74
First Results from the DAMPE Mission Xin Wu Department of Nuclear and Particle Physics University of Geneva, Switzerland Seminar at Laboratoire de l’Accélérateur Linéaire (LAL) Univ. Paris-Sud, CNRS/IN2P3 June 1, 2018

First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

FirstResultsfromtheDAMPEMission

XinWu

DepartmentofNuclearandParticlePhysicsUniversityofGeneva,Switzerland

SeminaratLaboratoire del’Accélérateur Linéaire (LAL)Univ.Paris-Sud, CNRS/IN2P3

June1,2018

Page 2: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

2LAL,1/06/2018XinWu

Launched >2yearsago,17/12/2015

Highenergyparticlephysicsexperimentinspace

DAMPE

Page 3: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

NeutronDetector(NUD)

PlasticScintillatorDetector (PSD)

Silicon-TungstenTracker(STK)

BGOCalorimeter(BGO)

TheDetector

3XinWu

highenergyγ-ray,electronandcosmicray

nucleitelescope

LAL,1/06/2018

ü Chargemeasurements(PSDandSTK)ü PrecisetrackingwithSistripdetectors(STK)ü Tungstenphotonconvertersintracker(STK)ü Thickimagingcalorimeter(BGOof32X0 )ü Extrahadronrejection(NUD)

Page 4: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

4XinWu

• OurGalaxyisimmergedinahaloofhighenergychargedparticles(CosmicRays)

– Mainlynucleiconsistentwithstellarmaterial:p(90%),He,C,O,… Fe,…

• Butalsosecondaryions:Li,Be,B,sub-Fe,pbar,…

Whystudyparticlesinspace?

LAL,1/06/2018

• Gamma-rays,neutrinos(notcoveredhere)

– Sourcepointingcapability→gamma-ray/neutrinoastronomy

http://www.srl.caltech.edu/ACE/ACENews/ACENews83.html,2004

Cosmicparticlesaremessengersofhighenergyprocesses(“cosmicparticleaccelerators”)� fundamental

implicationsonastronomy,cosmologyandparticlephysics

NormalizedtoSi=103

• andelectrons,positrons(� 1%)

• Observedparticleswithenergyupto~1020 eV(=100MillionTeV =100EeV)

– UptoPeV,bestmeasuredinspace,abovetheatmosphere,forprecisionandcomposition

EssentialingredientoftheMulti-messengerhighenergyastrophysics

Page 5: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 5

• In1785Charles-AugustinCoulombobserved isolatedchargeleakingoutinair…

Allstartedwiththeleakingcharge…

… sothere is“radioactivity”intheair,butwheredoesthisradiationcomefrom?

LAL,1/06/2018

• In1896Becquereldiscoveredradioactivity,also…

Electroscopecanbedischargedbyradioactivity!

Page 6: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 6

• Manysearches ...Elster &Geitel (1899),metalbox;C.T.R.Wilson(1901),railwaytunnel;Wulf (1909),Eiffel tower;Gockel (1910),balloon;Pacini (1911),lake …ledtothediscoverybyV.Hess(1912) inaballoonupto5000m– Conclusiveevidenceofincreasingpenetratingradiationwithrisingaltitude

→extraterrestrialorigin!

TheDiscoveryof“CosmicRadiation”

Spaceparticlephysicswasborn!

Hess,1912

KolhörsterDetector!

Wulf Electroscope

NobelPrize1936forV.HessLAL,1/06/2018

Page 7: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

7XinWu

• Auguste Piccarddevelopedapressuredaluminumcabin

– Measuredcosmicraysuptothestratosphere(~16km)in1931

GoingtotheStratosphere

Piccard 1931

Regener,1932

Kolhörster, 1913/14

• ErichRegener extended themeasurement toanaltitudeof28km in1932withsmallunmannedrubber-balloons

LAL,1/06/2018

First“astronauts”!

First“space-lab”!

Studiesofcosmicraysongroundledtothediscoveriesof:positron(1932),muon(1936),chargedpion(1947),K,Λ, Σ, Ξ, … (1950’s)

Page 8: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

• Alongseriesofballoonsandsatellites experimentsbasedoncalorimeters,leadingtothehighprecisionDAMPEmission, launchedinDec. 2015

Fromballoonstosatellites andspacestations• Manydiscoverieswithballoonsin1930-40’s

– Geomagneticeffects(1927),CRmainlychargedparticles (1929)�mainlypositivelycharged(1933)�mainlyprotons(1940),heavynucleiobserved(1948)

8LAL,1/06/2018XinWu

• Spaceage:particledetectorswerekeyelementsonfirstsatellites– Sputnik-2:launchedNov.3,1957carried2Geigercounters

• IndicationoftheVanAllenradiationbelt

– Explorer-1(FirstUSsatellite): launchedinJan.1,1958

• DiscoveryoftheVanAllenbeltwithaGeigercounter

• 1960:Fristevidencesofcosmicrayelectrons(~0.5GeV)in2balloonexperiments,withmulti-platecloudchamberandNaI/scintillatorcounters– 1963:Friste+/e− ratio(0.1– 1GeV)withmagnetinballoonexperiments

• Magneticspectrometerscontinueswithballoonsandsatellites, leadingtothehighprecisionAMS-02 experiment, launchedin2011

• Gamma-ray detectiontechnologies successfullydeployedinspace,leadingtothehighprecisionandlargeacceptanceFERMI observatorylaunchedin2008

Particlephysicsinspacehasenteredaprecisionmeasurementera!

