19
First user experiments at the VUV-FEL Josef Feldhaus, DESY MAC meeting November 9, 2004

First user experiments at the VUV-FEL - DESY · Max-Planck-Institut Heidelberg: J.R. Crespo, J. Braun, J. Bruhns, A. Dorn, R. Moshammer, C.D. Schröter, J. Ullrich Fudan University

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • First user experiments at the VUV-FEL

    Josef Feldhaus, DESY

    MAC meeting November 9, 2004

  • Layout of the Experimental Area

    Klimaschrank

    Opticallaser

    BL310 µm

    BL220 µm

    BL1100 µm

    PG2PG1

    High resol. PGMmonochromatorIntensity and position

    monitor (gas ionization)~42m to undulator

    Uni HH (BMBF)

    MBI and EU coll.

    Coll. with PTB, Ioffe Inst.

  • The First User Experiments

    technicaldevelopments

    atomsions

    clusters

    solidssurfaces

    plasmas biological samples

    0

    2

    4

    6

    8

    10

    12

    Num

    ber o

    f VUV

    -FEL

    pro

    ject

    s

    .

    all

    2005VUV-FEL Proposals in Sept. 2002

    30 proposals submitted200 scientists involved

    60 institutes11 countries

    Available beam time heavily overbooked (98 weeks requested for the first year)

    Areas of research

    • Many groups have formed collaborations• Many groups have built new instrumentation• Substantial funding has been allocated for these

    experiments (e.g. 14 groups funded by BMBF)

  • User experimentsAreas of Proposed Research

    • Interaction of ultra-intense XUV pulses with matter- FEL wavefront measurement and correction, sub-µm

    focusing- multiphoton excitation of atoms and molecules- plasma physics

    • Femtosecond time-resolved experiments- synchronisation FEL - optical laser- chemical reactions on surfaces - magnetism dynamics

    • Investigation of extremely dilute samples- free radicals- monomeric clusters- highly charged ions

    • High-resolution spectroscopy- nanometer focus- meV-resolution photon and photoelectron spectroscopy

    of surfaces and solids

  • Au film (15 nm) on Si substrate irradiated by a single FEL pulse

    λ = 98 nm, W=100 TW/cm2

    TTF1 results

    R. Sobierajski et al., Pol. Acad. Sciences, DESY, GKSS

    Damage of C coatings

    SEM

    AFM

    ⇒ Plasma physics

  • Plasma Experiments: Extremely Hot Matter at Solid Densities

    FEL-Beamλ = 40 nmI = 1016 W/cm²

    100fs

    Al-Target

    Pressure in an atomic nucleus

    A. Krenz, Diploma Thesis, MPI Garching

    Collaboration of 12 groups

    First simple experiment

  • z=40m

    Reflectivity Mirrors for FEL radiation

    time

    Temperature of the mirror surface

    100

    80

    60

    40

    20

    0

    Ene

    rgy

    per a

    tom

    at 4

    0 m

    (meV

    )

    30025020015010050

    Photon energy (eV)

    z = 0x 0.01

    θ = 90°

    Au2°

    Ni2°

    Typical damage threshold for coatings: ~50 mJ/cm2

    experimental result from TTF1

  • 0 100 200 300 400 500 600 700 8000,0

    0,2

    0,4

    g

    average size of clustersN=300

    7+6+

    8+

    5+

    4+

    Xe++

    Xe3+

    Xe+

    inte

    nsity

    [arb

    . uni

    ts]

    time of flight [ns]

    IpXe = 12.1 eV

    Ephot= 12.8 eV

    Coulomb explosion of Xenon clusters with ~ 300 atoms

    1013 photons in ~50 fsec

    in a 20 µm spot

    H. Wabnitz et al., Nature 420, 482 (2002)

    TTF1 results

    Single shot time-of-flight spectrum

    Cluster physics

  • Cluster size dependence

    2·1013 W/cm2

  • • Multi-Photon Processes in Atoms & Molecules

    • Interactions with Molecular Ions

    • Excitation of Highly-Charged Ions

    Atomic Physics

    Universität Frankfurt: R. Dörner, L. Schmidt, Th. WeberFritz-Haber Institut Berlin: U. BeckerUniversität Hamburg: B. SonntagMax-Planck-Institut Heidelberg: R. Moshammer, A. Dorn, D. Fischer,

