20
1 / 20 Fixed Functionals in Quantum Einstein Gravity Maximilian Demmel, Frank Saueressig, Omar Zanusso THEP Uni Mainz 22.09.2014 Maximilian Demmel Fixed Functionals in QEG

Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

1 / 20

Fixed Functionals in Quantum Einstein Gravity

Maximilian Demmel, Frank Saueressig, Omar Zanusso

THEPUni Mainz

22.09.2014

Maximilian Demmel Fixed Functionals in QEG

Page 2: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

2 / 20

1 introduction

2 pole crossing - analytic example

3 fixed functions in d = 3

4 fixed functions in d = 4

5 summary

Maximilian Demmel Fixed Functionals in QEG

Page 3: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

introduction 3 / 20

setup

tool: k dΓkdk = 1

2 Tr[(

Γ(2)k +Rk

)−1k dRk

dk

]

truncation: Γgravk [gµν ] =

∫ddx√g fk(R)

[0705.1769, 0712.0445, 1204.3541, 1211.0955, ...]

background field method gµν = gµν + hµν

conformal reduction: hµν = 1d gµν φ

[0801.3287, ...]

maximally symmetric background: Sd (R > 0)

Maximilian Demmel Fixed Functionals in QEG

Page 4: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

introduction 4 / 20

type II regulator

operator: � := −D2 + E (potential term E containing R)

define regulator Rk(�)

Γ(2)k (�) +Rk(�) def.= Γ(2)

k (� + Rk(�)),

where Rk is the profile function (Litim’s cutoff).

flow equation ∫ddx√g ∂tfk(R) = 1

2 Tr W (�)

Maximilian Demmel Fixed Functionals in QEG

Page 5: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

introduction 5 / 20

operator trace

spectral sum:

Tr W (�) =∑

iDiW (λi)

eigenvalues λi and multiplicities Di of �

integrating out eigenmodes:

optimised cutoff =⇒ W (λi) ∝ θ(k2 − λi)=⇒ W (λi) 6= 0 ⇐⇒ k2 ≥ λi

every time k crosses λi the eigenmode is integrated out

spectral sum is a finite sum (ACHTUNG: λi ∝ R)

Maximilian Demmel Fixed Functionals in QEG

Page 6: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

introduction 6 / 20

definition: fixed function

definition:

R =: k2r , E =: k2e, fk(R) =: kdϕk(R/k2)

flow equation: partial differential equation for ϕk(r)

fixed functions: (global) k stationary solutions ⇐⇒ ∂tϕk(r) = 0

third order equation: three parameter family of solutions

Maximilian Demmel Fixed Functionals in QEG

Page 7: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

introduction 7 / 20

pole structure of flow equation

the coefficient of ϕ′′′(r)

1 2 3 4 5 6

r

1000

2000

3000

4000

5000

6000

three poles r0, r1 and r2 (in d = 3, 4)

global solutions should cross the poles

Maximilian Demmel Fixed Functionals in QEG

Page 8: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

pole crossing - analytic example 8 / 20

regular singular points and pole crossing

generic ODE: y(n)(x) = f (y(n−1), . . . , y′, y, x)

r.h.s. f can have singular points

f (y(n−1), . . . , y′, y, x) = e(y(n−1)(x0), . . . , y′(x0), y(x0), x0)x − x0

+O((x − x0)0)

pole crossing (global) solution ⇐⇒ e|x=x0= 0 (regularity

condition)

additional boundary condition reduces number of free parameters

Maximilian Demmel Fixed Functionals in QEG

Page 9: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

pole crossing - analytic example 9 / 20

analytic example

initial value problem:

y′′(x) = − y(x)x − 1 , y(0) = y0, y′(0) = y1

solutions are modified Bessel functions In. For most y0, y1: no globalsolution.

add BC y(1)=0: pole crossing solution

y(x; y0) = y0

√1− x I1

(2√

1− x)

I1(2)

self similarity in initial values y(x; y0) = λ−1y(x;λy0)