Page 9: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Manysurprises!• Spectradonotfollowthesimplepowerlaw,asobservedwithlowerprecisiondata

9LAL,1/06/2018XinWu

• Manynewspectralfeaturesobservedwithhighprecisiondata,reflectingthecomplexnatureofcosmicrays– Particlescanbeproducedfromdifferentsourcesatdifferenttimesatdifferent

distances,withdifferentaccelerationmechanisms,thentravelthroughdifferentpathstotheEarth

• Astrophysicalsources(eg.SNR,Pulsar,AGN)orexoticsources(eg.DM)

• Propagation/secondaryproductioneffects

• Non-exhaustivelistofnewand“unexpected”observations– Cosmicraypositronfraction“anomaly”

– Cosmicrayelectron+positronspectralbreaks

– Protonandlightnucleispectralbreaks

– Flatteningantiprotonfraction

– GeVgamma-rayexcessattheGalacticCenter

– …

Stillalongwayfroma“StandardModelofCosmicRayPhysics”!

Page 10: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

10XinWu

• Positronswerethoughttobemainlysecondary� singlepowerlaw

– Secondary:fromcosmicraysinteractingwithInterstellarmedium

Positronfraction“anomaly”

Butelectronandpositionmayhavedifferentcontributingsources�directlylookattheindividual fluxes

LAL,1/06/2018

• Positronsmayhaveaprimarycontribution

– Primary:EMcascadeinpulsarmagneticfieldorthroughpionproductioninshockacceleration(pulsar,SNR),orDM

S.Ting,CERNcolloquium,May24,2018

Page 11: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

11XinWu

• AMSdatabothelectronandpositrondonotfollowsimplepowerlaw– Source(s)contribution,ornewpropagationeffect?

Positronandelectronindividualfluxes

Needmoredatatomeasurethecut-offofthepositronsourcecontribution� understand thenatureofthesource(DM?pulsar?Propagation?)

LAL,1/06/2018

S.Ting,CERNcolloquium,May24,2018

Geomagneticeffect

Page 12: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

12XinWu

• AMS-02publishedCREspectrumupto1TeV,Fermiupto2TeV

• CREfluxcanalsobemeasuredbythickcalorimetricdetectors(DAMPE,CALET)

– Betterenergyresolutionathighenergy

Electron+positron(CRE)flux

LAL,1/06/2018

Fermi,PRD95,082007(2017)

AMS,PRL113,221102,(2014)

Hardening~30GeVseenbyAMSandFermi

But:Fermilargesystematicerrorduetothincalorimeter,HESSlargesystematicerrorduetoshowermodeling inatmosphereandenergyscale(15%,notshowninfigureabove)

DAMPEwillproducehighstatisticsandprecisemeasurementatmulti-TeV region

Intriguing“features”around1TeV

Page 13: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Protonandlightnucleirigidityspectra,upto~TV

13LAL,1/06/2018XinWu

Thereisageneralsinglepowerlawbreakdownaround200GV!

Acceleration?Propagation?Mixed?

S.Ting,CERNcolloquium,May24,2018

Proton

Page 14: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

ProtonandHeliumhighenergyspectra,1- 100TeV

14LAL,1/06/2018XinWu

• 1– 100TeV range:exploredbyCREAM,ATIC,NUCLEON

• Nearfuture:uptoPeV toconnecttoground-basedEASmeasurements

– HERD:onboardChina’sSpaceStation(CSS),~2025

NewmeasurementstocomefromDAMPE,CALETandISS-CREAM

Anotherspectralhardening>1TeV?andasoftening>10TeV?

Cream-III,ApJ 893,5(2017),NUCLEON,JCAP07,020(2017)

Page 15: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

15XinWu

• Apowerlawcanresultfromaprocesswithenergyindependentaccelerationrateand energyindependentescapeprobability– Energygainedaftereachacceleration: !" "⁄ = %

– Escapeprobabilitybetweeneachacceleration:&'()• Accelerationprobability:1 − &'()

Whypowerlaw?

• Thedifferential spectrumisthen,-

,.= /0123.×"

6768

• Insteadystate,thenumberofparticleswithenergyabove"9 = ": 1 + % 9:

– <(" > "9) = < 1accelerations + < 1+ 1accelerations + ⋯

= <0 ∑ 1 − &'()NO

NP9 =-Q

RSTU1 − &'()

9

– Thoseescaped(observed):<V2/(" > "9) = &V2/<(" > "9) =N0 1 − &'()9

• Replacenwith1 =XYZ .[ .Q⁄

XYZ 8\]

– <V2/(" > "9) = /0123.×"967, _ = −

XYZ 86RSTU

XYZ 8\]

LAL,1/06/2018Butistheresuchacceleration process intheGalaxy?

Page 16: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

16XinWu

• Fermi(1949):CosmicraysareoriginatedandacceleratedprimarilyintheinterstellarspaceoftheGalaxybycollisionsagainstmovingmagneticfields

– Fermimechanism(of2nd order):head-on(gain)morelikelythantail-end(loss)⟹ onaverage<ΔE/E>�β2

cloud

FermiAccelerationandSNR

– SupernovaRemnants(SNRs):plausiblesourceforcosmicraysupto~1015 eV

• CanexplainthebulkofCRenergydensity(~1eV/cm3)iffew%ofthekineticenergyreleasedgoesintotheaccelerationofprotonsandnuclei

ud uu

shock

• (1977-78)Similarmechanism,butmoreefficient,withshocksinspaceplasmas

– Fermimechanismof1st order:particlecrossingbackandforthoftheshockfrontalwaysgainenergy⟹ <ΔE/E>�Δβshock

• Efficient:~1000yearstoreach1014 eV(0.1PeV)

• Universalpowerlaw,independentofparticleenergy!

