Flight Dynamics Prakul Complete.docx11111111111111111111111

Embed Size (px)

Citation preview

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    1/28

    P a g e | 1

    Ministry of Education and Science of Ukraine

    National Aerospace University Kharkov Aviation Institute

    Named after N.E Zhukovsky KhAI

    Chair No.101

    Course Project:

    Flight dynamics

    Calculation of aerodynamic characteristics aircraft

    AERI-0000-0000-FD

    Student: Mittal Prakul

    Group: 10E4-1

    Checked by:Prof-Ovcharov

    Kharkov 2010

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    2/28

    P a g e | 2

    CONTENT

    1. Introduction. 32. Technical data 43. Calculation of aircraft aerodynamic characteristics 74. DETERMINATION OF AVAILABLE THRUST 105. GRAPH OF Cy max AGAINST MACH NUMBER 116. Polar Graph 127. Graph of Thrust vs Mach Number 138. Maximum and Minimum Flight Speed with Altitude 159. Determination of service ceiling 1610.Calculation of Power Altitude 1911.Rate of Climb Of the Aircraft 2012.Barograms of Climb 2313.Take-Off Characteristics of the Airplane 2514.Landing Characteristics of Airplane 2715.Conclusion 28

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    3/28

    P a g e | 3

    Introduction:

    Flight dynamics is the science of the aircraft motion in airspace by the

    action of external forces applied to it.

    Flight dynamics is, on the whole, a combination of three classical

    branches of science, such as solid mechanics, fluid and gas mechanics

    and mathematics.

    The earlier project was dedicated to the calculation of aerodynamic

    characteristics of the designed aircraft and presentation of the general

    view of the aircraft with all of its parameters.

    This project will present the flight dynamics of the aircraft which is the

    science of aircraft motion in airspace by the action of external forces

    applied to it.

    With these characteristics we can determine performance parameters of

    the aircraft and loads acting on its structure during flight in turbulent

    conditions or during manoeuvring.

    Analyzing flight dynamics helps the designers to countercheck and

    perfect all their preliminary design work proceeding flight tests. Some of

    the calculated parameters include:

    Thrust: Available and required

    Static and ballistic ceiling, Rate of climb, Barogram of climb and

    longitudinal moment of the whole aircraft.

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    4/28

    P a g e | 4

    2 Technical data

    1.Take off mass - - 17666.67 kg2.

    Cruising speed - - 850 km/hr3.Gross Wing area - S - 43.806

    4.Wing span - L - 18.8 m5.Wing root chord - - 3.6 m6.Wing tip chord - - 1.06 m7.Mean Aerodynamic chord - - 2.6 m8.Aspect ratio - - 89.Taper ratio - - 3.4210. Fuselage length - - 19.06 m11. Fuselage diameter - - 2.3 mMass characteristics

    Take off (preliminary) mass of aircraft m0 = 17666.67 kgs.

    For flight dynamics calculations, we assume the decrement in the take off

    mass as a result of fuel consumption during take off process, so mass of

    aircraft considered for flight dynamics calculation is given as:

    M= m0(o.9) =(17666.67)(0.9) =15900kgs.

    Aerodynamic Parameters for Take- off and Landing mode:

    M = 0

    Cya

    0 0.2 0.4 0.6 0.8 1.0

    1.2 1.3157

    (Cya max)

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    5/28

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    6/28

    P a g e | 6

    Take-off flap angle = Landing flap angle =

    () ()

    () ()

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    7/28

    P a g e | 7

    = = = =Calculation of aircraft aerodynamic characteristics

    This includes determinetion of kinematics parameters of motion of mass center of an

    aircraft depending on external forces acting on it.

    Cya Calculation

    Cxa = C xo + AC ya2

    Cya =

    g = 9.8 m/s2

    qH =

    v=(0.2,0.3,0.4,0.5,0.6,0.8,1.2) 330 m/s

    m = 0.9.m0 m0 = take-off mass

    Lift to drag ratio,

    K=

    Required thrust of the airplane

    Preq =

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    8/28

    P a g e | 8

    Calculated data for according to International Standard Atmosphere isas follows.

