = ∆b

Solve equation for all x and count the number of solutions.

∼ 1 value (right pair) on average

Page 32: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

?

SSC2 S2 SSB

3 SMR3

MRAK SB SC

MR

differencesdifferences

get values

(1) Start with arbitrary differences in state SMR3

linearly propagate all differences backward to SSB3

linearly propagate row-wise forward from SSC2 to S2

(2) Match-in-the-middle at SubBytes layer

check if differences can be connected (for each S-box)

we need to solve each row at once: complexity ∼ 210.6 (average 1)

Page 33: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

?

SSC2 S2 SSB

3 SMR3

MRAK SB SC

MR

differencesdifferences match differences

get valuesget values

(1) Start with arbitrary differences in state SMR3

linearly propagate all differences backward to SSB3

linearly propagate row-wise forward from SSC2 to S2

(2) Match-in-the-middle at SubBytes layer

check if differences can be connected (for each S-box)

we need to solve each row at once: complexity ∼ 210.6 (average 1)

Page 34: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Outbound Phase

S0 S1 S2 S3 S4

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

outbound

2−56

inbound

average 1

outbound

2−56

(3) Propagate through MixRows of round 1 and round 4

using truncated differences (active bytes: 8→ 1)

probability: 2−56 in each direction

(4) Match difference in one active byte of feed-forward (2−8)

⇒ collision for 4 rounds of Whirlpool with complexity 2120

Page 35: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Extending the Attack to 5 Rounds [LMR+09]

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

outbound

2−56

inbound

average 1

outbound

2−56

By adding one round in the inbound phase of the attack we canextend the attack to 5 rounds

The outbound phase is identical to the attack on 4 rounds

probability: 2−120

Page 36: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences match differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

similar to 64-bit S-box (DDT has size 2128)

Page 37: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differences

differences match differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

similar to 64-bit S-box (DDT has size 2128)

Page 38: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences

match differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

similar to 64-bit S-box (DDT has size 2128)

Page 39: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences

match differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

similar to 64-bit S-box (DDT has size 2128)

Page 40: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences match differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

similar to 64-bit S-box (DDT has size 2128)

Page 41: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences match differences

264 values/differences 264 differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

we propagate all 264 differences backward at once

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

with complexity 264 we get ∼ 264 right pairs

time-memory trade-off with T ·M = 2128 with T ≥ 264

Page 42: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differences

differences match differences

264 values/differences

264 differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

we propagate all 264 differences backward at once

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

with complexity 264 we get ∼ 264 right pairs

time-memory trade-off with T ·M = 2128 with T ≥ 264

Page 43: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences

match differences

264 values/differences

264 differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

we propagate all 264 differences backward at once

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

with complexity 264 we get ∼ 264 right pairs

time-memory trade-off with T ·M = 2128 with T ≥ 264

Page 44: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences

match differences

264 values/differences

264 differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

we propagate all 264 differences backward at once

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

with complexity 264 we get ∼ 264 right pairs

time-memory trade-off with T ·M = 2128 with T ≥ 264

Page 45: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences match differences

264 values/differences 264 differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

we propagate all 264 differences backward at once

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

with complexity 264 we get ∼ 264 right pairs

time-memory trade-off with T ·M = 2128 with T ≥ 264

Page 46: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences match differences

