44
1 Complexation and Reduction/Oxidation Reactions of Selected Flavonoids with Iron and Iron Complexes: Implications on In-Vitro Antioxidant Activity O O OH OH O H OH OH Quercetin

Flavonoid Structure

Embed Size (px)

Citation preview

Page 1: Flavonoid Structure

1

Complexation and Reduction/Oxidation Reactions of Selected Flavonoids with Iron and Iron Complexes: Implications

on In-Vitro Antioxidant Activity

O

O

OH

OH

OH

OH

OH

Quercetin

Page 2: Flavonoid Structure

2

A quote by Dr. Barry Halliwell from the American Journal of Medicine1:

“It is difficult these days to open a medical journal and not find some paper on the role of ‘reactive oxygen species’ or‘free radicals’ in human disease.”

“These species have been implicated in over 50 diseases.This large number suggests that radicals are not somethingesoteric, but that they participate as a fundamental componentof tissue injury in most, if not all, human disease.”

1. Halliwell, B. American Journal of Medicine. 1991, 91(3), 14.2. Burda S. and Wieslaw O. J. Agric. Food Chem. 2001, 49, 2774-2779.

Despite a vast volume of research on flavonoids as antioxidants, the mechanism of their action is incomplete2.

Page 3: Flavonoid Structure

3

Reactive Oxygen Species (ROS)• ROS are a minor product

of the oxidative respiratory chain (~1-2%), mostly in the form of superoxide.

• Excess production of ROS may result from iron overload and inflammation or immune responses.

O2

2O2-

O2.-

O22-

[O2- + O.-]

e-

e-

e-

e-

HO2.H+

H+

3H+

2H+

HO2-

H2O + HO.

2OH-

H2O2

2H2O

H+

H+

dioxygen

oxide

peroxide

superoxide anion

hydroxide water

water hydroxyl

hydrogen peroxidehydroperoxide

radical

3. Kaim w. and Schwederski B. “Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life.” J. Wiley and Sons, 1994, New York.

Page 4: Flavonoid Structure

4

ROS Induced Damage

• Lipid peroxidation• DNA scission/cross-

linking• Protein disruption and

disintegration– Above damage has been

correlated to Alzheimer’s and Parkinson’s disease, cancer, arthritis, diabetes, Lupus and many other age related degenerative diseases4.

R

R

.OH

H

H2O +

R

R

.

R

R

O2

.R

R

OO.

R

R

OO.

R

R

+

R

R

OOH

+

R

R

. R

R.+R

R

R

R

1. Initiation

2. Propagation

3. Termination

Lipid crosslinkage

Hydrogen Abstraction

4. Pieta P. J. Nat. Prod. 2000, 63, 1035-1042.

Page 5: Flavonoid Structure

5

Natural ROS Defenses

2O2.- + 2H+ H2O2 + O2

SOD

2H2O2 2H2O + O2

catalase

2GSH + R-OOH

glutathioneperoxidase

GSSG + R-OH + H2O

Page 6: Flavonoid Structure

6

Hydroxyl Radical and The Fenton Reaction

• H2O2 + e- HO• + HO- E°’ = 0.30 V, S.H.E., pH 7.0

• Fe(II) Fe(III) + e- E°’ = depends on complex

• Fe(II) + H2O2 Fe(III) + HO• + HO-

– The impact of Ferrous salts on H2O2 reduction was discovered over 100 years ago.5

– The Fenton reaction in form above, including the hydroxyl radical, was suggested over 75 years ago.6

5. H.J.H. Fenton. J. Chem. Soc. 1894, 65, 889.6. F. Haber and J.J. Weiss. Proc. Roy. Soc. London, Ser. A. 1934, 147, 332.

Page 7: Flavonoid Structure

7

Peroxy-FeEDTA and the Fenton Reaction

[FeIIIEDTA-O2H]2- + e- [FeIIEDTA-O2H]3-

[FeIIEDTA-O2H]3- + H+ [FeIIIEDTA]- + HO. + HO-

Page 8: Flavonoid Structure

8

Antioxidant Activity

– Enhance or mimic antioxidant enzymes.– Direct scavenging of ROS.– Repair damaged cellular components.– Pro-oxidant metal deactivation.