    Height 0 3 6 11 Km

    1.225 0.909 0.68 0.365

    M 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    Cxo 0.02144 0.02079 0.02036 0.02004 0.01978 0.01955 0.01934

    M 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    A 0.05166 0.05161 0.05154 0.05144 0.05131 0.05124 0.05105

    Cyamax 1.31557 1.28705 1.25365 1.21535 1.17217 1.12410 1.07114

    At H = 0

    M 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    Cya

    1.25383 0.55726 0.31346 0.20061 0.13931 0.10235 0.07836

    Cxa

    0.103 0.037 0.025 0.022 0.021 0.020 0.020

    K

    12.2141072 15.13597799 12.3291633 9.073314884 6.7056049 5.095566 3.9873056

    Preq

    12757.38184 10294.67864 12638.3296 17173.44007 23237.282 30579.533 39079.029

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    9/28

    P a g e | 9

    At H=3

    M 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    Cya 1.811777242 0.8052343

    0.45294431

    1

    0.28988435

    9

    0.201308

    6

    0.147900

    2

    0.113236

    1

    Cxa

    0.19157585 0.05478404

    0.03145387

    2

    0.02486265

    5

    0.022349

    3

    0.021150

    8

    0.020464

    6

    K9.45723192

    1 14.6983368

    14.4002721

    3

    11.6594291

    5

    9.007359

    3

    6.992636

    2

    5.533270

    4

    Pre

    q

    16476.2829

    9

    10601.2014

    5

    10820.6308

    8

    13364.2931

    7

    17299.19

    1

    22283.44

    6

    28160.56

    6

    At H=6

    M 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    Cya 2.689937466

    1.19552776

    3

    0.67248436

    7

    0.43038999

    5

    0.298881

    9

    0.219586

    7

    0.168121

    1

    Cxa 0.396459546

    0.095715483

    0.044798203

    0.030668517

    0.0254335

    0.0230707

    0.0218129

    K6.78489770

    8

    12.4904323

    2

    15.0114137

    5 14.0336098

    11.75148

    6

    9.517988

    7

    7.707411

    3

    Pre

    q

    22965.71534

    12475.15102

    10380.10357 11103.3463

    13259.602

    16371.109

    20216.909

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    10/28

    P a g e | 10

    At H=11

    M 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    Cya 5.595150973

    2.48673376

    6

    1.39878774

    3

    0.89522415

    6

    0.621683

    4 0.456747

    0.349696

    9

    Cxa 1.641353206

    0.34245823

    1

    0.12364353

    3

    0.06364536

    8

    0.041940

    8

    0.032519

    6

    0.027822

    8

    K

    3.40886468

    7.26142209

    2

    11.3130684

    2

    14.0658178

    2

    14.82287

    4

    14.04529

    3

    12.56871

    8

    Pre

    q

    45710.2419

    8

    21458.6106

    5

    13773.4541

    7

    11077.9217

    7

    10512.13

    4 11094.11

    12397.44

    8

    DETERMINATION OF AVAILABLE THRUST

    Pav = Po

    Po = Maximum thrust available=61000 N

    = 0.75 = (H, M)

    H = 0

    M 0.2 0.4 0.6 0.8

    0.9 0.88 0.89 0.94

    Pav54900 53680 54290 57950

    H = 3

    M 0.2 0.4 0.6 0.8

    0.75 0.72 0.742 0.78

    Pav45750 43920 45262 47580

    H = 6

    M 0.2 0.4 0.6 0.8

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    11/28

    P a g e | 11

    0.58 0.56 0.572 0.6

    Pav35380 34160 34892 36600

    H = 11

    M 0.2 0.4 0.6 0.8

    0.38 0.37 0.38 0.393

    Pav23180 22570 23180 23973

    GRAPH OF Cy max AGAINST MACH NUMBER

    0

    1

    2

    3

    4

    5

    6

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    Cya,C

    yama

    x

    Mach

    Cya0

    Cya3

    Cya6

    Cya11

    Cymax

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    12/28

    P a g e | 12

    Polar Graph

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

    Cya

    Cxa

    Polar Graph

    H=0

    H=3

    H=6

    H=11

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    13/28

    P a g e | 13

    Graph of Thrust vs Mach Number

    Maximum and Minimum Flight Speed with Altitude

    H M max M min V max (m/s) V min (m/s)

    0 0.819 0.191 278.706 64.997

    3 0.82 0.2372 269.452 77.944

    6 0.823 0.295 260.48 93.37

    11 0.839 0.4304 247.673 127.05

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    180000

    200000

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    Thrust(N)

    Mach

    Preq0

    Preq3

    Preq6

    Preq1

    1

    Pavb

    0

    Pavb

    3

    Pavb

    6

    Pavb

    11

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    14/28

    P a g e | 14

    .permy.permmin

    aSC

    G2V

    .optay.optmin

    SC

    G2V

    ,or

    ()

    A is the tangency point of vertical straight line and curve )V(Preq corresponds to theoretical value of

    minimum speed of horizontal steady flight .theorminV .

