125
Flexural strengthening of reinforced concrete Swiss Code 166 and other codes/guidelines ETH Lecture 101-0167-01L Fibre Composite Materials in Structural Engineering Christoph Czaderski 3. November 2021

Flexural strengthening of reinforced concrete Swiss Code

  • Upload
    others

  • View
    5

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Flexural strengthening of reinforced concrete Swiss Code

Flexural strengthening of reinforced concrete

Swiss Code 166 and other codes/guidelines

ETH Lecture 101-0167-01L

Fibre Composite Materials in Structural Engineering

Christoph Czaderski

3. November 2021

Page 2: Flexural strengthening of reinforced concrete Swiss Code

2ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Overview

Program overview of my lectures and laboratory work

Laboratory competition

Second written intermediate exam

Introduction

Bond between CFRP strip and concrete

Lap-shear test

Slip, Bond shear stress and Bond shear stress-Slip-Relation

Simplified modeling

Debonding failure modes according to SIA 166

End-anchorage

Debonding at shear cracks

Debonding at flexural cracks

Summary, debonding failure modes treated in SIA 166

Example

Several additional topics according to SIA 166

Page 3: Flexural strengthening of reinforced concrete Swiss Code

3ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Program overview of my lectures and laboratory work

Wednesday 03.11.2021, 15:45-17:30 (ETH Hönggerberg)

Lecture on Flexural Strengthening

Preparations for laboratory experiments and intermediate exam

Wednesday 01.12.2021, 15:45 - ca.18:30 (Empa Dübendorf)

Meeting point at Busstation ETH Hönggerberg ETH Link 15:30!!

Application of Externally Bonded FRP Reinforcement

Second written interim exam

Wednesday 15.12.2021, 15:45 – 17:30 (Empa Dübendorf)

Meeting point at Busstation ETH Hönggerberg ETH Link 15:30!!

Laboratory experiments and awarding of lab competition

Empa structural laboratory tour

Page 4: Flexural strengthening of reinforced concrete Swiss Code

4ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 5: Flexural strengthening of reinforced concrete Swiss Code

5ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Laboratory Competition

Page 6: Flexural strengthening of reinforced concrete Swiss Code

6ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Concrete

Casting on 24.9.2021

fc,cube28 = 65.5 N/mm2

Steel

fs = 487 N/mm2

ft = 566 N/mm2

CFRP

Ef = 150’000 N/mm2

Test Beam

Page 7: Flexural strengthening of reinforced concrete Swiss Code

7ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Laboratory competition

Lap experiments will be performed on 15.12.2021

Who makes the best prediction ?

Predictions (in kN):

Failure load of Beam

Failure load of Cylinder2

Failure load of Cylinder3

→Submission of the three numbers by email latest by 13.12.2021 to:

[email protected]

Page 8: Flexural strengthening of reinforced concrete Swiss Code

8ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Content of the second exam on

01.12.2021, 15:45 - ca. 18:30!!! at Empa Dübendorf

Topics:

Design of FRP profiles and all FRP structures

Lecture from 20.10.2021, Teacher Dr. M. Shahverdi

Flexural strengthening of RC according to SIA166

Lecture from 03.11.2021, Teacher Dr. C. Czaderski

Column confinement of RC

Lecture from 10.11.2020, Teacher Prof. Dr. M. Motavalli

Externally bonded FRP reinforcement for metallic structures

Lecture from 17.11.2021, Teacher Dr. E. Ghafoori

Conceptual questions on the topics which were presented in the mentioned lectures. Furthermore, some calculations

have to be performed.

Time: 60 Minutes

No laptops, tablets, smart phones etc.

Only a calculator

One A4 – Summary (both sides or two pages one side)

Page 9: Flexural strengthening of reinforced concrete Swiss Code

9ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Introduction

Page 10: Flexural strengthening of reinforced concrete Swiss Code

10ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 11: Flexural strengthening of reinforced concrete Swiss Code

11ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 12: Flexural strengthening of reinforced concrete Swiss Code

12ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 13: Flexural strengthening of reinforced concrete Swiss Code

13ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 14: Flexural strengthening of reinforced concrete Swiss Code

14ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 15: Flexural strengthening of reinforced concrete Swiss Code

15ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Bond between CFRP strip and concrete

Page 16: Flexural strengthening of reinforced concrete Swiss Code

16ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Lap-shear test

Fl

Bond length lb Fl

strip

adhesive

concrete

Page 17: Flexural strengthening of reinforced concrete Swiss Code

17ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 18: Flexural strengthening of reinforced concrete Swiss Code

18ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 19: Flexural strengthening of reinforced concrete Swiss Code

19ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Concrete block

CFRP-strip

Image Correlation Measurement System

Page 20: Flexural strengthening of reinforced concrete Swiss Code

20ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 21: Flexural strengthening of reinforced concrete Swiss Code

21ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 22: Flexural strengthening of reinforced concrete Swiss Code

22ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 23: Flexural strengthening of reinforced concrete Swiss Code

23ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 24: Flexural strengthening of reinforced concrete Swiss Code

24ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 25: Flexural strengthening of reinforced concrete Swiss Code

25ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Active Bond length lb0

slipshifting by

calculation

Active bond length: the length which is actively involved in the force transfer from the strip to the concrete.