Maximilian Demmel Fixed Functionals in QEG

Page 10: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

pole crossing - analytic example 10 / 20

analytic example

initial value problem:

y′′(x) = − y(x)x − 1 , y(0) = y0, y′(0) = y1

polynomial expansion: y(x) =∑k

n=0 anxn

fixing all coefficients at x = 0 =⇒ ai = 0

improved strategy: fix an at x = 0 for n ≥ 2 and fix a1 at x = 1=⇒ series expansion of analytic solution recovered

self similarity y(x) = y0∑k

n=0 anxn

Maximilian Demmel Fixed Functionals in QEG

Page 11: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

fixed functions in d = 3 11 / 20

numerical shooting I

expand around r = 0

ϕ(r ; a0, a1) = a0 + a1r +k∑

n=2an(a0, a1)rn

1 fix an, n ≥ 2 by using regularity condition at r = 0

2 initial conditions for numerical integration (ε > 0)

ϕ(n)init(ε) = ϕ(n)(ε; a0, a1), n = 0, 1, 2

3 regularity condition at r1

e : (a0, a1) 7→ R

Maximilian Demmel Fixed Functionals in QEG

Page 12: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

fixed functions in d = 3 12 / 20

pole crossing solutions

0.2 0.4 0.6 0.8 1.0

a0

-2.0

-1.5

-1.0

-0.5

a1

green: e(a0, a1) > 0red: e(a0, a1) < 0black line: e(a0, a1) ≈ 0

Maximilian Demmel Fixed Functionals in QEG

Page 13: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

fixed functions in d = 3 13 / 20

polynomial expansion

polynomial expansion

ϕ(r) =n∑

k=0akrk

boundary condition atr = 0 (a2, a3, . . . )

boundaty condition atr = r1 (a1)

a1 as function of a0(dashed blue line)

0.1 0.2 0.3 0.4

a0

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

a1

n=17

Maximilian Demmel Fixed Functionals in QEG

Page 14: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

fixed functions in d = 3 14 / 20

numerical shooting II

algorithm for second shooting

1 parametrize regular line by a0

2 initial conditions for second numerical integration

ϕ(n)init(r1 + ε) =ϕ(n)

num(r1 − ε; a0), n = 0, 1, 2

3 numerically integrate up to r2 and check regularity condition

e3 : a0 7→ R

Maximilian Demmel Fixed Functionals in QEG

Page 15: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

fixed functions in d = 3 15 / 20

regularity at r2

0.24 0.32 0.4

a0

-0.04

-0.02

0.02

0.04

0.06

0.08

e2

-6 -4 -2 2 4 6

r

-1

1

2

3

4

5

6

jHrL

There are two distinct zeros =⇒ two fixed functionsimproved stability: at most three relevant directions

Maximilian Demmel Fixed Functionals in QEG

Page 16: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

fixed functions in d = 4 16 / 20

preliminary results in d = 4

0.02 0.03 0.04 0.05

a0

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

a1

n=17

0.015 0.020 0.025 0.030 0.035 0.040

a0

0.00

0.02

0.04

0.06

0.08

e3

numerical shooting and polynomial expansion yield regular line

one (nontrivial) fixed function identified

Maximilian Demmel Fixed Functionals in QEG

Page 17: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

fixed functions in d = 4 17 / 20

fixed function in d = 4

1 2 3 4 5

r

0.0

0.1

0.2

0.3

jHrL

Maximilian Demmel Fixed Functionals in QEG

Page 18: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

summary 18 / 20

summary

flow of conformally reduced f (R)-gravity

interpretation of integrating out eigenmodes

numerical and analytical techniques for pole crossing

two fixed functions in d = 3

one fixed function in d = 4

Maximilian Demmel Fixed Functionals in QEG

Page 19: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

summary 19 / 20

Porto Katsiki - 21. Sept. 2014

Maximilian Demmel Fixed Functionals in QEG

Page 20: Fixed Functionals in Quantum Einstein Gravityusers.uoa.gr/~papost/TALKS_FILES/Demmel.pdf · introduction 3/20 setup tool: kdΓ k dk = 1 2 Tr Γ(2) k + R k −1 kdR k dk truncation:

summary 20 / 20

Thank You!

Maximilian Demmel Fixed Functionals in QEG