• Notefficientenough:Takestoolongtoaccelerate

• Needsufficientinjection(initial)energy

• Predictspowerlaw,butnotuniversal

a fewpercentury

βcloud~10−4

βshock~10−2

Page 17: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

17XinWu

• Pulsars(fastspinning,highlymagnetizedneutronstarsresultingfromSNexplosions)

– Strongelectricfieldsgeneratedbyrotatingstrongmagneticfields

– Capableofconvertingrotationalkineticenergyintoradioemission(observed), γ-rays(observed), cosmicraysincludinge+e− pairs• Possibleoriginofcosmicraysinthegalactictoextragalactictransitionregion(1015 – 1019 eV)

Pulsars,BinariesandAGNs

• Binarieswithneutronstarorpulsar

– Accretionprocessgenerateshighspeedparticlesfallingintotheaccretiondisk,thenacceleratedinrotatingmagneticfields

• Accelerationto1019 eV possible

• Accretiondisksofcompactobjectsarecommonlyassociatedwithhighlycollimatedrelativisticjets

– Fermiaccelerationinjets(turbulences) associatedwithActiveGalacticNuclei(AGN)couldbetheoriginofextragalacticcosmicrays

`×" =ab

a3

Page 18: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

18XinWu

• Cosmicraysdiffuse throughtheinterstellarmedium (ISM)

– Randomscatteringwithdiscontinuitiesoftheinterstellarmagneticfields

• Directionbecomesisotropic;Spectrumismodified:E−γ� E−γ−δ

CosmicRayPropagationinISM

Secondary-to-primaryratiose.g.B/C,areusefultodeterminepropagationparameters!

– InteractionwithambientmaterialinISM(~90%H,10%He)

• Productionofsecondarycosmicrayparticles

• Somearemainlysecondary:Li,Be,B,sub-Fegroup,…

• ChemicalcompositiongiveuniqueinformationonsourcesandpropagationInterestregionofDAMPE

andfuturemissions

LAL,1/06/2018

Page 19: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

TheDAMPESatellite

19XinWu

Weight:1450/1850kg(payload/satellite)Power:300/500W(payload/satellite)Readoutchannels:75,916(STK73,728)

Size:1.2mx1.2mx1.0m

LAL,1/06/2018

�EQM,Oct.2014,CERN Integratedsatellite,Sept.2015,Shanghai

Page 20: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

20XinWu

TheOrbit

LAL,1/06/2018

• Altitude:500km• Inclination: 97.4065�• Period:95minutes• Orbit:sun-synchronous

• Dec.20:alldetectorspoweredon,excepttheHVforPMTs

• Dec.24:HVon!• Dec.30:stabletriggercondition• Verysmoothoperation since!

LaunchedDec.172015

Page 21: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

TheCollaboration• China

– PurpleMountainObservatory,CAS,Nanjing

– UniversityofScienceandTechnologyofChina,Hefei

– InstituteofHighEnergyPhysics,CAS,Beijing

– InstituteofModernPhysics,CAS,Lanzhou

– NationalSpaceScienceCenter,CAS,Beijing

• Switzerland

– UniversityofGeneva,Switzerland

• Italy

– INFNPerugiaandUniversityofPerugia

– INFNBariandUniversityofBari

– INFNLecceandUniversityofSalento

21LAL,1/06/2018XinWu

Page 22: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

ScientificobjectivesofDAMPE• PrecisionTeV measurementsinspace

– Measurethehighenergycosmicelectronandgammaspectra– Studyofcosmicrayspectrumandcomposition

– Highenergygammarayastronomy

22

Detectionof1GeV- 10TeVe/γ,100GeV- 100TeV cosmicrayswithexcellentenergyresolution,directionreconstruction (γ)andchargemeasurement

LAL,1/06/2018XinWu

Page 23: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

PlasticScintillatorDetector(PSD)

23XinWu LAL,1/06/2018

2 layers(x,y)ofstrips1cmthick,2.8cmwideand88.4cmlongSensitivearea82.5cmx82.5cm,nodeadzone• Stripstaggeredby0.8cm

Readout both ends with PMT, each uses twodynode signals (factor ~40) to extend thedynamic range to cover Z = 1, 26

Page 24: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Silicon-TungstenTracker(STK)

• Outerenvelop1.12mx1.12mx25.2cm

• Detectionarea76x76cm2

• Totalweight:154.8Kg

• Totalpowerconsumption:~85W

24XinWu LAL,1/06/2018

Page 25: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

• 12layers(6x,6y)ofsingle-sidedSi stripdetectormountedon7supporttrays

• Tungstenplates(1mmthick)integratedintrays2,3,4(fromthetop)

– Total 0.85X0 forphotonconversion

TheSTKstructure

25XinWu LAL,1/06/2018

73,728channels

768siliconsensors95x95x0.32mm3

1,152ASICs

192ladders

Page 26: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

X Layer (22 BGO bars)