264 values/differences 264 differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

we propagate all 264 differences backward at once

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

with complexity 264 we get ∼ 264 right pairs

time-memory trade-off with T ·M = 2128 with T ≥ 264

Page 47: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

3a

c0

e6

b9

5a

8c

08

c0

e8

85

0d

a2

b1

f8

16

4d

f4

50

cc

b1

60

ed

27

34

90

cc

01

63

20

85

51

96

d4

6d

0a

11

f4

b7

43

90

75

9a

70

96

1e

43

15

f1

1b

49

43

1e

cd

5a

de

f8

5e

43

e9

4d

bf

d5

2b

07

cd

c5

27

04

10

fc

f8

5e

ee ee ee 9f ee 23 71 c1 cd

45 13 56 94 ca 2a f1 91 26

a2 47 d3 7b 3f 79 5c 62 a5

72 cd 3d 83 11 76 ab b4 c8

73 45 f2 54 2f 21 a6 1c d2

ff b5 26 9f 3a 94 67 ef 3f

f6 27 d8 2a af 73 9c b2 15

32 9a 67 7b 8d 52 ab 92 ff

match

SSC2 S∗

2 SSB4 SMR

4

MRAKSC

SBMRAKSB

SCMR

differencesdifferences match differences

264 values/differences 264 differences

(1) Start with arbitrary differences in state SSC2 and SMR

4

we propagate all 264 differences backward at once

(2) Match-in-the-middle at SuperBox (SB−MR− AK− SB)

with complexity 264 we get ∼ 264 right pairs

time-memory trade-off with T ·M = 2128 with T ≥ 264

Page 48: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Extending the Attack to 5 Rounds [LMR+09]

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

outbound

2−56

inbound

average 1

outbound

2−56

By adding one round in the inbound phase of the attack we canextend the attack to 5 rounds

The outbound phase is identical to the attack on 4 rounds

probability: 2−120

⇒ Construct 2120 starting points in the inbound phase with averagecomplexity 1 (but increased memory of 264)

Page 49: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Extending the Attack to 5 Rounds [LMR+09]

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

outbound

2−56

inbound

average 1

outbound

2−56

By adding one round in the inbound phase of the attack we canextend the attack to 5 rounds

The outbound phase is identical to the attack on 4 rounds

probability: 2−120

⇒ Construct 2120 starting points in the inbound phase with averagecomplexity 1 (but increased memory of 264)

Page 50: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Extending the Attack to 6 Rounds?

SSC2 S2 S3 S4 SMR

5

MRAK

SBSCMRAK

SBSCMRAK

SBSCMR

Add one more round in the inbound phase [JNPP12]

Complexity⇒ 2256 for 1 solution

⇒ Complexity is too high for a collision attack

Page 51: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Extending the Attack to 6 Rounds?

SSC2 S2 S3 S4 SMR

5

MRAK

SBSCMRAK

SBSCMRAK

SBSCMR

Add one more round in the inbound phase [JNPP12]

Complexity⇒ 2256 for 1 solution

⇒ Complexity is too high for a collision attack

Page 52: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Extending the Attack to 6 Rounds?

SSC2 S2 S3 S4 SMR

5

MRAK

SBSCMRAK

SBSCMRAK

SBSCMR

Add one more round in the inbound phase [JNPP12]

Complexity⇒ 2256 for 1 solution

⇒ Complexity is too high for a collision attack

Page 53: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

From Collisions to Near-Collisions

S0 S1 S2 S3 S4 S5 S6 S7

SBSCMBAK

SBSCMBAK

SBSCMBAK

SBSCMBAK

SBSCMBAK

SBSCMBAK

SBSCMBAK

1 2−56 average 1 2−56 1

Add one round at input and output

no additional complexity

MixRows: 1→ 8 with probability 1

⇒ Near-collision attack for 7 rounds

time complexity 2112 and 264 memory

Page 54: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Compression Function Attacks

Hj−1

Hjstate update

SB SC MR AK

key scheduleSB SC MR AC

∆Mj

We can freely choose the chaining input Hj−1

no differences in Hj−1

semi-free-start (near-) collisions

Extend previous attacks by 2 rounds

using multiple inbound phases

Outbound phases of attacks stay the same

Page 55: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Compression Function Attacks

Hj−1

Hjstate update

SB SC MR AK

key scheduleSB SC MR AC

∆Mj

We can freely choose the chaining input Hj−1

no differences in Hj−1

semi-free-start (near-) collisions

Extend previous attacks by 2 rounds

using multiple inbound phases

Outbound phases of attacks stay the same

Page 56: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Compression Function Attacks