Page 26: Flexural strengthening of reinforced concrete Swiss Code

26ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Slip

sf

xx

Slip

sf

sfsf

F

Slip

sf

x

x

Str

aine

Str

aine

x

without connection connection in one point Connection

in several points

x

Fo

rce

pe

r P

oin

t

sf

F

sf

F

Page 27: Flexural strengthening of reinforced concrete Swiss Code

27ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

x

Fo

rce

pe

r C

on

ne

ctio

n P

oin

t

F

Connection Point

Picture taken from http://www.seilziehclub-gonten.ch/images/diverse/Comic1.JPG (displayed mirrored)

rope pulling

Page 28: Flexural strengthening of reinforced concrete Swiss Code

28ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

x

Fo

rce

pe

r C

on

ne

ctio

n P

oin

t

x

Slip

sf

Force F’

per Point

Slip sf

Behavior of the

Connection Point:

sf

F’

F’

F

Connection Point

Page 29: Flexural strengthening of reinforced concrete Swiss Code

29ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

x

Fo

rce

pe

r C

on

ne

ctio

n P

oin

t

x

sf

F’

F’

F

Connection Point S

lip s

fBehavior of the

Connection Point:

Force F’

per Point

Slip sf

Page 30: Flexural strengthening of reinforced concrete Swiss Code

30ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

x

Fo

rce

pe

r C

on

ne

ctio

n P

oin

t

x

sf

F’

F’

F

Connection PointS

lip s

fBehavior of the

Connection Point:

Force F’

per Point

Slip sf

Page 31: Flexural strengthening of reinforced concrete Swiss Code

31ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

x

Fo

rce

pe

r C

on

ne

ctio

n P

oin

t

x

sf

F’

F’

F

Connection PointS

lip s

fBehavior of the

Connection Point:

Force F’

per Point

Slip sf

Page 32: Flexural strengthening of reinforced concrete Swiss Code

32ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

F

F f

Force N

unit area mm2

f

Bond s

he

ar

str

ess

f

Slip sf

Bond shear stress – Slip – Relation

f Bond shear stress

This relation characterizes the bond behavior.

GFb

The area under the bond shear stress – slip – relation

corresponds to the specific fracture energy GFb.

f

sf

Page 33: Flexural strengthening of reinforced concrete Swiss Code

33ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Page 34: Flexural strengthening of reinforced concrete Swiss Code

34ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Parabolic

Page 35: Flexural strengthening of reinforced concrete Swiss Code

35ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Trigonometric

Page 36: Flexural strengthening of reinforced concrete Swiss Code

36ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Hyperbolic

Trigonometric

Page 37: Flexural strengthening of reinforced concrete Swiss Code

37ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Comparison Modelling - Measurement

Page 38: Flexural strengthening of reinforced concrete Swiss Code

38ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Lap-shear test with strain gauges (SG)

ICS measures slip

SG’s measure strain

Page 39: Flexural strengthening of reinforced concrete Swiss Code

39ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

distance [mm]

Str

ain

in

CF

RP

[‰

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 50 100 150 200 250

distance [mm]

sh

ear

str

ess [

MP

a]

Longitudinal strain

Shear stress between

strip and concrete

hyperbolic shape

hyperbolic shape

Page 40: Flexural strengthening of reinforced concrete Swiss Code

40ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

distance [mm]

Str

ain

in

CF

RP

[‰

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 50 100 150 200 250

distance [mm]

sh

ear

str

ess [

MP

a]

Page 41: Flexural strengthening of reinforced concrete Swiss Code

41ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

distance [mm]

Str

ain

in

CF

RP

[‰

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 50 100 150 200 250

distance [mm]

sh

ear

str

ess [

MP

a]

Page 42: Flexural strengthening of reinforced concrete Swiss Code

42ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

distance [mm]

Str

ain

in

CF

RP

[‰

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 50 100 150 200 250

distance [mm]

sh

ear

str

ess [

MP

a]

trigonometric shape

trigonometric shape

Page 43: Flexural strengthening of reinforced concrete Swiss Code

43ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250

distance [mm]

Str

ain

in

CF

RP

[‰

]

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 50 100 150 200 250

distance [mm]

sh

ear

str

ess [

MP

a]

Page 44: Flexural strengthening of reinforced concrete Swiss Code

44ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

f

f,mean

sf1

sf

Simplified bond shear stress-slip relation

GFb =f,meansf1

Page 45: Flexural strengthening of reinforced concrete Swiss Code

45ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

F = 5 kN

Ef = 165 GPa, bf = 50mm, tf = 1.2 mm, f,mean = 2.25 MPa

parabolic shape of slip

Page 46: Flexural strengthening of reinforced concrete Swiss Code

46ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

F = 10 kN

Ef = 165 GPa, bf = 50mm, tf = 1.2 mm, f,mean = 2.25 MPa

parabolic shape of slip

Page 47: Flexural strengthening of reinforced concrete Swiss Code

47ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

F = 15 kN

Ef = 165 GPa, bf = 50mm, tf = 1.2 mm, f,mean = 2.25 MPa

parabolic shape of slip

Page 48: Flexural strengthening of reinforced concrete Swiss Code

48ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

F = 20 kN

Ef = 165 GPa, bf = 50mm, tf = 1.2 mm, f,mean = 2.25 MPa

parabolic shape of slip

Page 49: Flexural strengthening of reinforced concrete Swiss Code

49ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

2

ff

f f

xs x =

E t 2

ff

f f

x = xE t

e

f f,meanx =

b0,R

b0

f,mean f

Fl =

b f b0 f1s x=l =s

2

b0,R

f1 2

f f f f,mean

Fs =

2E t b with and we get from Eq. (1) and (3):