    C.D. Schröter, J. Ullrich

    Max-Planck-Institut Heidelberg: H.B. Pederson, A. Wolf, D. Schwalm, J. Ullrich

    Weizmann Institute Rehovot: D. Zajfmann

    Max-Planck-Institut Heidelberg: J.R. Crespo, J. Braun, J. Bruhns, A. Dorn,R. Moshammer, C.D. Schröter, J. Ullrich

    Fudan University Shanghai Y. ZouLLNL Livermore P. Beiersdorfer

  • Multi-Photon Multi-Electron Processes in Atoms & Molecules

    Project leader: J. Ullrich, MPI Heidelberg; with Univ. Frankfurt, Fritz-Haber Institut Berlin, Univ. Hamburg

    Spectrometer:ion-electron coincidenceµeV resolution for ionsmeV for electrons

    Reaction-Microscope

    supersonic gas jetatoms, molecules

    FELFEL

    drift

    Detectorposition-sensitivemulti-hit

    Helmholtz coil

    E-field

    • ultra high vacuum: p < 10-11 mbar• cold target : T < 1 Kelvin• multi-hit detectors: ∅ = 12 cm, ∆t ~ 10 ns

    ion detector

    gas jet

    electron det.

    FEL

  • Photo-Ionisation1 photon

    Multi-Photon10 photons

    Ee Ee Ee

    ε ε

    I ≈ 1012 W/cm2 I ≈ 1015 W/cm2

    single active electron => single ionisation

    Well und

    erstood !!

    Well und

    erstood !!

    But: Absorption of 2,3.. photons ??

    Tunnel-Ionisation>15 photons

  • two active electrons => double ionisation

    Dörner et al. (2001)

    ε

    P|| /a.u.

    -10 -5 100 5

    ε

    1 photon 50-100 photons

    ! not unde

    rstood

    ! not unde

    rstood

    ! understo

    od! und

    erstood

    2 photons

    “FEL”

  • Photo-Dissociation of Molecular IonsProject leader: A. Wolf, Max-Planck-Institut Heidelberg, coll. with Weizmann Institute Rehovot

    Ener

    gy

    R

    Direct Predissociation Spontaneousradiative diss.

    • photo-dissociation rates• branching ratios

    Application: Interstellar cloud chemistry

  • from Hartquist, Williams Cambridge Univ. Pr. 1995

    H2 H2+ H3+

    CO

    HCO+

    e-

    Chν

    e-H2

    Interstellar cloud chemistryExample: CH+ (production of oxygen-bearing molecules)

    loss mechanism

    photo-dissociation

    CO

    Example: Diffuse Cloud (ξ Ophiuchi)NObser(CH+) = 2.9·1013 cm-2NModel(CH+) = 2.8·1010 cm-2

    CH+

  • estim

    ated

    CHn+

    H2O+

    H3O+

    NHn+

    Relevant Photon Energies:• Interstellar clouds: < 13.6 eV• Close to stars: < 50 eV

    VUV-FEL

  • Photo-dissociation experiment behind the PGM

    Hollow cathode ion source 5 kV

    Electrostatic ion beam trap

    Einzel lens

    • Kinetic energy release• Angular distributions• Cross sections

    Cold molecular ion beam~ 50 ns pulserelax. time (CH+) ~ 0.4 sec

    VUV FEL Photodissociation imaging

    Molecular ionse.g. CH+, CH2+, HeH+

    Otherexperiment monochromatic

    FEL beam

    5 m

  • Ultra-High Resolution Photoelectron Spectroscopy

    • ∆Ekin ~ meV• spatial resolution ~10 nm• high angle resolution

    Project leader: L. Kipp, Universität Kiel

    Photon sieve

    Electronic structure of highly correlated materials

  • Conclusions

    • 30 high-quality projects have been approved, ~12 experimental systems are ready and wait for beam.

    • The demand for beamtime is very high ⇒- maximise user beamtime;- make maximum use of the FEL beam.

    • It is extremely important that the user experiments are successful; they must drive future developments and justify future funding.