Flac3D y Autolisp

Embed Size (px)

DESCRIPTION

Flac 3D Autlisp using.

Citation preview

  • 26 8 Vol.26 No.8 2007 8 Chinese Journal of Rock Mechanics and Engineering Aug.2007

    2006112120070126 (50539110)(973)(2002CB412707) (1981)2003 [email protected]

    1 1 1 2

    (1. 2100982. 310014)

    AutoCAD AutoLisp AutoCAD ITASCA (FLAC3D 3DEC) 3DEC 3DEC FISH AutoCAD AutoLISP 3DEC P 642 A 10006915(2007)08163312

    3D GEOLOGICAL VISUALIZATION AND NUMERICAL MODELING OF COMPLICATED SLOPE

    ZHENG Wentang1XU Weiya1TONG Fuguo1SHI Anchi2

    (1. Institute of Geotechnical EngineeringHohai UniversityNanjingJiangsu 210098China2. East China Investigation and Design InstituteChina Hydropower Engineering Consulting Group Co.HangzhouZhejiang 310014China)

    AbstractThe construction of the 3D visualization model and the numerical model of rock slope is critical in geotechnicalhydroelectric and hydropower projects. The 3D visualization model not only illustrates the spatial combination of structural plane in slopebut also discloses the macroscopic failure mode of slope. The combination and transition between the visualization model and the numerical model can indicate the simulation and dynamic modification of geological information. Based on AutoCAD platformAutoLisp program and interpolation method of MLSM are used to generate the 3D visualization model. Moreoverthe interface to the numerical model is discussed. This technique well combines the excellent graphic manipulation of AutoCAD and the general numerical softwares FLAC3D and 3DEC of ITASCA Ltd.. Besidesthe model can adapt the technique to change the geological information. Combined with the discrete element method for deformable bodiesthe technique has been well applied to the water intake high slope in Baihetan Hydropower Station. FISH program in 3DEC and AutoLISP program in AutoCAD are combined to improve the functions of preprocessing and post processing of 3DEC. The anchorage method in 3DECvisualization of contour chart and nephogram of 3D displacement and plastic zone are discussed. Key wordsslope engineeringmoving least squares method(MLSM)3D visualization modeldiscrete element method(DEM)numerical modelplastic zone

  • 1634 2007 1

    GoCADLYNXEarthVisionCtechMicromineMineMapVulcan3D Earth ModelingGemCom3DGMSFEFLOW 20 90 [19][10]( GMS )[1112] NURBS [1314] GIS MAPGIS-TDE

    KrigingDelaunay Polymesh Shepard Multiquadric [15] Kriging [16] [17] Delaunay [18] Shepard [19] Multiquadric Golden Surfer 12 (ESRI)GISArcGIS 5

    (moving least squares methodMLSM)

    MLSM 1981 P. Lancaster K. Salkauskas[20] MLSM MLSM [21] MLSM [22] MLSM

    AutoCAD (AutoLisp)[23]AutoCAD MLSMAutoCAD Itasca FLAC3D[24] 3DEC [25] 3DEC FISH 2 2.1

    AutoCAD DWG

    AutoCAD AutoLisp AutoLisp AutoCAD LISP LISP AutoLisp LISP AutoCAD AutoLisp DWG DXF

    AutoCAD DWG Polyline AutoLisp MLSM

    MLSM

  • 26 8 . 1635

    MLSM )(X ( T}{ yx=X ) )(~ X n

    )21()( niii ^^^== X (1) )()()()()(~ T

    1

    XaXpXXX ===

    j

    m

    jj ap (2)

    )(Xp m )(Xa m )(Xp

    =

    ==

    =

    )3(}

    1{

    )3(}1{

    )3(}1{

    )(

    T32

    2322

    T22

    T

    myxy

    yxxyxyxyx

    myxyxyx

    myx

    Xp

    (3) )(Xa

    A )()()( 1 XBXXa = (4)

    )()()()( T1

    i

    n

    iiiA XpXpXX

    == (5)

    ^^^)()()()({)( 2211 XpXXpXXB = )}()( nn XpX (6)