(1)

(2)

(3)

and withFb f1 f,meanG =s we get

b0,R f Fb f fF =b 2G E t

(slide 44)

Page 50: Flexural strengthening of reinforced concrete Swiss Code

50ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Bond behavior depends on

Elastic deformation

shear modulus of adhesive and concrete

thickness of adhesive plus a layer of concrete

Bond damage (Entfestigungsbereich, Verbundschädigung)

concrete quality

Additionally, the stiffness (Eftf)

of the strip influences also the

bond behaviour.

GFb

maximum slip

constant (~0.2 mm)

Page 51: Flexural strengthening of reinforced concrete Swiss Code

51ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Comparison with reinforcement

Internal steel reinforcement is surrounded Deflection perpendicular to longitudinal direction is not possible

Normal (confinement) stresses due to interlocking and friction

→ the longer the anchor length, the higher the anchor force up to yielding of the steel reinforcement

Externally applied strip is free on one side Deflection perpendicular to longitudinal direction is possible

→ maximum anchorage force (anchorage resistance) with corresponding length (active bond length)

Page 52: Flexural strengthening of reinforced concrete Swiss Code

52ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

2/3

f0 ct c

4= f =0.4 f

3

g

f0 f0

g

ts =

G

Gg

tg1

f0 = 4.5 MPa

CFRP strip

according to Ulaga:

2/3

s0 ctm ck=2f =0.6 f s0 = 5.8 MPa

s1 = 2.9 MPa

with fck = 30MPa (fc = 38MPa), tg=1mm, Gg=4GPa

sf0 = 0.001 mm

Internal steel reinforcement

according to Sigrist and Marti:

(Skript Stahlbeton Marti 2009)

sf1 ≈ 0.225 mm

GFb = 0.51 N/mm

2/3

s1 ctm ck=f =0.3 f

In SIA262 (2013): fb=1.4fctm

Page 53: Flexural strengthening of reinforced concrete Swiss Code

53ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

ff,max f,mean

f,max

2G=2 =

s

f0 = f,max = 4.1 MPa

CFRP strip

according to Czaderski(Diss ETH No. 20504):

with fck = 30MPa, dmax=32mm

sfo = sf,el = 0.02 mm

sf1 = sf,max = 0.2 mm

2/3 1/4

f ck maxG =0.018 f d [N/mm]

GFb = Gf = 0.41 N/mm

ctHFb ctH

fG = 0.125f

8

2/3

ctH ctm ckf f =0.3 f

CFRP strip

according to SIA 166

with

with fck = 30MPa, dmax=32mm

GFb = 0.36 N/mm

2/3

f0 ctH ck

4= f 0.4 f

3

f0 = 3.9 MPa

2/3

Fb ckG =0.0375 f [N/mm]

(fctH should better be

tested on site)

(SIA D0182)

Page 54: Flexural strengthening of reinforced concrete Swiss Code

54ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Debonding failure modes according to SIA 166

Page 55: Flexural strengthening of reinforced concrete Swiss Code

55ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Debonding failure modes according to SIA 166

concrete

Concept of

SIA166

lb

Fb,R

Page 56: Flexural strengthening of reinforced concrete Swiss Code

56ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Equations for maximum anchorage resistance

ctHb0,R f Fb f f f f f f f f ctH

fF =b 2 G E t =b 2 E t =0.5b E t f

8 SIA 166

fib Bulletin 14 ctmfffbc1maxfa, ftEbkkcαN

k,max b f fd f ctkT =0.5 k b E t f TR55

1

f

bf

b2

bk 1.06b

1400

please note: without safety factors!! See example on slide 66 for the safety concept!!

Italian CodectmckbFkFkffffd ffk.;tE2bF 030

Take care to symbols. They depend on the reference.

Page 57: Flexural strengthening of reinforced concrete Swiss Code

57ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Active bond length

(the length which is actively involved in the force transfer from the strip to the concrete)

b0,R f Fb f fF =b 2 G E t

b0,R

b0

f f,mean

Fl

b

Fb f f

b0

f,mean

2 G E tl

with

If we assume a constant bond shear stress:

Fb f f

2

f,mean

G E t

proportional to

Page 58: Flexural strengthening of reinforced concrete Swiss Code

58ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Equations for active bond length(minimum necessary length for maximum anchor resistance Fb0,R)

SIA 166

fib Bulletin 14

TR55

please note: without safety factors!!