Hj−1

Hjstate update

SB SC MR AK

key scheduleSB SC MR AC

∆Mj

We can freely choose the chaining input Hj−1

no differences in Hj−1

semi-free-start (near-) collisions

Extend previous attacks by 2 rounds

using multiple inbound phases

Outbound phases of attacks stay the same

Page 57: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase connect 2nd inbound phase

Basic Idea:

use two independent inbound phases

connect them using 512-bit freedom of key input- (S3 = SMR

2 ⊕ K3)

Page 58: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase

connect 2nd inbound phase

Basic Idea:

use two independent inbound phases

connect them using 512-bit freedom of key input- (S3 = SMR

2 ⊕ K3)

Page 59: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase

connect

2nd inbound phase

Basic Idea:

use two independent inbound phases

connect them using 512-bit freedom of key input- (S3 = SMR

2 ⊕ K3)

Page 60: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase connect 2nd inbound phase

Basic Idea:

use two independent inbound phases

connect them using 512-bit freedom of key input- (S3 = SMR

2 ⊕ K3)

Page 61: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase connect 2nd inbound phase

In practice: Slightly more tricky than that (3 key inputs involved)

connect rows independently

find 264 solutions with complexity 2128

⇒ Collision on 7 and near-collision on 9 rounds

Page 62: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase connect 2nd inbound phase

In practice: Slightly more tricky than that (3 key inputs involved)

connect rows independently

find 264 solutions with complexity 2128

⇒ Collision on 7 and near-collision on 9 rounds

Page 63: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase connect 2nd inbound phase

In practice: Slightly more tricky than that (3 key inputs involved)

connect rows independently

find 264 solutions with complexity 2128

⇒ Collision on 7 and near-collision on 9 rounds

Page 64: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Inbound Phase

S0 S1 S2 S3 S4 S5

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

SBSCMRAK

1st inbound phase connect 2nd inbound phase

In practice: Slightly more tricky than that (3 key inputs involved)

connect rows independently

find 264 solutions with complexity 2128

⇒ Collision on 7 and near-collision on 9 rounds

Page 65: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Summary of Results on Whirlpool

target rounds computational memory typecomplexity requirements

hash 5

.5

2184−s 2s collision

function 7

.5

2176−s 2s near-collision

compression 7

.5

2184 264 collision

function 9

.5

2176 264 near-collision

10 2188 264 distinguisher

Page 66: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Summary of Results on Whirlpool

target rounds computational memory typecomplexity requirements

hash 5.5 2184−s 2s collision

function 7.5 2176−s 2s near-collision

compression 7.5 2184 264 collision

function 9.5 2176 264 near-collision

10 2188 264 distinguisher

Page 67: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Summary of Results on Whirlpool

target rounds computational memory typecomplexity requirements

hash 5.5 2184−s 2s collision

function 7.5 2176−s 2s near-collision

compression 7.5 2184 264 collision

function 9.5 2176 264 near-collision

10 2188 264 distinguisher

Page 68: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Summary

Basic principle not that difficult

efficient inbound phase (average 1)

probabilistic outbound phase (determined by linear layer)

Difficulty in constructing and merging inbound phases

finding good and sparse truncated differential paths

efficient way to use available freedom for merge

⇒ powerful tool in the cryptanalysis of hash functions

Page 69: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

Thank you for your attention!

http://eprint.iacr.org/2010/198

Page 70: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

References I

Paulo S. L. M. Barreto and Vincent Rijmen.The WHIRLPOOL Hashing Function.Submitted to NESSIE, September 2000, revised May 2003, 2000.Available online: http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html.

Henri Gilbert and Thomas Peyrin.Super-Sbox Cryptanalysis: Improved Attacks for AES-Like Permutations.In Seokhie Hong and Tetsu Iwata, editors, FSE, volume 6147 of LNCS, pages 365–383.Springer, 2010.