    Minimum speed .permminV (point A of a figure above)

    Tangency point B in figure shows optimal speed. i.e, Vmin opt

    The tangency point C corresponds to the cruising speed of steady horizontal flight .cruisV

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    15/28

    P a g e | 15

    Therefore from the graph ofthrust and mach no. We get the values below;

    H V perm (m/s) V opti (m/s) V cruising (m/s) V contr (m/s)

    0

    72.586 95.012 145.2 40

    3

    87.112 110.081 165 54

    8

    104.45 129.765 181.5 61

    11

    142.05 171.63 224.4 74

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    16/28

    P a g e | 16

    Speed of level flight with altitude

    Determination of service ceiling

    pH = p11 qH =

    Where pH = pressure at static ceiling

    ;p11=

    Pressure at altitude

    11km=22700Pa;

    Pa11= available thrust ;

    = active thrust;

    = passive thrust

    We must note that the sum of active and passive thrusts give the required thrust,

    At M=0.6,

    ( )

    0

    2

    4

    6

    8

    10

    12

    14

    0 50 100 150 200 250 300

    V cont

    Vmin

    Vmax

    Vopt

    Vmin.per

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    17/28

    P a g e | 17

    Xao11 = Cxao. qh. s

    = 0.02211 X X 43.802=

    N

    Xai11 = Preq11 - Xao11 = 10522.2828= 4800.1223 N

    Now PH = 22700 PH = 11635.98 Pa

    The nearest altitude corresponding to this pressure is H= 15.3

    H=11 Km At M=0.5

    () Xao11 = Cxao. qh. s

    = 0.02242 X X 43.802=

    Xai11 = Preq11 - Xao11 = 11092.5723902.36

    = 7190.21244 N

    Now PH = 22700 PH = 14137.39838 Pa

    The nearest altitude corresponding to this pressure is H= 13.9 Km

    At M=0.7

    ()

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    18/28

    P a g e | 18

    Xao11 = Cxao. qh. s

    = 0.02183 X X 43.802= 3957.793 N

    Xai11 = Preq11 - Xao11 = 11101.553957.793

    = 7143.762 N

    Now PH = 22700 PH = 13729.9 Pa

    The nearest altitude corresponding to this pressure is H= 14.5 Km

    At M=0.8

    ()

    Xao11 = Cxao. qh. s

    = 0.02158 X X 43.802=

    Xai11 = Preq11 - Xao11 = 12403.13= 2787.39 N

    Now PH = 22700 PH = 10002.05

    The nearest altitude corresponding to this pressure is H= 15.5 Km

    So my Static Celling is 15.3 Km

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    19/28

    P a g e | 19

    Calculation of Power Altitude:

    At H=11

    V= 240

    M= 0.705

    = 11 + 3.012

    = 13.95 Km

    At H=11.5

    V= 235

    M= 0.691 = 14.31 km

    At H=12

    V= 225

    M= 0.661 = 14.58 km

    At H=12.5

    V= 215

    M= 0.632 = 14.85 km

    At H=13V= 205

    M= 0.602 = 15.14 km

    At H=13.5

    V= 175

    M= 0.602

    = 15.06km

    H PH

    11 13.95

    11.5 14.31

    12 14.58

    12.5 14.8513 15.14

    13.5 15.06

    So, we obtain power height =15.14 Km

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    20/28

    P a g e | 20

    Rate of Climb Of the Aircraft

    Pi=(Pav-Preq)