Italian Code

; ;Fb f f f fb0 f0 ctH b02

f0 ctH

G E t E t4 3l 2 f l

2 3 16 f

ctm2

ffmaxb,

fc

tEl

fd ft,max

ctk

E tl =0.7

f

ctm

ffe

f2

tEl

Page 59: Flexural strengthening of reinforced concrete Swiss Code

59ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Units in equations in SIA 166

Equations for maximum anchorage resistance and active bond length

Please note, that the units are not conform!

ctHb0,R f Fb f f f f f f f f ctH

ctH 2

Fb

fF =b 2 G E t =b 2 E t =0.5 b E t f

8

Nf

N mmG =

1mm8

mm

; ;Fb f f f fb0 f0 ctH b02

f0 ctH

G E t E t4 3l 2 f l

2 3 16 f

Page 60: Flexural strengthening of reinforced concrete Swiss Code

60ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Example

ctHFb

f NG

8 mm

f0 ctH

4f MPa

3

b0,R f Fb f fF b 2 G E t 50 2 0.36 165'000 1.2 18.9kN

b0,R

b0,R

f

F315MPa

A

b0,R

b0,R

f

1.91‰E

e

Concrete C30/37

Sika CarboDur S512 tensile strength > 2800 MPa

tensile strain > 17‰

for concrete

C 20/25 to C 50/60

Fb

2.9 NG 0.36

8 mm

f0

42.9 3.9MPa

3

Page 61: Flexural strengthening of reinforced concrete Swiss Code

61ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0

50

100

150

200

250

0

5

10

15

20

25

C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60

ac

tive

bo

nd

le

ng

th l

b0

[mm

]

An

ch

ora

ge

re

sis

tan

ce

Fb

0[k

N]

Page 62: Flexural strengthening of reinforced concrete Swiss Code

62ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0

5

10

15

20

25

0 50 100 150 200 250 300

An

ch

ora

ge r

esis

tan

ce F

[kN

]

bond length l [mm]

C50/60

C45/55

C40/50

C35/45

C30/37

C25/30

C20/25

C16/20

C12/15

b b0

2 2

f0 bb,R f Fb f f

Fb f f

if l l :

lF b 2 G E t sin

2 G E t

use radiant in the calculator for sin()

Page 63: Flexural strengthening of reinforced concrete Swiss Code

63ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Design philosopy of preventing end anchorage failure

SIA166: anchorage in the uncracked zone

ACI:

If Vu > 0.67 Vc at strip end, then transverse reinforcement is necessary (they give a design equation

for U-wrap reinforcement Af,anchor)

or (instead of detailed analysis)

for simply supported beams: length ldf after last crack

Elastic solutions for calculating shear and normal stresses at strip end

Page 64: Flexural strengthening of reinforced concrete Swiss Code

64ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

End anchorage, normal stresses at strip end

Page 65: Flexural strengthening of reinforced concrete Swiss Code

65ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Shear and normal stresses at strip end

B4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40

Distance from plate end (mm)

Sh

ear

stre

ss (

MP

a)

Closed-form solution

FEM2(nonlinear)

FEM2(linear)

FEM1

B4

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 10 20 30 40

Distance from plate end (mm)

No

rmal

str

ess

(MP

a)

Closed-form solution

FEM2(nonlinear)

FEM2(linear)

see:

Aram, M.R., C. Czaderski, and M. Motavalli, Debonding failure modes of flexural FRP-

strengthened RC beams. Composites Part B: Engineering, 2008. 39(5): pp. 826-841.

Page 66: Flexural strengthening of reinforced concrete Swiss Code

66ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Safety concept

Example: concrete tensile strength at the concrete surface

Mean value from tests fctH = 4.0 GPa

Characteristic value (5% fractile) fctH,k = 3.2 GPa

Design value:

𝑓𝑐𝑡𝐻,𝑑 =𝑓𝑐𝑡𝐻,𝑘𝛾𝑀

=3.2

1.5= 2.1𝑀𝑃𝑎 gM = 1.5 (Tabelle 3 in SIA166, see slide 114)

𝐺𝑓𝑏𝑑 =𝑓𝑐𝑡𝐻,𝑑8

=2.1

8= 0.26𝑁/𝑚𝑚

Design value of fracture energy:

Page 67: Flexural strengthening of reinforced concrete Swiss Code

67ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Debonding failure modes

Page 68: Flexural strengthening of reinforced concrete Swiss Code

68ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

b0,R

b0,R

f

1.91‰E

e

Example

b0,R f Fb f fF b 2 G E t 50 2 0.36 165'000 1.2 18.9kN

Concrete C30/37

Sika CarboDur S512 tensile strength > 2800 MPa

tensile strain > 17‰

According to SIA166,

the maximum allowed strain is 8‰!