Y Layer

14 Layers

BGOCalorimeter(BGO)• 14-layerBGOhodoscope,7x-layers+7y-layers

– BGObar2.5cm�2.5cmx60cm,readoutbothendswithPMT

• Use3dynode(2,5,8)signalstoextendthedynamicrange

– Chargereadout/Trigger:VATA160withdynamicrangeupto12pC

26Totalthickness32X0/1.6λILAL,1/06/2018XinWu

Detectionarea60cm�60cm

Page 27: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

BGOreadoutandtrigger

• TA(fastshaping,22channelOR)signalsofVATA160usedfortrigger

– Onlythedynodes5and8ofthetop4andbottom4layers used– Triggermenu:HE(notprescaled), LE,MIP-1,MIP-2,Unbiased

27LAL,1/06/2018XinWu

5x

Page 28: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

NeutronDetector(NUD)• 4largeareaboron-dopedplasticscintillators(30cm�30cm�1cm)

– Detectthedelayedthermalneutroncapturesignaltohelpe/hseparation

– Gatingcircuittodetectdelayedsignalwithasettabledelay(0-20µs)afterthetriggerfromtheBGO

28LAL,1/06/2018XinWu

γ + Li+ α → B+ n 710

Page 29: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

DAQsystem

29LAL,1/06/2018XinWu

Triggerlatency1µs

3ms fixedDAQdeadtime

• 2crates• Allmoduleswithdouble

redundancy• 16GBmemory

Page 30: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

On-groundcalibration

30XinWu

• SeveralweeksatCERNPSandSPSbeamsfromOct.2012– Nov.2015(EQM)– Plusmanycosmicmuondata(FM)

LAL,1/06/2018

Oct.2012Nov.2014

March2015Nov.2015

Page 31: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

31XinWu

Electronenergylinearityandresolution

LAL,1/06/2018Goodlinearityandresolution

Goodagreementbetweentestbeamandsimulation

1-20GeV 50-243GeV

ΔE/E<1.2%for>100GeV

NIMA856(2017)11Energycorrection:~6-7%for100GeV – 1TeV

Page 32: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

32XinWu

Protonenergyresolution

LAL,1/06/2018

Protonenergycannotbeeasilycorrected.Needunfolding!

Goodagreementbetweentestbeamandsimulation

Page 33: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Noise [ADC counts]0 2 4 6 8 10 12 14 16 18 20

Entri

es

1

10

210

310

410After production

After payload integration

After satellite integration

STKon-groundcalibration• ExtensivelytestedandcalibratedwithparticlebeamsatCERNandwith

cosmicraymuons

• STKremainedinexcellentqualitythrough~6monthsoftransportation,integration,spaceenvironmentaltests,…

– Numberofnoisychannels<0.4%beforelaunch• LargeamountofcosmicdatacollectedtoaligntheSTK

– Excellentpositionresolutionachievedbeforelaunch

• 40– 50µmforverticalentryparticles (requirement75µm)

33XinWu

Numbe

rofchann

els

Noise(ADC) Trackincidenceangle

Positionresolutio

n

LAL,1/06/2018

Page 34: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Chargemeasurementswithbeams• TestwithionfragmentbeamsatCERN

34XinWu LAL,1/06/2018

ChargemeasuredbyPSDChargemeasuredbySTKladders

STKhasbetterresolution atlowZ,butsaturateatZ~ 8

Ar primarybeam Pb primarybeam

STKASICgain

Page 35: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

35XinWu

• 15 orbits/day

• ~50Hzaveragetriggerrate

– Mainhighenergytriggerandprescaled lowenergyandMIPtriggers

Particlehitcountsvsorbit

LAL,1/06/2018

Page 36: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

36XinWu

• HETtriggerrate20– 60Hz– EventsinSouthAtlanticAnomaly(SAA)

regionsnotused

Triggerrateinorbit

LAL,1/06/2018

3 ObitsthroughSAA

Proc.Sci.(ICRC2017)232(2017)

• Smalltriggerthresholdvariationwithtemperature– ~13ACD(0.04MIP)infull

temperaturerange

Temperature

Triggerthreshold

Page 37: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

PSDin-flightcalibration

37XinWu

Pedestalcomparison

LAL,1/06/2018 Proc.Sci.(ICRC2017)168(2017)

Dy5andDy8signalcorrelation

Lightattenuationcalibration,usingSTKtrackforextrapolation

Dy8

Dy5 Singlelayerefficiency

Average~99.5%

PSDbarnumber

Page 38: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

38XinWu LAL,1/06/2018

Charge resolution: 1�0.12 for H, 2�0.28 for He

Ni

Fe

SiNe

C OHe

Ca

H

PSDchargemeasurement

Goodstartingpointforprotonandnucleimeasurements

Page 39: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Noise Runs0 100 200 300 400 500 600 700

Num

ber o

f Cha

nnel

s

0

50

100

150

200

250

300

350

400

450

Frac

tion

of T

otal

[%]

0

0.1

0.2

0.3

0.4

0.5

0.6noise>5 ADC10>noise>5 ADCnoise>10 ADC (1 PED run per day)

Dec. 30, 2015 - Feb. 28, 2018

39XinWu

• Detectorstartedingoodshape,Steadilyimprovedinthefirst2yearduetostabilizationeffect

LAL,1/06/2018

• Bulkofnoisecorrelatedwithtemperature

– Verysmalltemperaturecoefficient

• ~0.01ADCper2�,stability�1.4%

• Simplificationforoperation

– datacompressionthresholdsupdatedonlyonceonFeb.22,2016usingaveragenoiseofFeb.13-17,2017

STKNoiseverystablesincelaunch

Rangeofvariation (0.3ADC)moreprecisethan theon-boardpedestalcalculation(2ADC)!

