5
Examples for obtaining a set of first-order ODE from a higher order ODE 1) ) 2 cos( 3 ) 1 ( ) 1 ( 2  x  x  y  x  y  x  = + +  π   First rewrite the equation and re-label the derivatives as follows: ) 2 cos( 3 ) 1 ( 0 0 ) 1 ( 2  x  x  y  x  y  y  y  x  = + + + +  π    Note: the higher order derivative is labeled differently. The set of first-order differential equations is: 2 0 2 2 1 1 0 ) 1 ( ) 1 ( ) 2 cos( 3 + = = =  x  z  x  x  x  z  z  z  z  z π   with initial conditions ) 0 ( ) 0 ( ) 0 ( ) 0 ( ) 0 ( ) 0 ( 2 1 0  y  z  y  z  y  z = = =   Note: the number of first-order differential equations is three because this is a third order differential equation.   Note: there will be three initial conditions because this is a third order differential equation. In Mathcad notation we can write: + = 2 0 2 1 ) 1 ( ) 1 ( ) 2 cos( 3 : ) , (  x  z  x  x  x  z  z  z  x  D π   and = ) 0 ( ) 0 ( ) 0 ( :  y  y  y  z initial   Note: actual numbers should be substituted in the expression for the initial conditions. z 2 z 2  z 1  z 0  

First Order Eq Ns

  • Upload
    booksuk

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: First Order Eq Ns

8/12/2019 First Order Eq Ns

http://slidepdf.com/reader/full/first-order-eq-ns 1/5

Examples for obtaining a set of first-order ODE from a higher order ODE

1) )2cos(3)1()1( 2  x x y x y x   ⋅⋅⋅⋅=⋅++′′′⋅−   π    

First rewrite the equation and re-label the derivatives as follows:

)2cos(3)1(00)1( 2  x x y x y y y x   ⋅⋅⋅⋅=⋅++′⋅+′′⋅+′′′⋅−   π    

 Note: the higher order derivative is labeled differently.

The set of first-order differential equations is:

20

2

21

10

)1(

)1()2cos(3

⋅+−⋅⋅⋅⋅=

=′

=′

 x

 z x x x z

 z z

 z z

π  

  with initial conditions

)0()0(

)0()0(

)0()0(

2

1

0

 y z

 y z

 y z

′′=

′=

=

 

 Note: the number of first-order differential equations is three because this is a third orderdifferential equation. 

 Note: there will be three initial conditions because this is a third order differentialequation. 

In Mathcad notation we can write:

⋅+−⋅⋅⋅⋅

=

20

2

1

)1(

)1()2cos(3

:),(

 x

 z x x x

 z

 z

 z x D

π  

  and

′′

′=

)0(

)0(

)0(

:

 y

 y

 y

 zinitial  

 Note: actual numbers should be substituted in the expression for the initial conditions.

z2’ z2  z1  z0 

Page 2: First Order Eq Ns

8/12/2019 First Order Eq Ns

http://slidepdf.com/reader/full/first-order-eq-ns 2/5

2) )cos(2120)sin(5

  t e

t  x xt 

t   ⋅⋅++=⋅+⋅

⋅  ω   

This equation is already a first order differential equation ! Solving for the first order

derivative,  xD :

)sin(

20)cos(215

 xt e

 xt 

  ⋅−⋅⋅++

=⋅

  ω 

D   with initial condition )0( x  

 Note: the number of first-order differential equations is one because this is a first order  

differential equation. 

 Note: there is one initial condition because this is a first order  differential equation.

In Mathcad notation we can write:

)sin(

20)cos(21

:),(5

 xt e

 xt  Dt 

  ⋅−⋅⋅++

=⋅

  ω 

  and )0(:   x xinitial   =  

 Note:  actual numbers must be substituted in the expression for the initial condition.

Page 3: First Order Eq Ns

8/12/2019 First Order Eq Ns

http://slidepdf.com/reader/full/first-order-eq-ns 3/5

3) t t  y y yt  yt    ⋅+=+⋅+⋅⋅+⋅+ 9)cos()sin(5)3sin()2( 2  

First rewrite the equation and re-label the derivatives as follows:

t t  y y yt  y yt   ⋅+=+⋅+⋅⋅+⋅+⋅+

9)cos()sin(5)3sin(0)2(

2

 

 Note: )sin( y  becomes )sin( 0w .

 Note: the higher order derivative is labeled differently.

The set of first-order differential equations is:

)2(

9)cos()sin(5)3sin(

2

0012

21

10

+

⋅++−⋅−⋅⋅−=

=

=

t t wwwt w

ww

ww

D

D

D

  with initial conds.

)0()0(

)0()0(

)0()0(

2

1

0

 yw

 yw

 yw

DD

D

=

=

=

 

 Note: the number of first-order differential equations is three because this is a third order

differential equation. 

 Note: there will be three initial conditions because this is a third order differential

equation. 

In Mathcad notation we can write:

+

⋅++−⋅−⋅⋅−

=

)2(

9)cos()sin(5)3sin(

:),(

2

001

2

1

t t wwwt 

w

w

wt  D   and

=

)0(

)0(

)0(

:

 y

 y

 y

winitial

 

 Note: actual numbers should be substituted in the expression for the initial conditions.

2w w2  w1  w0 w0 

Page 4: First Order Eq Ns

8/12/2019 First Order Eq Ns

http://slidepdf.com/reader/full/first-order-eq-ns 4/5

4) Here we have two differential equations that are “coupled” (connected):

0)(

)sin()(

2

211

=−−⋅

⋅⋅=⋅+−+⋅+⋅

 y xk  ym

t F  xk  y xk  xb xm

  ω 

 

First rewrite the first equation and re-label the derivatives as follows:

)sin()( 211   t F  yk  xk k  xb xm   ⋅⋅=⋅−⋅++⋅+⋅   ω   

 Now rewrite the second equation and re-label the derivatives.

002   =⋅−⋅+⋅+⋅   xk  yk  y ym    

 Note: notice how the labels for the second equation are a continuation of the labels for the

first equation.

The set of first-order differential equations is:

[ ]

[ ]022

3

32

2021111

10

1

)sin()(1

 zk  zk m

 z

 z z

t F  zk  zk k  zbm

 z

 z z

⋅+⋅−⋅=

=

⋅⋅+⋅+⋅+−⋅−⋅=

=

ω 

  and initial conds

)0()0(

)0()0(

)0()0(

)0()0(

3

2

1

0

 y z

 y z

 x z

 x z

=

=

=

=

 

 Note: the number of first-order differential equations is four because two second order

differential equations are used. 

 Note: there will be four initial conditions. Two for each second order differential

equation. 

1 z z1  z0 

z3 3 z z2 

Page 5: First Order Eq Ns

8/12/2019 First Order Eq Ns

http://slidepdf.com/reader/full/first-order-eq-ns 5/5

In Mathcad notation we can write:

[ ]

[ ]  

⋅+⋅−⋅

⋅⋅+⋅+⋅+−⋅−⋅

=

022

3

202111

1

1

)sin()(1

:),(

 zk  zk m

 z

t F  zk  zk k  zbm

 z

 zt  D

ω 

  and

=

)0(

)0()0(

)0(

:

 y

 y x

 x

 zinitial

 

 Note: actual numbers should be substituted in the expression for the initial conditions.