    T21 } { nuuu L= (7)

    )(Xi i T}{ yx=X

    (4)(2) A )()()()(~ 1T XBXXpX = (8)

    )(~ X )(Xn j

    m

    jjn

    ==

    1

    )()(~ XX (9)

    (8)(9)

    =

    =m

    jij

    ji Apn1

    1 )]()()[()( XBXXX (10)

    )(Xi

    (1) (2)

    0

    (3)

    +=

    )( 0

    ) ( 1)(

    min

    min2min

    2

    2min

    22

    2min

    rr

    rrrr

    rrr

    r

    i

    i

    k

    i

    iii

    (11)

    ir iX X iir XX = minr i k

    )( ii r i i 0= MLSM

    ii =)(~ X (12a)

    )21()( njin ijji ^^^== X (12b)

    MLSM 3 )(Xp )(1 XA

    )(XB )(Xp )(1 XA X

    )(XB X X )(1 XA )(XB

    k )(1 XA )(Xp )(XB

    AutoCAD 3DFACE

    (1)

    (2)

    (3) 2.2

    3DFACE

  • 1636 2007

    AutoCAD FLAC3D 3DEC 2.3

    AutoCAD3DFACEREGIONSOLID3DFACE3DEC

    AutoLisp3DEC 3

    2 () 1 700900 m 2 2 9 (C3C11)3 (F4F15F16) 2 (f238f239) 3.1 CAD

    MLSM

    1 Fig.1 Sketch of water intake rock slope

    2 AutoCAD

    Fig.2 AutoCAD diagrammatic sketch of water intake rock slope with incomplete contour lines and 3D visualization excavated model with interpolation and fitting

    AutoCAD 3DFACE 3DFACE AutoCAD 2

    AutoCAD AutoCAD 3 4

    5 PD711 +80 m F15 PD714 +113 m F16 PD715+46 m F16

    C5

    C8C9C10C11

    F16

    C4

    C7

    C6

    x

    y

    zx

    y

    z

  • 26 8 . 1637

    3 AutoCAD Fig.3 AutoCAD view of excavation and application of bolts

    4 AutoCAD Fig.4 AutoCAD visualization diagrams of diversion tunnel

    adit and underground powerhouse

    5 Fig.5 Attitudes of structural planes controlled by

    outcrops from adits

    F16F15F4f238f239 C3C11 6 F16F15 F4 PD712 PD713 PD712 f238f239

    6 AutoCAD Fig.6 Sketch of AutoCAD visualization of interformational

    disturbed belts and faults

    3.2 FLAC3D

    ( FLAC3D) 3DFACE AutoCAD 7 FLAC3D 3DFACE

    7 AutoCAD

    Fig.7 Mesh of typical sections of AutoCAD visualization model

    [2627] FLAC3D FLAC3D (call) AutoCAD FLAC3D( FLAC3D) FLAC3D

    FLAC3D brick()wedge()pyramid()

    x

    y

    z

    x

    y

    z

    x

    y

    z

    PD711 PD714

    f238

    PD715

    PD713

    PD712

    F4(N45ENW85)F16(N5580WNE(SW)8090)PD716

    F15(N50WSW8090)

    x

    y

    z

    x

    y

    z

  • 1638 2007

    tetrahedral() 8 4 1 FLAC3D impgrid

    8 FLAC3D

    Fig.8 Sketch of typical elements from FLAC3D numerical model

    1 FLAC3D Table 1 Data structure in FLAC3D model

    * GRIDPOINTS

    1 G 1 0.000 0 0.000 0 0.000 0

    2 G 2 5.000 0 0.000 0 0.000 0

    M M

    1

    32 G 23 32.500 0 2.500 0 7.000 0

    * ZONES

    brick Z 1 1 2 4 5 3 8 6 7

    wedge Z 2 9 11 12 10 14 13

    pyramid Z 3 15 16 18 19 17

    2

    tetrahedral Z 4 20 21 22 23

    * GROUPS

    1 ZGROUP 1

    1

    M M

    4 ZGROUP 4

    3

    4

    1 4

    4 23 1 xyz 2

    B8 brick W6 wedge P5 pyramid T4 tetrahedral FLAC3D 1 8 3

    1 ( 7)FLAC3D 9

    (a)