26monthssincelaunch

Numberofnoisychannels<0.28%

Averagenoise2.84-2.87ADC

C

Page 40: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

10 20 30 40 50

30

40

50

60

708090

100

200

300x2 x1x3 x6x4 y1x5 y6y2 alignedy3 non-alignedy4y5

) (deg)yθ(xθ

m)

µEf

fect

ive

reso

lutio

n (

• Goodthermal stabilityguaranteedagoodshorttermmechanicalstability

LAL,1/06/2018 40XinWu

STKin-flightalignment

Re-alignevery2weekstocorrectforlongtermshift

Outsidelayerswithlargerextrapolationerrors

Intrinsicpositionresolution40-50µm

Unbiasedhitresidualof12layersbefore/after(re)alignment,asfunctionofincidenceangle

dataof2months

Page 41: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

° < 10x

Θ < °0 ° < 20x

Θ < °10

° < 30x

Θ < °20 ° < 40x

Θ < °30

° < 50x

Θ < °40 ° > 50xΘ

(Jan

uary

,1st

) 1σ

/ 1σ x1 x2x3 x4x5 x6

LAL,1/06/2018 41XinWu

Residualratioevolution:initialalignment

UsealignmentofJan.2016:traymovementinZdirectionaffectsresolutionoflargeangletracks

<10� 10-20�

>50�

20-30� 30-40�

40-50�

LaunchtoMay2018

Page 42: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

Dec-312015

Jul-012016

Dec-312016

Jul-012017

Dec-312017

Jul-022018

11.11.21.31.41.5

° < 10x

Θ < °0 ° < 20x

Θ < °10

° < 30x

Θ < °20 ° < 40x

Θ < °30

° < 50x

Θ < °40 ° > 50xΘ

(Jan

uary

,1st

) 1σ

/ 1σ x1 x2x3 x4x5 x6

LAL,1/06/2018 42XinWu

Residualwithalignment:launchtoMay2018

Bi-weeklyupdateofalignmentissufficient,stability~2%

<10� 10-20�

>50�

20-30� 30-40�

40-50�

LaunchtoMay2018

Page 43: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

BgoMIPsADC8960_L4_B12_S2Entries 7955Mean 314.9RMS 136.1

/ ndf 2χ 118.8 / 65p0 0.07± 15.84 p1 1.5± 258.8 p2 9.582e+02± 8.061e+04 p3 1.60± 89.62

ADC0 200 400 600 800 1000 1200

Cou

nt

0

50

100

150

200

250

300

BGOin-flightMIPcalibration

43XinWu LAL,1/06/2018

time0 10 20 30 40 50 60 70

Mea

n(M

eV)

1220

1240

1260

1280

1300

1320

01/16 03/16 05/16 07/16 08/16 10/16 12/16 03/17

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Stability of Helium MIPs

31/12/1501/04/1601/07/1630/09/1631/12/1601/04/1701/07/17

MIPs M

PV(AD

C)

520

540

560

580

600

620

Time(Day/Month/Year)31/12/15 01/04/16 01/07/16 30/09/16 31/12/16 01/04/17 01/07/17

C )°Tem

peratu

re(

0

5

10

• “MIP”calibration:ADC→MeVandequalization,useeventsneartheequator,�20�

After“temperaturecorrection”(MIPcalibrationonceperorbit)

Proton“MIP”MPVvstemperature (time)

MPVofaBGObar

Geomagneticcut-offeffectM

IPM

PVsh

ift%

MIPspectrumofaBGObar

ADC

MeV

TotalenergymeanofHeliumMIP

Helium“MIP”meanvstime,stable<1%

Page 44: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

MIPenergycalibrationstability

44XinWu LAL,1/06/2018

BGObarCarbonMIPpeak BGObarIronMIPpeak

MIPenergycalibrationstabilityisbetterthan1%

BGOchargeidentificationofMIPevents

Page 45: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Absoluteenergyscalevalidation

45XinWu LAL,1/06/2018

• UseLin1– 1.14,cut-off~13GeV• Measuredcut-offcomparedtoMCsimulation

withIGRF-12modelandback-tracingcode(InternationalGeomagneticReferenceField)

Proc.Sci.(ICRC2017)197(2017)

• Overallenergyscalecanbecheckedwithgeomagneticcut-offeffects– Chargeparticlesdetectedinageomagneticzonehavespecificcut-offintheflux

(deflectionbythemagneticshield)

McIlwain Lshells

Cut-off:13.20GeV(data)vs.13.04GeV(IGRF)

Cdata/Cpred=1.0125�0.0174(stat.)�0.0134(sys.)