* The activity of a potential antioxidant is limited by the thermodynamic constants for its reactions involving complexation and reduction/oxidation.

Page 9: Flavonoid Structure

9

Fenton Metal Deactivation

FeIIATP+ H2O2 FeIIIATP + HO. + HO

-

ATP

FeIIL + H2O2

(antioxidant)+L

+L

(pro-oxidant ligand

[FeII(ATP)L] + H2O2

displacement) No Reaction

No Reaction

7. F. Cheng and K. Breen. Biometals. 2000, 13, 77-83.

Quercetin deactivates the Fe-ATP complex7, although the precise mechanism is still unclear. The use of a strong chelate, like EDTA, should provide additional insight.

Page 10: Flavonoid Structure

10

Flavonoid Structure

O

A

B

C

1

2

3

45

6

7

8 1'

2'

3'

4'

5'

6'

O

OH

A

B

C

1

2

5

6

7

8 1'

2'

3'

4'

5'

6'

O

O

A

B

C

1

2

3

5

6

7

8 1'

2'

3'

4'

5'

6'

O

O

A

B

C

1

2

5

6

7

8 1'

2'

3'4'

5'

6'

O

O

OH

A

B

C

1

2

5

6

7

8 1'

2'

3'

4'

5'

6'

4

3

Base Structure

Flavanonol

Flavone

Flavanone

Flavonol

A

B

C

1

2

5

6

7

8

1'

2'

3'

4'

5'

6'

O

O

Isoflavone

O

O

OH

OH

OH

OH

OH

O

O

OH

OH

OH

OH

OH

O

O

OH

OH

OH

OH

O

O

OH

OH

OH

OH

OH

OH

Quercetin Taxifolin

Kaempferol Myricetin

O

O

OH

OH

OH

O

O

OH

OH

O

O

OH

OH

OH

OH

OH

O

O

OH

OH

OH

Baicalein Chrysin

Morin Galangin

Page 11: Flavonoid Structure

11

Flavonoid Facts• Flavonoids are found in higher vascular plants, particularly

in the flower, leaves and bark. They are especially abundant in fruits, grains and nuts, particularly in the skins.

• Beverages consisting of plant extracts (beer, tea, wine, fruit juice) are the principle source of dietary flavonoid intake. A glass of red wine has ~200 mg of flavonoids.

• Typical flavonoid intake ranges from 50 to 800 mg/day, which is roughly 5, 50 and 100 times that of Vitamins C, and E, and carotenoids respectively.

4. P. Pieta.

Page 12: Flavonoid Structure

12

Experimental Design• Observe Metal-Flavonoid binding interactions via shifts in the

visible spectrum of the flavonoid when in the presence of the metal.• Investigate the electrochemical behavior of the FeEDTA, and

peroxy-FeEDTA complexes for the purpose of assaying flavonoid antioxidant activity and elucidating flavonoid antioxidant mechanisms.

• Measure the proton, metal and mixed-ligand binding constants for the flavonoids using potentiometry.

• Correlate constants and observations to published antioxidant efficiency data for structure activity relationships and mechanism elucidation.

Page 13: Flavonoid Structure

13

UV-visible Spectrophotometry• HP 8453 UV-vis diode

array. 25 M Metal, 25-75 M flavonoid, unbuffered and at pH 7.4 with 10 mM HEPES, 60/40 vol% water/dioxane.

• Flavonoid-metal interaction is easily observed via shifts in the visible spectrum.