Jeremy Jean, Marıa Naya-Plasencia, and Thomas Peyrin.Improved Rebound Attack on the Finalist Grøstl.In Anne Canteaut, editor, FSE, volume 7549 of LNCS, pages 110–126. Springer, 2012.

Jeremy Jean, Marıa Naya-Plasencia, and Martin Schlaffer.Improved Analysis of ECHO-256.In Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography, volume 7118 ofLNCS, pages 19–36. Springer, 2011.

Stefan Kolbl and Florian Mendel.Practical Attacks on the Maelstrom-0 Compression Function.In Javier Lopez and Gene Tsudik, editors, ACNS, volume 6715 of LNCS, pages 449–461,2011.

Dmitry Khovratovich, Marıa Naya-Plasencia, Andrea Rock, and Martin Schlaffer.Cryptanalysis of Luffa v2 Components.In Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected Areas inCryptography, volume 6544 of LNCS, pages 388–409. Springer, 2010.

Page 71: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

References IIMario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and MartinSchlaffer.Rebound Distinguishers: Results on the Full Whirlpool Compression Function.In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 126–143. Springer,2009.

Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and MartinSchlaffer.The Rebound Attack and Subspace Distinguishers: Application to Whirlpool.Cryptology ePrint Archive, Report 2010/198, 2010.

Krystian Matusiewicz, Marıa Naya-Plasencia, Ivica Nikolic, Yu Sasaki, and Martin Schlaffer.Rebound Attack on the Full Lane Compression Function.In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of LNCS, pages 106–125. Springer,2009.

Marine Minier, Marıa Naya-Plasencia, and Thomas Peyrin.Analysis of Reduced-SHAvite-3-256 v2.In Antoine Joux, editor, FSE, volume 6733 of LNCS, pages 68–87. Springer, 2011.

Florian Mendel, Thomas Peyrin, Christian Rechberger, and Martin Schlaffer.Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutationand AES Block Cipher.In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, SelectedAreas in Cryptography, volume 5867 of LNCS, pages 16–35. Springer, 2009.

Florian Mendel, Christian Rechberger, and Martin Schlaffer.Cryptanalysis of Twister.In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors,ACNS, volume 5536 of LNCS, pages 342–353, 2009.

Page 72: Florian Mendel - Radboud Universiteit Attack.pdf · Rebound Attack Florian Mendel Institute for Applied Information Processing and Communications (IAIK) Graz University of Technology

References IIIFlorian Mendel, Christian Rechberger, Martin Schlaffer, and Søren S. Thomsen.The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl.In Orr Dunkelman, editor, FSE, volume 5665 of LNCS, pages 260–276. Springer, 2009.

Florian Mendel, Christian Rechberger, Martin Schlaffer, and Søren S. Thomsen.Rebound Attacks on the Reduced Grøstl Hash Function.In Josef Pieprzyk, editor, CT-RSA, volume 5985 of LNCS, pages 350–365. Springer, 2010.

Marıa Naya-Plasencia.How to Improve Rebound Attacks.In Phillip Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 188–205. Springer, 2011.

Marıa Naya-Plasencia, Deniz Toz, and Kerem Varici.Rebound Attack on JH42.In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of LNCS, pages252–269. Springer, 2011.

Thomas Peyrin.Improved Differential Attacks for ECHO and Grøstl.In Tal Rabin, editor, CRYPTO, volume 6223 of LNCS, pages 370–392. Springer, 2010.

Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta.Non-full-active Super-Sbox Analysis: Applications to ECHO and Grøstl.In Masayuki Abe, editor, ASIACRYPT, volume 6477 of LNCS, pages 38–55. Springer, 2010.

Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu.Investigating Fundamental Security Requirements on Whirlpool: Improved Preimage andCollision Attacks.In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT, volume 7658 of LNCS, pages562–579. Springer, 2012.