Absoluteenergyscale• ~1.25%aboveexpectation• ~2%at1σ level

Notcorrectionapplied,useassystematics

Page 46: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

1. Reconstructedenergyspectrum

46XinWu

– Ni:numberofeventsobservedafterfiducial andselection cuts– Bi:numberofestimatedbackground– ei:efficiency ofallselectioncutsappliedafterthefiducialcut– Wi:binwidthinGeV(correctedreconstructedenergy)

Theelectron(e++e−)fluxmeasurement

– StatisticalerrorofNi andsystematic(+statistical)errorsofBi,Ai,εi,T

– Ai:acceptanceofthe“fiducial”cutincm2sr– T:livetimecorrespondingtothedataset(30.12.15-08.06.17,2.8billionsevents)

2. Unfoldingtotrueenergyspectrum– Detailedstudiesshowedsmearingeffectisnegligiblewithcorrectedenergy

(ΔE/E<1.5%above20GeV):

3. Acceptance andlivetimecorrection

4. Errorevaluation

Fouringredients:

LAL,1/06/2018

Page 47: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 47

Crosscheckswithindependentanalyses• 3independentanalyseshavebeenperformed,usingdifferent PID(e-p

separation)methods

– Showershape(ζ method):combinelateralandlongitudinalshowershapevariablestooneparameterζ

– Principalcomponentanalysis

– boosteddecisiontree

• Threemethodsgaveveryconsistent(withinthestatisticaluncertainties)resultsofthefinalelectronflux

Theanalysisoftheζ method is presented here

Page 48: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 48

Theglobalshowershapevariableζ• Electronshavenarrowerandshortshowers

– Lateralshowershape• sumRms =sumoftheshowerwidthofall14BGOlayers

– Longitudinalshowershape

• F last =ratiooflayerenergytototalBGOenergyofthelastlayerthathasenergy

5.6 TeV electron candidate

Page 49: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 49

Theglobalshowershapevariableζ• Electronshavenarrowerandshortshowers

– Lateralshowershape• sumRms =sumoftheshowerwidthofall14BGOlayers

– Longitudinalshowershape

• F last =ratiooflayerenergytototalBGOenergyofthelastlayerthathasenergy

sumRms [mm]

F last

• sumRms andF last arecombinedtoaglobal showervariable

ζ = F last� (sumRms)4 /(8� 106)

0.5– 1TeV0.5– 1TeV

goode/pseparation!

Page 50: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

50XinWu

• Fiducialcuts– Defineacceptance

• Trigger:passedtheHighEnergyTrigger(HET)• Selection

– Pre-selection(cleanup)• Removelateralentry,largeshowerandsomeheavynucleiMIPstofacilitatebackgroundextrapolationlater

– Heavynucleiremoval:separatecutsfor2mutuallyexclusivesamples:track-matchedandBGOonly

• Track-matched:removingheavynucleiwithPSDandSTKcharge

• BGO-only:removingheavynucleiwithtop2BGOlayers

– Signalextractionusing theζ variable

Thecutflow

LAL,1/06/2018

Page 51: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

51XinWu

• 3cutstoensure:– TheparticleenergyiswellcontainedintheBGO– Theparticleisenteringfromthetopofthedetector

• Fiducialcut1– BGOfull-span:showerdirectionextrapolatestowithin28cmfromthe

centeratthetopandthebottomsurfacesoftheBGOinbothXandY

• BGObarlengthis60cm

• Fiducialcut2– Removeevents inwhichtheBGObarwithmaximumenergyinsecond,

thirdandforthlayerisontheoutside(bar0or21)

• Fiducialcut3– Removeeventswithmax.layerenergy/totalenergydeposited>35%

Fiducialcuts

LAL,1/06/2018

Page 52: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Particle energy [GeV]210 310 410

sr]

2Ac

cept

ance

[m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Electron MC, fiducial

52XinWu

• Systematicsareevaluatedbycheckingthedata-MCconsistencyincutvariables– Residualdifferencesusedtoestimatesystematicuncertainties

• Totalerror2.2%,flatinenergy.MaincontributionfromtheBGOfull-spancut(2%)– BGOfull-spancutsystematics:thepreciselyreconstructedelectrontrackcan

beusedtoevaluatedtheextrapolationresolutionoftheshowerdirection– Data-MCdifferenceinextrapolationresolution~2mm→2% acceptancechange

Acceptance

~0.31m2sr, relativelyflatvs.energy

AcceptanceisevaluatedwithMC

LAL,1/06/2018

Page 53: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

BGO corrected total energy [GeV]210 310

High

Ene

rgy

Trig

ger E

fficie

ncy

0

0.2

0.4

0.6

0.8

1

Data

Electron MC

53XinWu

• Triggerefficiencyisevaluatedfromthepre-scaledLowEnergytrigger

– UnbiasedfortheHighEnergyTrigger,validatedwithMC

– Crosscheckedwiththe(heavily)pre-scaledUnbiasedTrigger

• Theoverallagreement isexcellent.Differenceatlowenergycomesmainlyfromprotoncontaminationwhichhaslowertriggerefficiency

• MCefficiencyusedforfluxcalculation,halfofthedifferenceassystematics → 1.5%at25GeVand1%at2TeV

TriggerEfficiency

Veryhighefficiency,gooddata–MCagreement

LAL,1/06/2018

Page 54: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

54XinWu

• Verylooseclean-upcuts– 2cutstoreduce largehadronshowerandlateralentryevents+1cut

toremoveheavynucleiMIPs

• maxRms <100mm– maxRms:themaximumwidthofalllayerswithenergy>1%ofthe

totalenergy

• Numberofhitsinthelastlayer(nBarLayer13)– nBarLayer13<8log(totalE)– 5

• nBarLayer13=numberofbarswithenergy>10MeVinthelastBGOlayer

• Lowenergycleaning cut (foreventswithrawenergy<250GeVonly)– AngulardependentlowercutonsumRms

Preselection

Preselectioncuts are highly efficient for signal (>99.9%), and have negligible (<0.03%) systematics uncertainties

LAL,1/06/2018

Page 55: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

55XinWu

• Heavynucleicontaminationisnegligibleinthesignalregionindatabecauseoftheirlargeshowershape