    (b)

    9 FLAC3DFig.9 Sketch of 2D and 3D excavated FLAC3D numerical

    models

    3.3 3DEC [28] VII

    3DEC AutoCAD AutoLisp

  • 26 8 . 1639

    3DEC (poly)(jset)(tunnel)

    brick 2 6 brick AutoCAD 3DFACE (dd)(dip)(origin) persistence TUNNEL

    2 3DEC

    Table 2 Fundamental grammatical structures of modeling program in 3DEC

    POLY & face (x1y1z1) (x2y2z2) (x3y3z3) & face (x1y1z1) (x2y2z2) (x3y3z3) &

    face (x1y1z1) (x2y2z2) (x3y3z3)

    JSET id n dd a dip b persistence p & Origin (x1y1z1) (x2y2z2) (x3y3z3)

    TUNNEL & a (x1y1z1) (x2y2z2) (x3y3z3) & b (x1y1z1) (x2y2z2) (x3y3z3)

    3DEC 3 3DFACE 2 brick 3DEC 10 4 4.1

    DDA[29](distinct element method) 20 70 P. A. Cundall[30][31]1980 P. A. Cundall

    10 3DEC brick

    Fig.10 Sketch of generated jointexcavated model of brick block and complicated rock slope in 3DEC

    [32] Itasca P. A. Cundall UDEC 3DEC PFC [33] 1986 [3437] TRUDEC[38]

    ()

    [3941] Itasca 2003 3DEC (3.0 )()

  • 1640 2007

    4.2 3DEC

    AutoCAD 3DEC (3.0 ) 11

    11 Fig.11 Sketch of 3D discrete element numerical model of

    water-intake high rock slope

    AutoCAD 3DEC (region) 3DEC (material) 3DEC T1f C3C11 3 3DEC 12 3 4.3 3DEC

    AutoCAD (AutoLISP ) AutoCAD 3DEC 3DEC 13

    12 Fig.12 Excavated surfaces and structural planes of 3D discrete

    element numerical model

    3 Table 3 Classification and proposal parameters of structural

    planes of slope

    /

    ff cc /MPa

    0.700.75 0.500.55

    0.300.500.200.35

    0.500.55 0.330.40

    0.100.150.060.09

    F16F15F4

    0.390.45 0.300.35

    0.050.100.020.07

    C3C11f 238f 239

    13 AutoCAD 3DEC Fig.13 Anchorage scheme of visualization model in

    AutoCAD and numerical model in 3DEC

    AutoCAD AutoLISP 4 4 1DWGLINE 2 1011 8 33DEC ( 4 ) 4

    N

    e U

    1238 1239

    F15 F16

    F4

    C11C10C9C8C7C6

    C5C4C3

  • 26 8 . 1641

    4

    Table 4 Fundamental grammatical structure of extracting information of cables in AutoLISP

    1 SelData (ssget "X" (cons 0 "LINE")) BoltSelect (cadar (ssnamex SelData 0))

    2

    (setq BoltData (entget BoltSelect )) (setq BoltType (cdr (assoc 8 BoltSelect)) (setq BoltHead (assoc 10 BoltData)) (setq BoltEnd (assoc 11 BoltData))

    (AutoLISP)

    3

    (setq BoltHeadXcoordination (cadr BoltHead)) (setq BoltHeadYcoordination (caddr BoltHead)) (setq BoltHeadZcoordination (cadddr BoltHead))(setq BoltEndXcoordination (cadr BoltEnd)) (setq BoltEndYcoordination (caddr BoltEnd)) (setq BoltEndZcoordination (cadddr BoltEnd))

    (FISH)