Wavelength (nm)200 250 300 350 400 450 500 550

Abs

orba

nce

(AU)

0

0.5

1

1.5

2

2.5

3

3.5

Wavelength (nm)200 250 300 350 400 450

Abs

orba

nce

(AU)

0

0.5

1

1.5

2

2.5

FeII, Quercetin

Ca, Naringenin

1:3 (M:L)

1:10:1

1:3

1:1 (dashed), 0:1 (solid)

Page 14: Flavonoid Structure

14

FeII FeIII CuII CaII ZnII

Quercetin + + + - + 7.4

Galangin + + + - + 7.4

Fisetin + + + - + 7.4

Chrysin - - - - -

Naringenin - - - - -

Iron is the most abundant physiological transition metal; copper is second. Ca is the fifth most abundant element (by mass, behind O, C, H, and N) in the human body at ~ 1 kilogram present. Both Ca and Zn are commonly implicated in pro- and anti- oxidant processes.

Page 15: Flavonoid Structure

15

O

O

OH

OH

OH

OH

OH

QuercetinO

O

OH

OH

OH

Naringenin

O

O

OH

OHChrysin

O

O

OH

OH

OHOH

Fisetin

O

O

OH

OH

OH Galangin

Chelators Non-chelators Structure Activity Relationship suggests that the 4-keto, 3-hydroxy moiety is important for chelation.

This is in agreement with numerous other studies indicating the importance of the 3-hydroxy group.8

Catechol moiety cannot be discounted without testing a flavonoid that lacks the 3-hydroxy group.

8. A. Arora et. al. Free Radical Biology and Medicine. 1998, 24(9)1355-1363.

Page 16: Flavonoid Structure

16

Voltammetry

FeIIIEDTA

-1

-0.5

0

0.5

1

-0.6-0.300.30.6

potential (V)

curr

ent (

A)

FeIIIEDTA + e- FeIIEDTA

FeIIIEDTA + e- FeIIEDTA

Conditions:-0.20 mM Fe(NO3)3

-0.10 M NaNO3

-20 mM HEPES pH 7.4-25 mV/s, carbon disk-Ag/AgCl reference-Pt wire counter electrode

Gamry PC4 Potentiostatwith CMS100 frameworkand CMS130 voltammetrysoftware

Fe

N

O

N

OO

O

O

O

O

O

Page 17: Flavonoid Structure

17

Why EDTA?

• Its involvement in the Fenton reaction is well studied, and its binding constants, including very hard-to-find peroxy-mixed-ligand species, are readily available.

• Although not physiologically present, it is a commonly used model for an amine and carboxylate containing metal chelate.

• And it’s cheap too!

Page 18: Flavonoid Structure

18

Fe(III)EDTA

0 4 8 12pH

0

20

40

60

80

100%

form

ation

relat

ive to

Fe

FeHEDTA

FeEDTA HO-FeEDTA

(HO)2-FeEDTA

Hyperquad Speciation and Simulation software (HySS) by Peter Gans Formation Constants obtained from Robert M. Smith and Arthur E. Martell

-0.1 mM FeII/III

-0.1 mM EDTAFe(II)EDTA

0 4 8 12pH

0

20

40

60

80

100

% fo

rmat

ion re

lative

to F

e

Fe

FeHEDTA

FeEDTA

HO-FeEDTA

(HO)2-FeEDTA

Page 19: Flavonoid Structure

19

0.20 mM Fe(III)EDTA (1:1) unbuffered

-2

0

2

4

6

8

10

-1.2-0.7-0.20.3

potential (V)

curr

ent (

A)

pH = 4.1pH = 6.1pH = 7.2pH = 7.7pH = 8.2pH = 9.1pH = 9.6pH = 10.1

Page 20: Flavonoid Structure

20

Nernst Equation

E = E0 - 0.059 x log[FeIIEDTA][OH-]

[FeIIIEDTA-OH]

E = 0.059(log[OH-]) + E0 - log [FeIIEDTA]

[FeIIIEDTA-OH]

Page 21: Flavonoid Structure

21

FeEDTA E1/2 pH Dependence

y = -0.0849x + 0.5574R2 = 0.986-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 5 10 15

pH

E 1/2

(V v

s Ag

/AgC

l)

FeEDTA

FeEDTA-OH/FeEDTA-(OH)2

Linear (FeEDTA-OH/FeEDTA-(OH)2)

Page 22: Flavonoid Structure

22

-1

0

1

2

3

4

5

6

-0.5-0.3-0.10.10.30.5

voltage (V)

curr

ent (

A, r

elat

ive)

H2O2 + e- HO. + HO-

FeIIIEDTA + e- FeIIEDTA

FeIIIEDTA + HO. + HO-FeIIEDTA + H2O2

Conditions:-0.20 mM FeEDTA-0.10 M NaNO3

-20 mM HEPES, 7.4-9.5 mM H2O2

-25 mV/s, C disk-Ag/AgCl reference-Pt wire counter electrode

The electrocatalytic current (EC’) is highly dependant on pH, [H2O2] and [EDTA].