• Butheavynucleishouldberemovedinthebackgroundregionofdata

– Bkg regionisusedtonormalize theζ templatefromprotonMC• Differentcutsareusedforeventswithandwithoutatrackmatch

– Track-matched:removingheavynucleiwithPSDandSTKcharge

• PSDbarisidentifiedbyextrapolatingtheSTKtracktothePSD

– BGO-only:removingheavynucleiwithtop2BGOlayers

Heavynucleiremoval

Cutsaredefinedtobe highly efficient for signal (>99%), and have negligible (<0.3%) systematics uncertainties

• Systematicsareevaluatedbydata-MCcomparisonofcutvariables

– Trackingefficiencyhasgooddata-MCagreement(seenextpage)

• Nosystematicassignedsinceevents failedtrackselectiongotothe"BGOonly"category

LAL,1/06/2018

Page 56: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 56

Signalextractionusingtheζ variable• Strategy

– Extractsmoothζ templatesofeachenergybinfromprotonMC,usinginterpolationacrossenergybinstoreducefluctuation,andthenfit

– Ineachenergybinofdata• Fittheprotonζ templatetodatainthebackgroundregion(20<ζ <100)• Subtractthenumberofbkg.inthesignalregion(ζ <8.5)predictedbythefittedtemplatetoobtainthesignal:Si=Ni–Bi

110– 126GeV 1– 1.11TeV 2.29– 2.63TeV

SignificantsignaluptoafewTeV

3examples.Total38binsfrom24GeVto4.57TeV

LAL,1/06/2018

Page 57: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy [GeV]210 310

Back

grou

nd fr

actio

n [%

]

5

10

15

20

25

30

35

40

45

50

DAMPE CRE selection

XinWu 57

Systematicsofbackgroundestimate• Sourcesofsystematicsconsidered

– Choiceofinterpolationfittingfunction– MCStatisticaluncertaintyininterpolationfit– Choiceofbinningofζ forinterpolationacrossenergybins– Choiceofcontrolregion

– Datastatisticaluncertaintyinthecontrolregionfit• CrosscheckedwiththemethodusingasimpleMCtransferfactor(TF)toscale

eventsfrombackgroundregiontosignalregion

Lowbackgroundfraction(2%- 18%)uptoafewTeV

InterpolationTFmethod

Energy

Numbe

rofbkg

even

tsex

pected

LAL,1/06/2018

Page 58: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 58

Validationoftheprotonζ distribution• Validationwith400GeVprotonsdatatakenattheCERNSPS

– TwoMChadronicmodelsarecompared:QGSPandFTFP

– Data-MChavegoodagreement(withinstatistics)

– Twohadronicmodelshavesimilardistributions

400GeVproton

LAL,1/06/2018

Page 59: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

XinWu 59

Efficiencyandsystematicsoftheζ cut• Comparetheζ distributionofelectronMCtodataaftersubtractingthe

protonbackground

– Verygoodagreement ingeneral

– Smallenergy-dependent difference :-1.9%at25GeVto8.4%at2TeV

• Confirmedwith250GeVelectronCERNtestbeamdata

– MCefficiencyiscorrectedforthisdifference• Halfofthedifference istakenassystematics

Electron,flightdata144- 251GeV

Electron,testbeam250GeV

ζ distribution

LAL,1/06/2018

Page 60: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy [GeV]210 310

sr]

2Ef

fect

ive

Acce

ptan

ce [m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

DAMPE CRE selection

XinWu 60

Effectiveacceptanceandsystematics• Sincenounfoldingisneeded, theacceptanceandefficiencycanbe

multipliedtobecomethe“effective acceptance”

– Efficiencyissmoothvs.energy,dropofefficiencyduetotightcut

– Simpletightcut(ζ>8.5)toselectacleansampleforfirstpublication• Validatedwithloose(energydependent) cut→compatibleresults

– Future:multivariateanalysis(ML),Neutrondetector

NUDAD

Energy

NUDADCLAL,1/06/2018

Page 61: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

61XinWu

Summaryofalluncertainties• Acceptance:2.2%

– maincontributorBGOgeometricalacceptance

• Efficiency:1.8%(25GeV)- 9.4%(4.5TeV)– maincontributors:triggerandζ cut

• (Ni–Bi)”statisticalerror”:ΔNi isstat.,ΔBi issyst.andstat.(frombgk norm.)

– 25GeV:δ(Ni– Bi)=0.32%,negligible

– 2TeV:δ(Ni– Bi)=25.6%,dominatedbyδNi =24.2%(N=17)• T=34913811.6sec,estimatedfilebyfile,removeDAQd.t. (3.0725ms)and

operationaldowntime

– Twoindependentcalculationsagreewithin0.08%

• Totalsystematicsonflux:<10%– 2.8%(25GeV)to9.6%(4.5TeV)

Mostprecise~TeV measurement!

Plus�2%ofabsoluteenergyscaleuncertainty(→~5%shiftinflux)

LAL,1/06/2018

Page 62: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

62XinWu

Systematicandstatisticaluncertainties

LAL,1/06/2018Statisticalerrordominating at~TeV,canbeimprovedwithmoredata

Page 63: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

63XinWu

Nosaturationeffect

LAL,1/06/2018

NosaturationeffectinBGObarsuptomorethan300GeVperbar

Electroncandidates

Page 64: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10DAMPE (2017)

LAL,1/06/2018XinWu 64

DAMPEelectron+positron(CRE)flux

~8 ordersofmagnitude!