    4 STRUCT Cable id num & (x1y1z1) (x2y2z2) & SEG ns PROP n

    (x1y1z1) (x2y2z2) cable id cable SEG cable PROP TENS cable 4.4

    AutoCAD F16 f238f239 14

    14 Fig.14 Sketch of combining forms of structural planes and

    selected section

    22 22

    14 3DEC 3DEC FISH AutoCAD AutoLISP FISH AutoLISP

    15 F16 ( 16) 10 mm

    15 (mm) Fig.15 Vectorgraph of resultant displacement after excavation

    and anchorage of selected section(unitmm)

    (a)

    (b)

    16 Fig.16 3D contour and nephogram of resultant displacement

    after excavation and anchorage

  • 1642 2007

    3DEC 3DEC FISHAutoCADAutoLISPFISH AutoLISP 3DFACE 17 AutoLISP 5 17

    17 AutoCAD Fig.17 Sketch of distribution of 3D plastic zones in AutoCAD

    after excavation

    5 AutoLISP Table 5 Fundamental grammatical structure of generating 3D

    plastic zones with AutoLISP

    1

    (entmake (list(0. "LINE")

    (8.)) (62. "color") (cons 10 (list x1y1z1)) (cons 11 (list x2y2z2))))

    2

    (entmake (list(0. "3DFACE")

    (8. "3DEC ") (62. "color") (cons 10 (list x1y1z1)) (cons 11 (list x2y2z2)) (cons 12 (list x3y3z3)) (cons 13 (list x4y4z4))))

    5 1 AutoCAD

    2 3DFACE

    5

    AutoCAD

    (AutoLisp) DWG MLSM AutoCAD ITASCA FLAC3D 3DEC AutoCAD ITASCA AutoCAD AutoCAD ITASCA

    3DEC 3DEC AutoLISP FISH AutoCAD

    (1) AutoCAD DWG 3DMAX OpenGL

    (2)

  • 26 8 . 1643

    (3) (References) [1] .

    [J]. 200423(4)597602.(PAN WeiLIU DaanZHONG Huiyaet al. 3D geological modeling and its application to slope engineering[J]. Chinese Journal of Rock

    Mechanics and Engineering200423(4)597602.(in Chinese)) [2] . [J].

    200322(10)1 7221 726.(WANG ChunxiangBAI ShiweiHE Huaijian. Study on geological modeling in 3D strata visualization[J]. Chinese Journal of Rock Mechanics and Engineering200322(10)1 7221 726.(in Chinese))

    [3] . GIS[J]. 200322(6)969976.(XIE MowenTETSURO EZHOU Guoyun. GIS method for slope-unit- based 3D landslide hazard evaluation[J]. Chinese Journal of Rock

    Mechanics and Engineering200322(6)969976.(in Chinese)) [4] .

    [J]. 200625(1)2 6182 628.(XIAO ShengxieZHONG YoumingZHENG Yiet al. Visual deductive system of 3D landslide and damage evolution tracking[J].

    Chinese Journal of Rock Mechanics and Engineering200625(Supp.1)2 6182 628.(in Chinese))

    [5] . [J]. 2006(2)5862.(WANG LiguanHE ChangshengJIA Mingtao. 3D geological solid modeling technology and its application to engineering[J]. Metal Mine2006(2)5862.(in Chinese))

    [6] . GIS [J]. 200625(4)109112.(LIU ZhengZHENG Guizhou. Advances of mine 3D geographic information system[J]. Geological Science and

    Technology Information200625(4)109112.(in Chinese)) [7] . [J].

    200620(4)6870.(WANG MinghuaBAI Yun. The status quo and development tendency of 3D geosciences modeling[J]. Soil

    Engineering and Foundation200620(4)6870.(in Chinese)) [8] . [J].

    ()200631(9)795798.(ZHANG KunZHANG SonglinLIU Zuqianget al. On 3D visualization of landslides deformation[J]. Geomatics and Information Science of Wuhan University200631(9)795798.(in Chinese))

    [9] . [J]. 20057()277281.(CHEN JunzhiMIAO YangangHOU Kepenget al. Study on using three-dimensional

    visualization technology in geotechnical engineering[J]. Engineering

    Science20057(Supp.)277281.(in Chinese)) [10] . [J].