??

b0,R

b0,R

f

F315MPa

A

Page 69: Flexural strengthening of reinforced concrete Swiss Code

69ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Figure 38 of PhD Thesis of C.Czaderski (Diss ETH No. 20504):

Global bond shear stress Local bond shear stress

→ bond length constant,

bond shear stress increases

→ bond length increases,

bond shear stress constant

Page 70: Flexural strengthening of reinforced concrete Swiss Code

70ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Figure 38 of PhD Thesis of C.Czaderski (Diss ETH No. 20504):

Global bond shear stress Local bond shear stress

→ bond length constant,

bond shear stress increases

→ bond length increases,

bond shear stress constant

Page 71: Flexural strengthening of reinforced concrete Swiss Code

71ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Simple supported plate

Page 72: Flexural strengthening of reinforced concrete Swiss Code

72ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

-3

-2

-1

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Str

ain

in

co

nc

rete

an

d C

FR

P [

‰]

10kN/m

10kN/m

Page 73: Flexural strengthening of reinforced concrete Swiss Code

73ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

-3

-2

-1

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Str

ain

in

co

nc

rete

an

d C

FR

P [

‰]

10kN/m

20kN/m

10kN/m

20kN/m

Page 74: Flexural strengthening of reinforced concrete Swiss Code

74ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

-3

-2

-1

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Str

ain

in

co

nc

rete

an

d C

FR

P [

‰]

10kN/m

20kN/m

25kN/m

10kN/m

20kN/m

25kN/m

Page 75: Flexural strengthening of reinforced concrete Swiss Code

75ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

-3

-2

-1

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Str

ain

in

co

nc

rete

an

d C

FR

P [

‰]

10kN/m

20kN/m

25kN/m

26kN/m

10kN/m

20kN/m

25kN/m

26kN/m

Page 76: Flexural strengthening of reinforced concrete Swiss Code

76ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

-3

-2

-1

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Str

ain

in

co

nc

rete

an

d C

FR

P [

‰]

10kN/m

20kN/m

25kN/m

26kN/m

27kN/m

10kN/m

20kN/m

25kN/m

26kN/m

27kN/m

Page 77: Flexural strengthening of reinforced concrete Swiss Code

77ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

-3

-2

-1

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Str

ain

in

co

nc

rete

an

d C

FR

P [

‰]

10kN/m

20kN/m

25kN/m

26kN/m

27kN/m

30kN/m

10kN/m

20kN/m

25kN/m

26kN/m

27kN/m

30kN/m

Page 78: Flexural strengthening of reinforced concrete Swiss Code

78ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0

10

20

30

40

50

60

70

80

90

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Te

ns

ile

Fo

rce

in

on

e C

FR

P P

late

[k

N]

30kN/m

Page 79: Flexural strengthening of reinforced concrete Swiss Code

79ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

-100

-80

-60

-40

-20

0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Te

ns

ile

Fo

rce

CH

AN

GE

in

on

e C

FR

P p

late

[N

/mm

']

30kN/m

Page 80: Flexural strengthening of reinforced concrete Swiss Code

80ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Maximum Tensile Force CHANGE

according to SIA 166

ff,lim l

R

f,lim c ck

Fb

x

2.5 2.5 0.3 f

(c from SIA 262)

Example

Concrete C30/37

Sika CarboDur S512

ff,lim f

R

f,lim c

Fb 205N mm

x

2.5 2.5 0.3 30 4.1MPa

/

please note: without safety factors!!

f0

42.9 3.9MPa

3 In comparison, the local maximum bond shear stress (Slide 53):

Page 81: Flexural strengthening of reinforced concrete Swiss Code

81ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

0

1

2

3

4

5

6

C12/15 C16/20 C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60

Sh

ea

r s

tre

ss

l,

lim

[M

Pa

]

Page 82: Flexural strengthening of reinforced concrete Swiss Code

82ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Shear stress limitations, other guidelines

3.7MPa2.90.71.8f1.8f ctkcb

fib Bulletin 14 (approach 3)

TR55

fib Bulletin 14 (approach 2) f (between cracks …)

please note: without safety factors!!

cbb f

lim,c ctk0.8f outside yield zone

lim,y ctk4.5f

fmax fy y

t f ctk

ed

Mt 7.8 1.1- f

x M

in the yield zonem= mean shear stress sc=additional shear stress

due to stress concentration

at flexural cracks

add f f

cs a

h-xV α A

I b

Page 83: Flexural strengthening of reinforced concrete Swiss Code

83ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Debonding failure modes

Page 84: Flexural strengthening of reinforced concrete Swiss Code

84ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Maximum strain in the strip according to SIA 166

Local debonding due to compatibility problems between strip and

concrete at flexural cracks

f,lim,d 8‰e

supplier of the material

f,R f f f,lim f f fuF A E A Ee e

fue

design value!

Page 85: Flexural strengthening of reinforced concrete Swiss Code

85ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Maximum strain in strip, other guidelines

8.5‰6.5lim,f efib Bulletin 14 (approach 1)

TR55

Italian Code

ACI

b ck ctm

fdd cr

f f

0.06k f fk

E te

With kcr = 3.0

scfmax fd

fd f

0.114E t

e e

please note: without safety factors!!

'

cfd

f f

f0.41

n E te

in SI units

(equation for DFM 2 and 3)

(equation for DFM 2 and 3)

sc=localised strain increase at flexural cracks

Page 86: Flexural strengthening of reinforced concrete Swiss Code

86ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Cross-section analysis

Cross-section analysis to determine the strains in the CFRP strips

so that the debonding failure modes 1, 2 and 3 according to

SIA 166 can be verified.