Page 23: Flavonoid Structure

23

-20

0

20

40

60

80

100

120

140

-1.2-0.8-0.400.40.8

potential (V)

curr

ent (

A)

1:1:540

1:1:140

1:1:40

1:1:10

Conditions:-0.10 mM Fe(NO3)3

-0.10 mM EDTA-1.0-54 mM H2O2

-0.10 M NaNO3

-20 mM HEPES pH 7.4-25 mV/s, carbon disk-Ag/AgCl reference-Pt counter electrode

-ratios are labeled according to Fe:EDTA:H2O2

EC' Current Dependence on relative [H2O2]

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600

[H2O2] excess, relative to FeEDTA

curr

ent (

A)

1:1:10

Page 24: Flavonoid Structure

24

4 6 8 10pH

0

20

40

60

80

100

% fo

rmat

ion re

lative

to F

e

HOO-FeEDTA

FeEDTA

HO-FeEDTA

pH 7.4

Conditions:-0.10 mM FeEDTA (1:1)-4.0 mM H2O2 (top), 14 mM H2O2 (bottom).

4 6 8 10pH

0

20

40

60

80

100

% fo

rmat

ion re

lative

to F

e HOO-FeEDTAFeEDTA

HO-FeEDTA

pH 7.4

FeIIIEDTA, H2O2 Speciation

Page 25: Flavonoid Structure

25

-5

0

5

10

15

20

-1.2-0.8-0.400.40.8

potential (V)

curr

ent (

A)

1:10:540

1:10:140

1:10:40

1:10:10

Conditions:-0.10 mM Fe(NO3)3

-1.0 mM Na2EDTA-0.10 M NaNO3

-1.0-54 mM H2O2

-20 mM HEPES pH 7.4-25 mV/s, carbon disk-Ag/AgCl reference-Pt counter electrode

-ratios are labeled according to Fe:EDTA:H2O2

EC' Current Dependence on relative [H2O2]

02468

1012141618

0 100 200 300 400 500 600

[H2O2] excess, relative to 1:10 FeEDTA

curr

ent (

A)

Page 26: Flavonoid Structure

26

-2

-1

0

1

2

3

4

5

6

7

8

-1.2-0.8-0.400.40.8

potential (V)

curr

ent (

A)

1:1:40

1:10:40

1:1:10

1:10:10

Conditions:-0.10 mM Fe(NO3)3

-0.10/1.0 mM EDTA-1.0/4.0 mM H2O2

-0.10 M NaNO3

-20 mM HEPES pH 7.4-25 mV/s, carbon disk-Ag/AgCl reference-Pt counter electrode

-ratios are labeled according to Fe:EDTA:H2O2

Another way of looking at the data is that at relatively low excesses of H2O2, the EC’ current is nearly independent of the Fe:EDTA ratio.

Page 27: Flavonoid Structure

27

-20

0

20

40

60

80

100

120

140

-1.2-0.8-0.400.40.8

potential (V)

curr

ent (

A)

1:1:540

1:1:140

1:10:140

1:10:540

Conditions:-0.10 mM Fe(NO3)3

-0.10/1.0 mM EDTA-1.0-54 mM H2O2

-0.10 M NaNO3

-20 mM HEPES pH 7.4-25 mV/s, carbon disk-Ag/AgCl reference-Pt counter electrode

-ratios are labeled according to Fe:EDTA:H2O2

At a relatively high excess of H2O2, the EC’ current exhibits a drastic dependence on the Fe:EDTA ratio. In contrast to the EC’ dependence on [H2O2], the effects of the Fe:EDTA ratio on the EC’ current could not be explained by speciation calculations. Kinetic factors may be important.