    200524(14)2 5262 530.(CHAI HejunHUANG Dilong. 3D visualization model of mining geotechnique and its

    application[J]. Chinese Journal of Rock Mechanics and Engineering200524(14)2 5262 530.(in Chinese))

    [11] . [J]. 200524(4)575580.(ZHONG DenghuaLI MingchaoYANG Jianmin. 3D visual construction of complex engineering rockmass structure and its application[J].

    Chinese Journal of Rock Mechanics and Engineering200524(4) 575580.(in Chinese))

    [12] . [J]. 200726(2)360367.(ZHONG DenghuaAN NaLI Mingchao. 3D dynamic simulation and analysis of slope instability of reservoir banks[J]. Chinese Journal of Rock

    Mechanics and Engineering200726(2)360367.(in Chinese)) [13] . GIS[

    ][D]. 2005.(ZHU Liangfeng. study on key techniques of 3D geological

    modeling and visualization system based on GIS[Ph.D. Thesis][D].

    ShanghaiSchool of Resources and Environment ScienceEast China Normal University2005.(in Chinese))

    [14] . [J]. 200627(5)828832.(ZHU LiangfengPAN XinWU Xincai. Design and development of 3D geological modeling and visualization system[J]. Rock and Soil Mechanics200627(5)828832.(in Chinese))

    [15] . Kriging [J]. ()200429(7)611614.(YAN HuiwuZHU GuoruiXU Zhiyonget al. Volume rendering and 3D modeling of hydrogeologic layer based on Kriging

    algorithm[J]. Geomatics and Information Science of Wuhan

    University200429(7)611614.(in Chinese)) [16] . Delaunay3D TEN[J].

    200524(24)4 5814 587.(WU JiangbinZHU Hehua. 3D TEN model of strata and its realization based on

    Delaunay triangulation[J]. Chinese Journal of Rock Mechanics and

    Engineering200524(24)4 5814 587.(in Chinese)) [17] . Delaunay

    [J]. ()200533(6)111113.(PU HaoSONG ZhanfengZHAN Zhenyan. 3D modelling for roads based on constrained Delaunay triangulation[J]. Journal of

    Huazhong University of Science and Technology(Natural Science)200533(6)111113.(in Chinese))

    [18] . [J]. 200524(2)5 9615 964.(LIU ChangxiaoHE HuaijianZHANG Kejun. Research on visualization of strata and pile foundations based on triangular prism[J]. Chinese

    Journal of Rock Mechanics and Engineering200524(Supp.2) 5 9615 964.(in Chinese))

    [19] . [J]. 2005(3)2933.(ZENG QianbangLIU DaanZHANG Juminget al. 3D modeling and

  • 1644 2007

    visualization of complicated geological mass in geological

    engineering[J]. Engineering Geology Computer Application2005(3)2933.(in Chinese))

    [20] LANCASTER PSALKAUSKAS K. Surfaces generated by moving least square method[J]. Mathematics of Computation198137141158.

    [21] . [J]. 200423(23)4 0284 032. (JIN YequanZHOU Chuangbing. Application study of moving least square method to simulation of in-situ stresses with large depth[J].

    Chinese Journal of Rock Mechanics and Engineering200423(23)4 0284 032.(in Chinese))

    [22] . [J]. 2006(3)18.(ZENG QianbangHE Xiaoping. Mathematical models for engineering geological surface and its

    computer displaying method[J]. Engineering Geology Computer

    Application2006(3)18.(in Chinese)) [23] Autodesk Inc.. AutoLISPVisual LISP and DXF references[R].

    [S.l.]Autodesk Inc.2000. [24] Itasca Consulting Group Inc.. Three-dimensional distinct element

    codeusers guide[R]. MinneapolisItasca Consulting Group Inc.1999.

    [25] Itasca Consulting Group Inc.. 3DEC theory and backgroundthree-dimensional distinct element code user's manual(Version 3.0)[R]. MinneapolisItasca Consulting Group Inc.2003.