Bond factor according to SIA166: ks=0.7, kf=0.9

''e

ek

Equilibrium with e’’

Compatibility with e

Page 87: Flexural strengthening of reinforced concrete Swiss Code

87ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

es’

Equations for cross-section analysis

'' ''

c s' s fC=T F +F =F F

c f

c c

=x h-x

e eec

es

ef

h

xc

Equilibrium:

Compatibility:

→ one equation with unknowns ec and xc

'' '' s fs f s s f f

s f

T=F F = E A + E Ae e

k k

cF = next slides

d

c s

c c

=x d-x

e e

s' s' s s'F = E Ae

Tensile force:

Compression force:

ds’

c s'

c s' c

=x d -x

e e

Page 88: Flexural strengthening of reinforced concrete Swiss Code

88ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Cross-section analysis

Excel

Mathlab

Software programs e.g. FAGUS

Page 89: Flexural strengthening of reinforced concrete Swiss Code

89ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Summary of calculation procedure: first step

Cross-section analysis to determine the strain and forces along the

structure for an assumed maximum load

-3

-2

-1

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Str

ain

in

co

ncre

te a

nd

CF

RP

[‰

]

Length of beam / plate [m]

30kN/m

30kN/m

Page 90: Flexural strengthening of reinforced concrete Swiss Code

90ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Check debonding failure mode 1:

end strip failure

Determine the location of last crack and define anchorage zone

Compare the existing force in the strip at the last crack with anchorage

resistance which can be anchored in the anchorage zone

I: uncracked cross-section

II: cracked cross-section, internal steel in elastic state

III: cracked cross-section, internal steel in yielding state

Page 91: Flexural strengthening of reinforced concrete Swiss Code

91ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Calculation of shear stress between strip and concrete

(force change) and comparison with bond shear strength

ff

f

F

x b

Check debonding failure mode 2:

Debonding at strong strain increase in strip

-100

-80

-60

-40

-20

0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Ten

sile F

orc

e C

HA

NG

E in

on

e C

FR

P p

late

[N

/mm

']

30kN/m

Page 92: Flexural strengthening of reinforced concrete Swiss Code

92ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Check debonding failure mode 3:

at flexural cracks

Compare maximum existing strain with maximum admissible strain

0

1

2

3

4

5

6

7

8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Str

ain

in

co

ncre

te a

nd

CF

RP

[‰

]

30kN/m

Page 93: Flexural strengthening of reinforced concrete Swiss Code

93ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Calculation procedure for a four point beam

1. Calculation crackmoment Mcr and yieldmoment My with cross-section analysis (CSA)- Strip strain at last crack and at the point of steel yielding

2. Assumption of a failure load Pult (larger as Py), then:- with CSA calculation of the maximum strain in the strip

- calculation of the location of the last crack lcr and the location of My (ly und x)

- with this ef and f

3. The three SIA verifications and assumption of a new failure load Pult etc.

fe

M

P

crM

crl

yl

P

x

fyefcre

f,Loade

f ff

f

E A

x b

e

f f,Load fye e e

yM

M P

f

Page 94: Flexural strengthening of reinforced concrete Swiss Code

94ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Summary of the Equations from SIA

ctHFb

f NG

8 mm

f0 ctH

4f MPa

3

2/3

ctH ctm ckf f =0.3 f

b0,R f Fb f fF =b 2G E t

b b0

2 2

f0 bb,R f Fb f f

Fb f f

if l l :

lF b 2 G E t sin

2 G E t

use radiant in the calculator for sin()

; ;Fb f f f fb0 f0 ctH b02

f0 ctH

G E t E t4 3l 2 f l

2 3 16 f

𝜏𝑓,𝑙𝑖𝑚 = 2.5 ⋅ 𝜏𝑐 = 2.5 ⋅ 0.3 ⋅ 𝑓𝑐𝑘

Δ𝐹𝑓

Δ𝑥𝑅

= 𝜏𝑓,𝑙𝑖𝑚 ⋅ 𝑏𝑓

Page 95: Flexural strengthening of reinforced concrete Swiss Code

95ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Summary of the three SIA 166 verifications

1. End strip debonding failure at the last crack

2. Debonding at strong strain increase in strip

3. Debonding at flexural cracks

0

10

20

30

40

50

60

70

80

90

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Length of beam / plate [m]

Te

ns

ile

Fo

rce i

n o

ne C

FR

P P

late

[kN

]

30kN/m

12

3

𝐹𝑓𝑐𝑟 ≤ 𝐹𝑏,𝑅

Δ𝐹𝑓

Δ𝑥≤

Δ𝐹𝑓

Δ𝑥𝑅

= 𝜏𝑓,𝑙𝑖𝑚 ∙ 𝑏𝑓

𝜀𝑓 ≤ 𝜀𝑓,𝑙𝑖𝑚,𝑑 = 8‰

Page 96: Flexural strengthening of reinforced concrete Swiss Code

96ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Note: SIA166 is under revision, a new approach for

debonding mode verifications

Combination of debonding

failure modes 2 and 3

with one verification:

Page 97: Flexural strengthening of reinforced concrete Swiss Code

97ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Example

Page 98: Flexural strengthening of reinforced concrete Swiss Code

98ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Concrete C30/37

Cylinder compressive strength fck = 30 MPa

Tensile strength fctm=2.9 MPa

CFRP

Elastic modulus Ef= 170 GPa

Tensile strength ff = 3000 MPa

Reinforcing steel B500

fsk=500 MPa

Es =205 GPa

Page 99: Flexural strengthening of reinforced concrete Swiss Code

99ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Mcr = 11.8 kNm

εf,cr=1.49‰

Crack

Moment

Calculation with FAGUS from Company Cubus

Page 100: Flexural strengthening of reinforced concrete Swiss Code

100ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

My = 24.0 kNm

εf,y=3.14‰

Yielding

Moment

Page 101: Flexural strengthening of reinforced concrete Swiss Code

101ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Mmax = 42.9 kNm

εf,max=8.00‰

Maximum

Moment

Page 102: Flexural strengthening of reinforced concrete Swiss Code

102ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

1. Step: evaluation of the end anchorage force capacity with

the SIA equations (see slide 94)

ctHFb

f NG

8 mm

f0 ctH

4f MPa

3

b0,R f Fb f fF =b 2G E tTensile strength fctm=2.9 MPa

b b0

2 2

f0 bb,R f Fb f f

Fb f f

if l l :

lF b 2 G E t sin

2 G E t

use radiant in the calculator for sin()

; ;Fb f f f fb0 f0 ctH b02

f0 ctH

G E t E t4 3l 2 f l

2 3 16 f

Page 103: Flexural strengthening of reinforced concrete Swiss Code

103ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Mcr =11.8 kNm

εf,cr=1.49‰

My = 24.0 kNm

εf,y=3.14‰

Mmax =42.9 kNm

(with F=28.6kN)

εf,max=8.0‰

from QSA:

2. Step:

F=28.6kN

Page 104: Flexural strengthening of reinforced concrete Swiss Code

104ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Notes

Page 105: Flexural strengthening of reinforced concrete Swiss Code

105ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Notes

Page 106: Flexural strengthening of reinforced concrete Swiss Code

106ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Several additional topics according to

Swiss Code 166 “Externally bonded reinforcement”

Page 107: Flexural strengthening of reinforced concrete Swiss Code

107ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Design philosophy

Ultimate limit state (ULS)

Serviceability (SLS)

Stresses

Deflections

Accidential situation

Check of deformation capacity

Page 108: Flexural strengthening of reinforced concrete Swiss Code

108ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Ultimate limit state

dd RE

Design value of effects of action ≤ Design value of ultimate resistance

Page 109: Flexural strengthening of reinforced concrete Swiss Code

109ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Hazard Scenario (Gefährdungsbild)

ddki0ik1Q1kPkGd a,X,Q,Q,P,GEE ggg

Ed effects of actions (Auswirkungen)

E actions (Einwirkungen)

Gk permanent actions

Pk prestressing

Qk1 leading action (Leiteinwirkung)

Qki accompanying actions (Begleiteinwirkungen)

Xd material properties

ad geometry

→ see Swiss Code 166

Page 110: Flexural strengthening of reinforced concrete Swiss Code

110ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Accidential design situation:

Hazard Scenario → failure of EBR

Vandalism

High temperature

Impact

Chemical exposure

Fire

ddki2idkkd a,X,Q,A,P,GEE

Failure of strip: Ad=0 but reduced resistance of cross-section

Ad: accidential load

→ see Swiss Code 166

Page 111: Flexural strengthening of reinforced concrete Swiss Code

111ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Accidential design situation:

Hazard Scenario → failure of EBR

You have to prove, that the structure does not fail in the case of a

failure of the EBR!

→ remaining safety factor >1.0

Page 112: Flexural strengthening of reinforced concrete Swiss Code

112ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Determination of action effects M and V (Schnittkräfte)

Plastic rotation capacity is reduced!

→ Elastic determination of action effects if FRP are used, e.g. two span beam

Page 113: Flexural strengthening of reinforced concrete Swiss Code

113ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Ultimate resistance

g

d

M

kd a,

XRR ddlim,d a,RR e

Xk = characteristic value of material property

Depending on failure in strengthening material or

bond failure:

= conversion factor

gM = resistance factor

→ see Table 3 in SIA166

Page 114: Flexural strengthening of reinforced concrete Swiss Code

114ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Table 3 in SIA 166

Failure of EBR

Steel strip gM = 1.05 = 1.0

FRP strip gM = 1.30 = 0.8

FRP fabric gM = 1.30 = 0.8

Bond failure

in adhesive gM = 1.50 = 0.8

in concrete gM = 1.50 : see SIA 262

in timber gM, : see SIA 265

in masonry gM, : see SIA 266

Page 115: Flexural strengthening of reinforced concrete Swiss Code

115ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Characteristic values

FRP:

el

f

ffd

efud

Ef

1

→specifications from seller

company, ask also for fractile

values

→CFRP (carbon fibers) might

have an increase of elastic

modulus with loading

Page 116: Flexural strengthening of reinforced concrete Swiss Code

116ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

SLS and evenness

SIA 166: Serviceability (SLS)

Stresses in the internal reinforcement should not exceed 90% of yield strength.