Page 28: Flavonoid Structure

28

FeEDTA, Quercetin Composite

-1

0

1

2

3

4

5

6

-0.8-0.400.40.8

potential (V, absolute)

curr

ent (

A,

rel

ativ

e)

0.20 mMFe(III)EDTA (1:1)

0.20 mM quercetin

sum composite0.20 mMFe(III)EDTA-quercetin (1:1:1)

experimental 0.20mM Fe(III)EDTA-quercetin (1:1:1)

Page 29: Flavonoid Structure

29

FeIIIEDTA/Q H2O2 Catalytic

-5

0

5

10

15

20

25

30

-0.8-0.400.40.8

potential (V)

curr

ent (

A)

"blank"-9.5 mM H2O2, 95mM NaNO3, 20 mMHEPES pH 7.2

blank + 0.19 mMFe(III)EDTA (1:1)

blank + 0.19 mMFe(III)EDTA-quercetin(1:1:1)

Page 30: Flavonoid Structure

30

Quercetin shifts the formal reduction potential, but what about the speciation of the peroxy-FeEDTA complex?

Page 31: Flavonoid Structure

31

Formation Constant Refinement• Collect the experimental titration curve.• Simulate a titration curve using the same experimental

concentrations and estimated formation constants.• Use non-linear least squares regression analysis to

minimize the difference between the experimental data (pHexp) and the simulated curve (pHcalc).

• When the curves match, the formation constants have been determined.

• The curve fitting process provides a statistical evaluation of the data through sigma and Chi-square values.

Page 32: Flavonoid Structure

32

Potentiometric Titrations

• Denver Instruments Titrator 280 auto titrator

• Fisher Isotemp 1016D water bath

• Accumet Model 20 pH Meter• Denver Instruments semi-

micro glass pH Ag/AgCl reference combination electrode.

• 0.50-2.0 mM Flavonoid• 0.10 M NaNO3 ionic

strength• 0.05 M NaNO3 titrant

(standardized daily)• CO2 scrubbed water, N2

purged headspace• 60/40 vol% H2O/dioxane

•An ion selective electrode is used to monitor the concentration of a species as a titrate involved in competitive binding with another species which is added as a titrant.

Page 33: Flavonoid Structure

33

residuals in pH for selected data. Unweighted rms=2.86e-02

0 10 20 30 40 50 60 70point number

-0.2-0.10.00.10.2

Speciation and pH: data from c:\my documents\research\data\flavonoid ka's\fisetin 121101.ppd