    [26] . FLAC3D [J]. 200221(9)1 3871 391.(HU BinZHANG ZhuoyuanHUANG Runqiuet al. Development of pre-processing package for FLAC3D and verification of its simulating

    effects[J]. Chinese Journal of Rock Mechanics and Engineering200221(9)1 3871 391.(in Chinese))

    [27] . ANSYSFLAC3D

    [J]. 200524(6)1 010 1 013.(LIAO QiulinZENG QianbangLIU Tonget al. Automatic model generation of complex geologic body with FLAC3D based on

    ANSYS platform[J]. Chinese Journal of Rock Mechanics and

    Engineering200524(6)1 0101 013.(in Chinese)) [28] . VII

    [J]. 200527(11)1 3171 322.(PAN WeiLIU DaanGUO Huafenget al. Study on 3D geological modeling in VII dam site of Xiangjiaba Hydropower Station[J]. Chinese Journal

    of Geotechnical Engineering200527(11)1 3171 322.(in Chinese)) [29] . [C]//

    . . 2004357386.(ZHOU WeiyuanYANG RuoqiongYANG Qianget al. The analysis and numerical simulation of rock mechanics[C]//

    WANG Sijing ed. Achievement of Rock Mechanics and Engineering

    in China Century. NanjingHohai University Press2004357386.(in Chinese))

    [30] CUNDALL P A. A computer model for simulating progressivelarge scale movements in blocky rock systems[C]//Proceedings of the

    International Symposium on Rock Fracture. NancyFrance[s.n.]19711118.

    [31] . [J]. 200333(4)

    483490.(LIU KaixinGAO Lingtian. A review on the discrete element method[J]. Advances in Mechanics200333(4)483490.(in Chinese))

    [32] CUNDALL P ASTRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique197929(1)4765.

    [33] . [C]// . . 19863237.(WANG Yongjia. Discrete element methoda suitable numerical method in mechanical analysis of jointed rock[C]// CHEN Zuyu ed. Proceedings

    of the 1st National Symposium on Numerical Calculation and Model

    Test of Rock Mechanics. ChengduSouthwest Jiaotong University Press19863237.(in Chinese))

    [34] . [M]. 1991.(WANG Yongjia. Discrete element method and its applications to geomechanics[M]. ShenyangNortheast Industry Press1991.(in Chinese))

    [35] . [J]. 19956(2)114.(WANG YongjiaXING Jibo. Discrete element method and Lagrangian element method and

    their applications to geomechanics[J]. Rock and Soil Mechanics19956(2)114.(in Chinese))

    [36] . [M]. 1991.(WEI Qun. The basic fundamental numerical method and program of distinct element method[M]. BeijingScience Press1991.(in Chinese))

    [37] . [J]. 200519(4)177181.(WANG WeihuaLI Xibing. A review on fundamentals of distinct element method and its

    applications to geotechnical engineering[J]. Geotechnical Engineering

    Technique200519(4)177181.(in Chinese)) [38] . TRUDEC[J].

    199615(3)193200.(WANG YongjiaLIU Lianfeng. Formulation of a three-dimensional discrete element model

    TRUDEC system[J]. Chinese Journal of Rock Mechanics and

    Engineering199615(3)193200.(in Chinese)) [39] O.

    [J]. ()199718(3)233236.(ZHU FushengWANG YongjiaSTEPHANSSON O. 3D distinct element modeling of a high and steep slope stability[J].

    Journal of Northeastern University(Natural Science)199718(3)233236.(in Chinese))

    [40] . [J]. 200022(1)101104.(JIAO YuyongGE XiurunLIU Quanshenget al. Three-dimensional discrete element method and its application to landslide analysis[J].

    Chinese Journal of Geotechnical Engineering200022(1)101104.(in Chinese))

    [41] . [J]. 200625(6)1 2261 232. (ZHANG ChongHOU YanliJIN Fenget al. Analysis of arch dam-abutment stability by 3D deformable distinct elements[J].

    Chinese Journal of Rock Mechanics and Engineering200625(6)1 2261 232.(in Chinese))