    Vyi- vertical flight speed

    Vi- horizontal flight speed =M*330m/s

    H=0

    M 0.3 0.4 0.5 0.6

    Po, N43986.17 41036.531 36137.44 31050.44

    VYI m/s28.79 35.812 39.42 40.65

    13.8

    14

    14.2

    14.4

    14.6

    14.8

    15

    15.2

    200 205 210 215 220 225 230 235 240 245

    PH

    V

    Determination of Power Altitude

    Vyi

    Pi Vi

    mg

    PiPi

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    21/28

    P a g e | 21

    H=3

    M 0.3 0.4 0.5 0.6

    Po, N34464.5 33091.942 29941.4252 27959.523

    VYI m/s21.782 27.89 31.539 35.34

    H=6

    M 0.3 0.4 0.5 0.6

    Po, N 22214.21823768.868 22439.611 21627.52

    VYI m/s 13.52319.307 22.77 26.331

    H=11

    M 0.3 0.4 0.5 0.6

    Po, N 1375.56 8773.6111347.43 12657.72

    VYI m/s 0.521 4.98148.5903 14.373

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    22/28

    P a g e | 22

    Dependence of Vyi on Altitude

    The maximum rate of climb Vymax is found from the graph ofDependence of Vyi on

    altitude H and their values are written in the table below:

    H 0 3 6 11 15.3

    Vymax 41 37 28.02 16.45 0

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

    Vy

    Mach Nos

    Vy0 at

    H=0

    Vy3 at

    H=3

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    23/28

    P a g e | 23

    Since it is imposible for the aircraft to operate at zero Rate, the practicle ceiling at zero

    rate is taken to be Vy*=4 m/s . This corresponds to Altitude 14.21 km (from graph)

    Rate of Climb with Altitude

    Barograms of Climb

    The minimum time of climb from altitude H1 up to altitude H2 shall be calculated

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 5 10 15 20 25 30 35 40 45

    Height

    Vymax

    H

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    24/28

    P a g e | 24

    In order to realize this, we shall need to draw a graph of against Mach number M,

    and thereafter calculate the area under the graph for each rise of altitude. This area is

    equal to the time.

    H 0 3 6 11 0.02439 0.027027 0.035689 0.0608t, sec 0 81.08 214.134 668.8

    Altitude Vs 1/Vymax

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

    H

    1/Vymax

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    25/28

    P a g e | 25

    Take-Off Characteristics of the Airplane

    0

    2

    4

    6

    8

    10

    12

    0 100 200 300 400 500 600 700 800

    Altilude Vs Time

    Barograms of Climb

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    26/28

    P a g e | 26

    2.10 Take-off Characteristics of the airplane

    Take-off distance shall be calculated as the sum of take-off run distance and climb

    distance

    Ldist = L t-off+ Lclimb

    = V2

    t-off

    2J xaw

    Vt-off = 1.1 x Vmin-theory

    = 1.1 x 66.48

    = 73.125 m/s

    Horizontal Acceleration Jxaw = g * ()+Where,

    f= 0.03 Pav=Pt/o= 54900 N v2

    av=0.5X V2

    t/o

    = 9.8* ()+=3.07 m/s

    2

    L t-off= 871.44 m

    Time taken for take off

    T take-off = Vt-off

    J xaw

    =23.84 sec

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    27/28

    P a g e | 27

    For the climb distance L climb = * +

    Vclimb=1.3X Vt/o= 1.3X73.125=95.063 m/s

    So , Lclimb = *()() +

    = 622.32 m

    L dist = 871.44 + 622.32

    =1493.76 m

    2.11 Landing Characteristics of Airplane

    Total Landing Distance shall be calculated as the sum of gliding, holding off and

    landing run distance.

    The summation of the gliding, flattening out and pan distance L*

    L* = Kav

    L* = 13.672() ()

    = 1499.202m

    Calculation of time and length of landing run of the airplane

    L l run =

    Jav = 3.82 m

    L l run =() =346.21 m

  • 8/4/2019 Flight Dynamics Prakul Complete.docx11111111111111111111111

    28/28

    P a g e | 28

    t run = =

    CONCLUSION

    We successfully completed the Flight Dynamics characteristics of our flight. The values

    obtained from these calculations, when compared with those of the prototype

    airplanes, are in good accord. A more precise value can only be obtained when a model

    of

    the airplane is subjected to wind tunnel tests. However, we can use these obtained

    valuesto continue preliminary design of the airplane units