0

10

20

30

40

50

60

70

80

90

100%

form

atio

n re

lativ

e to

H

pH

6

7

8

9

10

11

O

OH

OH

OH

OH

Fisetin

pka

11.906

11.773

9.965

8.405

sigma 1.54

chi2 11.9

Page 34: Flavonoid Structure

34

residuals in pH for selected data. Unweighted rms=3.19e-02

0 20 40 60 80 100 120point number

-0.10.00.1

Speciation and pH: data from C:\My Documents\chrysin 092402.ppd

0

10

20

30

40

50

60

70

80

90

100

% fo

rmat

ion

rela

tive

to C

hry

pH

4

5

6

7

8

9

10

O

OH

OHChrysin

pka

11.406

7.983

sigma 1.62

chi2 73

Page 35: Flavonoid Structure

35

residuals in pH for selected data. Unweighted rms=6.32e-03

0 10 20 30 40 50 60 70point number

-0.02

0.0

0.02

Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\galangin 121301.ppd

0

10

20

30

40

50

60

70

80

90

100%

form

atio

n re

lativ

e to

H

pH

6

7

8

9

10

11

O

OH

OH

OH

Galangin

pka

11.694

10.684

8.232

sigma 0.53

chi2 10.7

Page 36: Flavonoid Structure

36

residuals in pH for selected data. Unweighted rms=4.01e-02

0 10 20 30 40 50 60 70point number

-0.2-0.10.00.10.2

Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\kaempferol 121201.ppd

0

10

20

30

40

50

60

70

80

90

100

% fo

rmat

ion

rela

tive

to H

pH

6

7

8

9

10

11O

O

OH

OH

OH Naringenin

sigma 1.61

chi2 7.74

pka

11.324

10.034

8.238

Page 37: Flavonoid Structure

37

residuals in pH for selected data. Unweighted rms=3.79e-02

0 20 40 60 80 100 120 140point number

-0.1

0.0

0.1

Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\morin 121401.ppd

0

10

20

30

40

50

60

70

80

90

100

% fo

rmat

ion

rela

tive

to M

or

pH

5

6

7

8

9

10

11

O

OH

OH

OH

OH

OH

Morin

sigma 3.7chi2 21.8

pka

11.642

11.851

10.555

8.860

5.702

Page 38: Flavonoid Structure

38

residuals in pH for selected data. Unweighted rms=9.67e-02

0 10 20 30 40 50 60 70 80 90point number

-0.5

0.0

0.5

Speciation and pH: data from c:\my documents\mark's\research\data\flavonoid ka's\quercetin 022602b.ppd

0

10

20

30

40

50

60

70

80

90

100

% fo

rmat

ion

rela

tive

to H

pH

4

5

6

7

8

9

10

O

OH

OH

OH

OH

OH

Quercetin

sigma 2.5chi2 4.9

pka

11.948

12.378

11.211

9.667

8.331

Page 39: Flavonoid Structure

39

quercetin morin naringin galangin chrysin Fisetin

pk1 8.331 5.702 8.238 8.232 7.983 8.405

pk2 9.667 8.860 10.034 10.684 11.406 9.965

pk3 11.211 10.555 11.324 11.694 11.773

pk4 11.948 11.642 11.906

pk5 12.378 11.851

Page 40: Flavonoid Structure

40

Flavonoid Potentiometric Titration Curve

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

0.00 0.20 0.40 0.60 0.80 1.00

NaOH added (ml 0.0501 M)

pH

Q only

Q:Zn(II) 3:1

Q:Zn(II) 1:1

Q:Fe(II) 3:1

Q:Ca(II) 1:1

Page 41: Flavonoid Structure

41

Work in Progress

• Complete spectroscopic studies in order reveal SAR.

• Extend the EC’ assay to other flavonoids.• Obtain FeEDTA-flavonoid mixed ligand

binding constants.

Page 42: Flavonoid Structure

42

4 6 8 10pH

0

20

40

60

80

100%

form

ation

relat

ive to

Fe

4 6 8 10pH

0

20

40

60

80

100

% fo

rmat

ion re

lative

to F

e

FeEDTA

HO2-FeEDTA

Q-FeEDTA

HO-FeEDTA

Q-FeEDTA

HO2-FeEDTA

HO-FeEDTA

FeEDTA

pH 7.4

pH 7.4

[FeEDTA][H2Q][FeEDTA-H2Q]

k = =1010

[FeEDTA][H2Q][FeEDTA-H2Q]

k = =1013

Assuming 0.1 mMFeIIIEDTA, 14 mM H2O2, and 0.1 mM quercetin

Q = quercetinFe = ferric FeIII

Page 43: Flavonoid Structure

43

Summary

• The mechanism of Flavonoid antioxidant activity by metal chelation is most likely two-fold:– Flavonoids that posses large enough affinity constants

for the mixed FeEDTA-flavonoid complex formation disfavor the speciation of the highly reactive FeEDTA-peroxy complex.

– The newly formed FeEDTA-flavonoid complex shifts the metal based electrochemistry beyond the range for Fenton redox cycling.

Page 44: Flavonoid Structure

44

Acknowledgements:

Cheng GroupTom BrandtJessica PoindexterTerry HyattRob BobierKevin BreenRyan HutchesonChemistry department

National Institute of Health

Coworkers:

Financial:

Renfrew scholarship

...and for moral support:The Engelmanns