Deflections should be checked

Evenness of concrete surface

for 2 m measurement length (Messlatte): max. 5 mm tolerance

for 0.3 m measurement length (Messlatte): max. 1 mm tolerance

Page 117: Flexural strengthening of reinforced concrete Swiss Code

117ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Deflections

If the strains at top and bottom side along the beam is calculated,

the curvature can be obtained.

By two times integrating, the deflection can be calculated. (consider

also boundary condition: j(L/2)=0)

top bottom

h

e e

0

dxL

22

m m

1w =L -

8 6

Simplified calculation for 4-point beam

(see e.g. Ulaga 2003): L

m = curvature between loads

L

0

dxL

w

Page 118: Flexural strengthening of reinforced concrete Swiss Code

118ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Glass transition temperature Tg

a) b)

Loading Specimen

Supports

Data aquisition

RSA III

Nitrogen supply

Testing chamber

Page 119: Flexural strengthening of reinforced concrete Swiss Code

119ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Glass transition temperature Tg

The Tg of the used epoxies defines the maximum allowable service temperature of the

structure.

fib Bulletin 90:

maximum allowable service temperature Tser ≤ Tg – (10°C to 20°C)

Tg should be larger as 40°C

Tg should be determined according to EN12614

Consider that age, temperature and moisture can influence Tg

SIA 166: the feasibility of the adhesive has to be demonstrated. Beside many other points,

the maximum service temperature has to be declared.

Page 120: Flexural strengthening of reinforced concrete Swiss Code

120ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Deformation capacity

SIA 166 and 262:

For mainly bending load: compression zone x/d ≤ 0.35 what limits reinforcement ratio

on the basis of similar limitation, minimal values of strain in EBR and reinforcement at

ultimate are given in fib Bulletin 14

Page 121: Flexural strengthening of reinforced concrete Swiss Code

121ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Assessment, some remarks

Consider existing stresses and deflections in the structure before strengthening

Internal reinforcement

Good assessment: geometry, strength

Minimum value (brittle behaviour)

Risk of premature concrete crushing if steel is neglected in calculations

Concrete property (tensile strength good enough?)

Static system

See also SIA166 chapter 2.1

Page 122: Flexural strengthening of reinforced concrete Swiss Code

122ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Longitudinal force from shear force

Generally, longitudinal force due to shear force shall be carried from

internal steel

If it yields, see SIA 166

and do not forget:

‘Normal’ design as usual

Concrete crushing

Bending resistance in the unstrengthened region

Shear resistance of cross-section

etc.

Page 123: Flexural strengthening of reinforced concrete Swiss Code

123ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Recommendations for durability

For a good long-term behavior of EBR:

No direct UV radiation (also not indirect from snow or water)

No water wetting (exposition classes X0, XC1(dry) and XC3)

For other exposition classes: special measures such as coatings

Moderate sustained loading (prestressing, load)

Service temperatures ≤ ca. 20° lower as Tg

→ new durability concept in the new SIA166, which is currently under revision.

Page 124: Flexural strengthening of reinforced concrete Swiss Code

124ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Literature: Codes/Guidelines

fib (2001) Externally bonded FRP reinforcement for RC structures - Bulletin 14. International Federation for Structural

Concrete (fib), Switzerland.

fib (2019) Externally applied FRP reinforcement for concrete structures - Bulletin 90. International Federation for

Structural Concrete (fib), Switzerland.

SIA166 (2004) Klebebewehrungen (Externally bonded reinforcement). Schweizerischer Ingenieur- und

Architektenverein SIA.

SIA (2004) D 0209, Dokumentation, Klebebewehrung, Einführung in die Norm SIA 166.

CNR (2004) Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing

Structures, CNR-DT 200/2004. CNR - Advisory Committee on Technical Recommendations for Construction, Rome,

Italy.

ACI (2008) ACI440.2R-08, Guide for the design and construction of externally bonded FRP systems for strengthening

concrete structures. American Concrete Institute.

TR55 (2012) Design guidance for strengthening concrete structures using fibre composite materials, Third Edition.

Technical Report No. 55 of the Concrete Society, UK.

Page 125: Flexural strengthening of reinforced concrete Swiss Code

125ETH Lecture «Fibre Composite Materials in Structural Engineering», C. Czaderski, 3. November 2021

Literature

PhD Theses (can freely be downloaded from www.research-collection.ethz.ch )

Ulaga T (2003) Dissertation ETH Nr. 15062, Betonbauteile mit Stab- und Lamellenbewehrung: Verbund- und

Zuggliedmodellierung, http://dx.doi.org/10.3929/ethz-a-004525392

Czaderski C (2012) Dissertation ETH No. 20504, Strengthening of reinforced concrete members by prestressed,

externally bonded reinforcement with gradient anchorage, http://dx.doi.org/10.3929/ethz-a-007569614

Book chapters

Motavalli, M., C. Czaderski, A. Schumacher, and D. Gsell, Fibre reinforced polymer composite materials for building

and construction, in Textiles, polymers and composites for buildings, G. Pohl, Editor. 2010, Woodhead Publishing

Limited: Cambridge UK. p. 69-128.

Czaderski C., Flexural and Shear Strengthening of Reinforced Concrete Structures, in The International Handbook of

FRP Composites in Civil Engineering, CRC Press, 2013.

p. 235-252