Page 65: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10DAMPE (2017)

H.E.S.S. (2008)

H.E.S.S. (2009)

AMS-02 (2014)

Fermi-LAT (2017)

CALET (2017)

LAL,1/06/2018XinWu 65

CREfluxcomparison

~8 ordersofmagnitude!

hardtoseethefeatures!

5-20% whereotherexperimentshave

comparableprecisions(<1TeV)

hardtotelldifferences!

Page 66: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)310

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10DAMPE (2017)broken power law

single power law

LAL,1/06/2018XinWu 66

Zoominto>100GeV

Abreakaround1TeV isclearlyobserved!

FitwithSmoothlyBrokenPower-Law

Breakatthisordercannotbecausedbytheenergyscaleuncertainty

Page 67: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)310

)-1G

eV-1

sr-1 s-2

Flux

(m

10−10

9−10

8−10

7−10

6−10

5−10

4−10

3−10DAMPE (2017)

H.E.S.S. (2008)

H.E.S.S. (2009)

AMS-02 (2014)

Fermi-LAT (2017)

CALET (2017)

broken power lawsingle power law

LAL,1/06/2018XinWu 67

Zoominto>100GeV

Afacturearound1TeVisclearlyobserved!

FitwithSmoothlyBrokenPower-Law

AlsoindicatedbyH.E.S.SandCALET

Breakatthisordercannotbecausedbytheenergyscaleuncertainty

Page 68: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)2G

eV-1

sr-1 s-2

Flu

x (m

× 3 E

50

100

150

200

250

DAMPE (2017)H.E.S.S. (2008)H.E.S.S. (2009)AMS-02 (2014)Fermi-LAT (2017)CALET (2017)

LAL,1/06/2018XinWu 68

ScalingupthefluxbyE3

Easiertoseespectralchanges

Butalsodistortthespectrumandexaggeratefluctuations!

Twofeatureshaveemerged:• ahardeningat~30-50GeV• Abreakat~1TeV

Manyhypotheses→needmoredatafromDAMPE/AMS/CALET,

andHERD!

H.E.S.S:15%energyscaleerrornotincluded

Fermi:extraEdependenterrornotincluded

Page 69: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Energy (GeV)10 210 310 410

)2G

eV-1

sr-1 s-2

Flu

x (m

× 3 E

50

100

150

200

250

H.E.S.S. (2008)

H.E.S.S. (2009)

AMS-02 (2014)

Fermi-LAT (2017)

CALET (2017)

LAL,1/06/2018XinWu 69

ScalingupthefluxbyE3,beforeDAMPE

Easiertoseespectralchanges

Twofeatureshaveemerged:• ahardeningat~30-50GeV• Abreakat~1TeV

Manyhypotheses→needmoredatafromDAMPE/AMS/CALET,

andHERD!

H.E.S.S:15%energyscaleerrornotincluded

Butalsodistortthespectrumandexaggeratefluctuations!

Page 70: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 70

LatestAMSresultcompatiblewiththeTeV break

S.Ting,CERNcolloquium,May24,2018

Page 71: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Protonspectrumbeyond10TeV/nucleon

71LAL,1/06/2018XinWu

Anotherspectralhardening>1TeV?andasoftening>20TeV?

DAMPEprotonfluxupto100TeV inprogress

Page 72: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 72

PhotondetectionwithDAMPE• Whatarethosetungstenplatesfor? 2-yearskymap

(1– 100GeV)

Page 73: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

Next:HERD(HighEnergyRadiationDetectionfacility)

73XinWu

– 5-sidesensitive� ~3 m2sr– Payload~4T(~0.5AMS)

• NextgenerationhighenergyparticledetectoronboardtheChineseSpaceStation– Cosmic-rayphysicsatTeV - PeV,DMsearch,highenergyγ-rayastronomy

– CRsourceidentification, anisotropy,compositon

– SimilartoDAMPE,butwithlargeracceptance

• LYSOcube3Dimagingcalorimeter

• Si/Fibertracker,withconverters

• Anti-coincidencedetector

• Chargemeasurements

~7500LYSOcrystals� 55X0 and3λ !LAL,1/06/2018mainparticipants:CN,IT,CH,launch~2025

Page 74: First Results from the DAMPE Mission · • Many new spectral features observed with high precision data, reflecting the complex nature of cosmic rays – Particles can be produced

LAL,1/06/2018XinWu 74

Conclusions• DAMPEisworkingextremelywellsince launchedmorethan2yearsago

– Apreciseelectron+positronfluxintheTeV regionhasbeenmeasured

• Aclearspectralbreakhasbeenobservedat~1TeV →anewpieceofpuzzletounderstandmanymysteriesincosmicrayphysics!

– Resultsonnucleimeasurements (protonfluxto100TeV!)comingsoon

– Photondetection capabilityisdemonstrated.Needmorestatistics toprofittheexcellentenergyresolutionathighenergy

• Spaceisthenewfrontierofparticlephysics

– Stillanexploratoryscience� groundbreakingmeasurements areexpected

• Experimentallychallengingbutmanyopportunities

– Opportunitiestoapplylatestparticledetection technologiestospace

– Opportunitiestodevelopspecializedandmulti-purposespacedetectorconcepts

– Close interplaybetweenparticlephysics,nuclearphysics,astrophysics,cosmology,solarphysics,spaceweather,spaceradiationdosimetry,planetaryexplorati…

ThankYou!Particlesinspace:excitingsciences,broad interests,advancedtechnologies!